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Abstract 

 
COVID-19 has severely impacted the global aviation industry, causing many airlines to downsize or exit the industry. 
For airlines which attempt to sustain their operations, they will need to respond to the increase in passenger and cargo 
demand, as countries recover slowly from the crisis due to the availability of vaccines. We built a series of spreadsheet 
models to first project the COVID-19 recovery rates by countries from 2021 to 2025, then forecast the passenger and 
cargo demand, using historical data as base figures. Using the financial and operation data, the revenue, expense, and 
profit can be projected, then an optimization model is used to determine the optimal number of aircrafts to be allocated 
to passenger and cargo respectively, and the number of aircrafts to be put into storage. We applied our models to data 
extracted on 26 October 2020 to obtain insights on the impact of COVID-19 on Singapore Airline’s profit recovery 

and aircraft allocation. Our sensitivity analysis shows that Singapore Airline’s profitability and aircraft allocation in 
2023 and 2024 will be very sensitive to the vaccine release date. Our models can be applied to another airline, by 
replacing the financial and operation data, to provide similar insights. 
 
Keywords 
COVID-19, Singapore Airlines, spreadsheets modeling, profit recovery, aircraft allocation 
 
 
1. Introduction 
As COVID-19 ravages through the world since early 2020, the global aviation industry was among the worst hit 
industries. Border controls and travel restrictions were dynamically being imposed as different countries’ COVID-19 
situations fluctuated, severely impacting the demand for air travel. Compared to the other major crises, like the oil 
crisis in the 1973, Iran-Iraq war in the 1980s, Gulf crisis and Asian Financial crisis in the 1990s, 9/11 attack and SARS 
in the 2000s, this COVID-19 pandemic is projected to cause the largest decline of between 54% to 60% in three 
months in the world total passengers, in 2020 as compared to 2019 (IATA 2020a). With extended travel restrictions, 
the decline is likely to be worse. 
 
Many airlines around the globe are facing immense difficulties and responded differently to the crisis. Responses 
include retrenchment of workers and fleet reduction (e.g., Austrian Airlines and Brussels Airlines), obtain government 
aid and secure investments from investors (e.g., Lufthansa and Korean Air), or simply cease operations (e.g., Air Italy 
and Norwegian Air Shuttle). Singapore Airlines (SIA), the national carrier of the city state, experienced close to a 
standstill given that all its flights are international. Being a relatively strong player in the industry, the Singapore 
government is determined to see SIA survive this crisis to emerge stronger (Wong 2020). As countries recover slowly 
from the situation due to the availability of vaccines, airlines will need to respond to increase in passenger and cargo 
demand by allocating their aircrafts efficiently. It will be of paramount importance for airlines to have models which 
can provide insights to support informed decision making, to respond better through this crisis. 
 
We attempt to build a series of spreadsheet models to project the COVID-19 recovery rates by countries from 2021 to 
2025, and then forecast the passenger and cargo demand, using historical data. To determine the optimal number of 
aircrafts to be allocated to passenger and cargo respectively, and the number of aircrafts to be put into storage, we 
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optimize the profit generated, using financial and operational data obtained. We validated our models using COVID-
19 data extracted on 26 October 2020 for analysis to obtain insights, and performed sensitivity analysis on the results 
obtained. 
 
2. Literature Review 
We focus our review on academic papers related to how the aviation industry responded to the pandemic, and 
mathematical models for impact analysis due to disruptions caused by pandemics. Amankwah-Amoah (2020) 
examined how airlines’ have responded to the COVID-19 crisis and the factors that facilitated their responses. He 
developed a 2x2 matrix framework to offer insights into long-term and short term, against internally generated and 
externally imposed responses, adopted by airlines. Short term responses are operational and tactical, while long-term 
responses are strategic in nature. Externally imposed responses are driven by governments, industry bodies and 
societies, to ensure standardized responses to secure a wider participation, while internally generated responses are 
self-directed by the firm to ensure survival. Some specific responses undertaken by different airlines were documented, 
such as in-flight social distancing measure which will have long-term impact on seating density and in-flight services. 
 
For European airlines, Albers and Rundshagen (2020) applied Wenzel et al.’s (2020) typology of crisis response 
strategies to analyse 148 news items published from 6 January 2020 to 2 June 2020, to differentiate the airlines’ 
responses by retrenching, persevering, innovating and exiting. They found that most airlines (75 news items) went 
into retrenchment mode initially, while some financially strong players (37 news items) chose persevering to remain 
competitive post-crisis. Innovating (16 news items) involves strategically renewing the organization such as 
converting passenger aircraft to cargo aircraft to benefit from stable cargo demand during the crisis. The final response 
strategy, exit (11 news items), refer to closing the entire business, downsize operations or exit from certain markets. 
In addition, they provided broad implications for the European airline industry involving the governments acting as 
change agents to provide support with imposed conditions, resetting business model convergence, and halting the 
consolidation of the industry.  
 
Rimmer (2020) analysed the key components of the aviation ecosystem including demand, airlines, airports, network 
connectivity and governance, based on data collected in September 2020. He discussed how each of these components 
will fare in the ‘next normal’ once an effective vaccine is introduced, and when the pandemic is over. For airlines, he 
expected that cargo demand will increase; passenger demand recovery will occur first in domestic and regional 
markets, rather than international markets; business travel recovery will be much slower due to cancellation of physical 
MICE events; leisure class recovery is expected only after 2024. Hence, airlines will respond by offering fewer flights, 
downsizing business classes, and reducing in-flight services. 
 
While these papers discussed the different possible responses to the ‘new normal’ or ‘next normal’, these suggested 
responses can only be made when there is proper analysis of data to support such decision making. Rimmer (2020) 
concluded in his paper that airlines can be guided to transform through analysis by strategists and logisticians who 
would forecast and plan for the likely outcomes. Such planning and forecasting require carefully built models which 
can perform the analysis to obtain results and insights. 
 
Complex system dynamics models such as the inoperability input-output model (IIM) and dynamic IIM (DIIM) have 
been used to provide insights into understanding the inoperability (the inability to satisfy as-planned production levels) 
into input-output modeling. Santos et al. (2009) applied the DIIM to account for economic and productivity losses 
resulting from a pandemic-caused workforce disruption. They applied the enhanced DIIM model to simulate three 
pandemic scenarios in the Commonwealth of Virginia, with three different attack rates. Their simulation results 
provided insights into identifying the vulnerable sectors, and productivity losses of the affected regional economy due 
to interdependencies, useful for effective policy making. Santos et al. (2013) and Haimar and Santos (2014) continued 
to apply DIIM to investigate the interdependent economic and productivity risks due to 2009 H1NI influenza epidemic 
induced workforce disruptions. The results from both studies were similar and suggested that sectors which suffered 
the most economic loss are those that contributed the most to GDP or with the most significant total production 
outputs, while sectors that suffered the most inoperability are involved in epidemic management, such as healthcare. 
 
The COVID-19 pandemic has inspired several other works to apply the input-output models. Yu et al. (2020) applied 
persistent IIM (PIIM) to model the economic impact due to lockdowns imposed. Their results show that (1) sectors 
that suffered higher levels of inoperability during the lockdown may recover faster depending on their resilience; (2) 
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sectors which were initially unaffected can over time end up suffering higher inoperability than sectors which were 
directly affected; and (3) the economic impact on regions which were not in lockdown can also be significant. Santos 
(2020) applied DIIM to estimate the impact of workforce disruptions due to COVID-19 and simulated the impact of 
containment, suppression and mitigation for workforce continuity. Xiao et al. (2020) modeled the global value chain 
to provide insights into how trade will be affected due to factories shut down in some countries. 
 
Apart from input-output models, mathematical models have been created to analyse data related to COVID-19 
pandemic. Adiga et al. (2020) provided a non-exhaustive list of mathematical models with different modeling 
frameworks, underlying assumptions made, datasets, regions and timeframes. They compared models developed in 
the UK, US and Sweden, assessing the strengths and weaknesses of each model. These models are meant for policy 
makers to assess the evolution of the pandemic, to design and analyze control measures, and study various what-if 
scenarios. The UK model first developed by Ferguson et al. in 2005, is an agent-based simulation model to analyze 
the H5N1 pandemic considering household data, interaction points at schools, workplace and random meeting points, 
to simulate the disease transmission. Intervention actions such as case isolation, home quarantine, social distancing, 
and closure of schools were added to study the impact on the outcome. When applied to COVID-19 to study the impact 
of non-pharmaceutical interventions to reduce mortality and healthcare demand (Ferguson et al. 2020), the simulation 
results predicted a dire situation for UK and US, to consider complete lock downs. 
 
The US model was applied to study the spread of influenza (Balcan et al. 2009, Venkatramanan et al. 2019), Ebola 
(Gomes et al. 2014), and Zika (Zhang et al. 2017). It is a spatial metapopulation model which constructs abstraction 
of the mixing patterns in the population, decomposed into subpopulations, connected through flow networks. When 
applied to COVID-19 (Kraemer et al. 2020), the results suggested that international importation could be contained 
substantially by strong travel ban. The simple model developed by Britton in 2020 for predicting the number of cases 
in Sweden used the R0 and doubling time d, with calibration done using observed number of fatality cases, time 
between infection to death, and infection fatality risk. The model predicted that the Stockholm area would attain herd 
immunity within a short period, which was not the case. However, the advantage of this model is that it is transparent 
with few parameters, and one could see which parameters have biggest impact on the outcome. 
 
In terms of using spreadsheets to build models to analyse the COVD-19 situation, Alvarez et al. (2020) developed a 
model using differential equations to follow the evolution of COVID-19 in large cities by adjusting the population 
density and aggressiveness of the response from a society or government to epidemics. Buxton (2020) built a model 
to analyse the projectile motion, evaporation and dispersion of respiratory droplets, for biology and health science 
students to explore the disease transmission. To our best knowledge, we have not found an academic paper which 
discusses spreadsheet models for business applications related to COVID-19. 
 
We built spreadsheet models to project the COVID-19 recovery rates by countries from 2021 to 2025. Based on the 
predicted recovery rate for each country, and vaccine available date, the passenger and cargo demand of SIA will be 
forecasted, using historical data as base figures. Using the financial and operation data of SIA, the revenue, expense, 
and profit can be projected based on the forecasted passenger and cargo demand. To optimize the total profit, an 
optimization model is proposed to determine the number of aircrafts to be allocated to passenger and cargo 
respectively, and the number of aircrafts to be put into storage at Alice Springs in Australia. We applied our models 
to data extracted on 26 October 2020 to obtain insights on the impact of COVID-19 on SIA’s profit recovery and 

aircraft allocation, in hope that SIA can respond better in this crisis to remain ‘a great way to fly’. 
 
Our work is different from previous works in two ways. Firstly, unlike input-output models which use complex system 
dynamics concepts and theories and simulation models, or mathematical models that applied agent-based and deep 
learning models, which are beyond the knowledge and skills of most business executives, our models are built using 
spreadsheets which are easy to understand, use and modify. Secondly, our models are applied at the company level, 
for an airline to assess the impact of COVID-19 on its financial and operation aspects to support better decision 
making, and not at an economic sectorial level to support informed policy decision making. 
 
We will introduce our proposed models in Section 3, explain the results obtained using data related to SIA in Section 
4, and finally provide concluding remarks in Section 5. 
 
 



Proceedings of the 11th Annual International Conference on Industrial Engineering and Operations Management 
Singapore, March 7-11, 2021 

 © IEOM Society International 

 

3. Proposed Solution Models 
We built several spreadsheet models as shown in Figure 1 to perform the detailed computations including, 

• COVID-19 recovery rate by country 
• Passenger demand forecasting 
• Cargo demand forecasting 
• Revenue, expense and profit computations 
• Optimal allocation of aircrafts 

 

 
 

Figure 1. Proposed solution models 
 
3.1 COVID-19 Recovery Rate by Country 
Our first model is the COVID-19 recovery rate by country from 2020 to 2025. Based on the data extracted from 
https://ourworldindata.org/covid-cases (Ritchie et al. 2020), each country is assigned a risk profile using a traffic light 
system adapted from the European Center for Disease Prevention and Control (Riegert 2020). The traffic light colors 
(Green, Yellow and Red) for each country is determined as follows, 

• Green is for countries reporting less than 1 new infection per 100,000 inhabitants in the last 14 days 
• Yellow is for countries reporting more than 1 new infection per 100,000 inhabitants and the trend of daily 

new cases is going down in the last 14 days 
• Red is for countries reporting more than 25 new infection per 100,000 inhabitants and the trend of daily 

new cases is going up in the last 14 days 
 
As an illustration, we extracted the latest 14 days COVID cases data on 26 October 2020 for 31 countries, where SIA 
has operating flights. When the maximum value of the number of new infections per 100,000 inhabitants, within the 
latest 14 days, fall within each range with an upward or downward trend, the respective traffic light color will be 
assigned. Table 1 lists the 31 countries which were assigned to the different traffic light colors, as of 26 October 2020. 
 

Table 1. Traffic light color for 31 countries as of 26 October 2020 
 

Traffic light color Countries 
Green Japan, New Zealand, South Korea, Brunei, Hong Kong, Australia, Taiwan, Thailand, 

Vietnam, China 
Yellow Maldives, India, Philippines, Bangladesh 
Red Switzerland, Spain, France, Netherlands, UK, Italy, USA, Germany, UAE, Denmark, 

Russia, Sri Lanka, Malaysia, South Africa, Myanmar, Turkey, Indonesia,  
 
Based on the traffic light color assignment, two sets of opening dates will be determined for each country. Partial 
opening date refers to the date at which the country will open for business and essential travel only, while full opening 
date refers to opening for non-restricted travel, which is assumed to be one year after vaccine is available (Mahase 
2020). Table 2 lists the partial opening and full opening dates for each color. These opening dates are important as 
they will be used to forecast the passenger demand on SIA from 2021 to 2025. 
 

https://ourworldindata.org/covid-cases
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Table 2. Traffic light color, and its partial and full opening dates 
 

Traffic light color Partial opening date Full opening date 
Green Currently partially open One year after vaccine is available 
Yellow Date to be determined based on Log-Normal Fit One year after vaccine is available 
Red NA One year after vaccine is available 

 
For countries which were assigned yellow color, the daily new cases will be projected using a curve-fitting of past 
data with a Log-Normal distribution to meet the asymmetrical feature of the distribution of new cases (Nishimoto and 
Inoue 2020). The Log-Normal distribution is given by the function, 
 
 
 
 
where t = time, a = peak height, b = peak position, and c = width 
 
We will use Solver to minimize the sum of the squared error from the fitted curve value and the actual daily COVID-
case per million of inhabitants, to optimize the parameters of the Log-Normal curve, a, b, and c. Then, the partial 
opening date will be read from the best fitted curve where there will be 14 consecutive days of less than 1 new infection 
per 100,000 inhabitants. Using the past data up till 25 October 2020, the best fitted curves for the four countries 
assigned the yellow color are shown in Figure 2.  
 

  

  
 

Figure 2. Log-Normal curve fitting for yellow color countries 
 
The estimated dates for the four countries assigned yellow color are given in Table 3. 
 

𝑓(𝑡) =
𝑎

𝑡
⋅ exp (− (

log(𝑡) − 𝑏

𝑐2 )

2

) 
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Table 3. Estimated partial opening dates for countries assigned yellow color as of 26 October 2020 
 

Yellow color countries Partial opening date 
Maldives 14 January 2021 
India 12 April 2021 
Philippines 27 January 2021 
Bangladesh 25 February 2021 

 
3.2 Passenger Demand Forecasting 
SIA’s passenger demand in 2020 was a mere 1.5% of the pre-COVID level (Yahoo News 2020). It was projected by 
SIA that partial opening will bring in an additional 15% demand, to 16.5%, increasing gradually over the months with 
partial opening status. Thus, our passenger demand forecasting model will match this gradual increase, increasing 
linearly from 1.5% to 16.5%, in equal steps using 15% divided by the number of months with partial opening status, 
for each country. We assume that all countries will have full opening date one year after the vaccines become available 
(Mahase 2020). With several vaccines on different clinical trial stages, different vaccines will be approved for use 
over time from late 2020 onwards. The vaccination programme in each country will differ, and countries with bigger 
populations will require a longer duration to vaccinate a significant portion of their people. Using a conservative 
estimate, we assume that vaccines will become widely available by December 2021, making the full opening date to 
be one year later in December 2022. From the full opening date in December 2022 to December 2025, a duration of 
three years, we assume that the passenger demand will increase linearly in equal steps to reach 100%, back to the pre-
COVID level. This is in line with IATA which predicted that it would take 5 years from year 2020, for passenger 
demand to return to pre-COVID level (IATA 2020b). Table 4 depicts the linear increase method applied to different 
countries assigned different traffic light colors. 
 

Table 4. Passenger demand forecasting 
 

Color Current to partial open 
date 

From partial open date to Dec 2022 From Dec 2022 to Dec 2025 

Green Increase from 1.5% to 16.5% Increase from 16.5% to 100% 
Yellow Remain as 1.5% Increase from 1.5% to 16.5% Increase from 16.5% to 100% 
Red Remain as 1.5% Remain as 1.5% Increase from 1.5% to 100% 

 
After the monthly passenger demand has been forecasted, the average values for each year will be computed to be 
applied on a yearly basis. Table 5 lists the yearly forecasted passenger demand for SIA from 2021 to 2025. The average 
values in the last row will be used to estimate the passenger demand from 2021 to 2025. 1.5% will be used as the 
average value for 2020 (Yahoo News 2020). 
 

Table 5. SIA’s forecasted passenger demand from 2021 to 2025 using data on 26 October 2020 
 

  Forecasted Passenger Demand 
Color Number of 

countries 
2021 2022 2023 2024 2025 

Green 10 6.2% 13.8% 33.4% 60.5% 87.6% 
Yellow 4 5.1% 13.5% 33.4% 60.5% 87.6% 
Red 17 1.5% 1.5% 19.3% 52.1% 85.0% 

Average 4.2% 8.9% 27.9% 57.2% 86.6% 

 
3.3 Cargo Forecasting 
Apart from serving passengers, SIA owns seven cargo planes which it will continue to service cargo demand during 
the COVID-19 period and beyond. We assume that cargo demand will remain the same as in 2019, from 2020 to 2025. 
This assumption is reasonable as air cargo demand will remain resilient (ICAO 2020), thus will not decrease. There 
could be an increase in cargo demand due to the transportation of vaccines and increased e-commerce activities, which 
may lead to SIA converting some passenger planes to cargo planes. Our model will permit the user to enter the 
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estimated increase, and the number of cargo planes allocated will increase accordingly. SIA can look at converting 
passenger aircraft to cargo aircraft, with either minor or major retrofitting (Lim 2020). However, the cost of conversion 
is not part of the study, and thus will not be considered. 
 
3.4 Revenue, Expense and Profit Computations 
To allocate the aircrafts to serve passenger or cargo demand, or for storage at the Alice Springs in Australia, we need 
to perform some detailed financial computations, and to use an optimization model to allocate the number of aircrafts 
(to passenger or cargo), trading off between revenues and expenses. We first obtain the financial and operation data 
of SIA including, 

• Fleet information from mainlymiles.com, centreforaviation.com, and planespotters.net, where we note that 
SIA has a total of 133 aircrafts, of which seven are cargo planes. 

• 2019 financial report from SIA website at https://www.singaporeair.com/saar5/pdf/Investor-
Relations/Annual-Report/annualreport1920.pdf. Note that 2020 financial report has not been released. 

• Airport charges for storage of aircraft at Alice Springs from 
https://www.alicespringsairport.com.au/airport-charges 

 
Based on the actual financial and operation data in 2019 (indicated as figures with ^ in Table 6 in the 2019 column), 
we can compute the unit price, unit expense, and passenger and cargo demand per aircraft in 2019, to apply them into 
future years from 2020 to 2025 (indicated as figures with →),  

• Unit price per passenger (B.1.2) 
• Unit expense per passenger aircraft (B.2.2) 
• Passenger demand per aircraft (B.2.3) 
• Unit price per tonne-km for cargo (C.1.2) 
• Unit expense per cargo aircraft (C.2.2) 
• Cargo demand per aircraft (C.2.3) 

 
For 2020 onwards, the forecasted passenger demand and cargo demand are, 

• Passenger demand (B.1.1) – this value will be forecasted based on the forecasting model described in section 
3.2 

• Cargo demand (C.1.1) – this value will be projected as described in section 3.3. 
 
Based on the trade-off between the revenues generated and expenses incurred, the optimal number of aircraft will be 
allocated for passenger (B.2.1) and cargo service (C.2.1) respectively. Due to optimal allocation, the final number of 
passenger and cargo demand served may be lower than the forecasted demand in B.1.1 and C.1.1, if the incremental 
revenue generated is not sufficient to offset the increase in expense. Once the number of aircraft allocated to passenger 
and cargo services are determined, the remaining aircrafts will be placed into storage (D.2). 
 

Table 6. Revenue, expense and profit computations 
 

Annual figures 2019 2020 onwards 
A. Total profit 655,131,500^ B + C – D 
B. Total passenger profit (= B.1 – B.2) 485,129,400^ B 

B.1 Total passenger revenue 11,130,878,000^ B.1.2 * final 
number of 
passengers 

served 
B.1.1 Passenger demand 22,198,000^ forecasted 
B.1.2 Unit price per passenger (= B.1/B.1.1) 501.44 → 501.44 

B.2 Total passenger expense 10,645,748,600^ B.2.1 * B.2.2 
B.2.1 Number of passenger aircrafts allocated 212^ optimized 
B.2.2 Unit expense per passenger aircraft (= B.2/B.2.1) 87,260,234 → 87,260,234 
B.2.3 Passenger demand per aircraft (= B.1.1/B.2.1) 181,951 → 181,951 

C. Total cargo profit (= C.1 – C.2) 170,002,100^ C 

https://www.singaporeair.com/saar5/pdf/Investor-Relations/Annual-Report/annualreport1920.pdf
https://www.singaporeair.com/saar5/pdf/Investor-Relations/Annual-Report/annualreport1920.pdf
https://www.alicespringsairport.com.au/airport-charges


Proceedings of the 11th Annual International Conference on Industrial Engineering and Operations Management 
Singapore, March 7-11, 2021 

 © IEOM Society International 

 

C.1 Total cargo revenue 1,968,908,400^ C.1.2 * final 
amount of cargo 

served 
C.1.1 Cargo demand (million tonnes-km) 6,605,000,000^ forecasted 
C.1.2 Unit price per tonne-km (= C.1/C.1.1) 0.3 → 0.3 

C.2 Total cargo expense 1,798,906,300^ C.2.1 * C.2.2 
C.2.1 Number of cargo aircrafts allocated 7 optimized 
C.2.2 Unit expense per cargo aircraft (= C.2/C.2.1) 256,986,614 → 256,986,614 
C.2.3 Cargo demand per aircraft (= C.1.1/C.2.1) 943,571,429 → 943,571,429 

D. Total storage expense (= D.1 * D.2) 0^ D 
D.1 Storage cost per aircraft per year (= storage cost per MTOW 
* average aircraft tonnage = 4.01 * 337) 

492,852 → 492,852 

D.2 Number of aircraft allocated to storage  
 

133 – B.2.1 – 
C.2.1 

133 – B.2.1 – 
C.2.1 

 
3.5 Optimal Allocation of Aircrafts 
 
The proposed optimization model is given as, 
 
Maximize  𝑍 = ∑ (𝑅𝑖 − 𝐸𝑖)𝑖  
 
Subject to, 𝐹𝑖 = 𝑀𝑖𝑛(𝑋𝑖𝑁𝑖 , 𝑃𝑖), ∀𝑖 … (1) 
 
  𝑅𝑖 = 𝐹𝑖𝑟𝑖 , ∀𝑖 … (2) 
 
  𝐸𝑖 = 𝑋𝑖𝑒𝑖 ∀𝑖 … (3) 
 

0 ≤ 𝑋𝑖 ≤ 𝑇, ∀𝑖 … (4) 
 

0 ≤ ∑ 𝑋𝑖

𝑖

≤ 𝑇, … (5) 

 
𝑋𝑖  𝑖𝑛𝑡𝑒𝑔𝑒𝑟, ∀𝑖 … (6) 

 
Where, 

• 𝑖 = index for passenger, cargo or storage 
• 𝑇 = total number of aircraft 
• 𝑅𝑖  = total revenue earned from the service, where the service can be passenger or cargo. There is no revenue 

from storage 
• 𝐸𝑖  = total expense incurred for providing the service, where the service can be passenger, cargo or storage 
• 𝑃𝑖  = projected demand for the service, where the service can be passenger or cargo  
• 𝐹𝑖  = final demand served for the service, where the service can be passenger or cargo, where 𝐹𝑖  <= 𝑃𝑖  
• 𝑁𝑖  = average demand per aircraft for the service, where the service can be passenger or cargo  
• 𝑟𝑖  = revenue earned per unit demand for the service, where the service can be passenger or cargo  
• 𝑒𝑖  = expense incurred per aircraft for the service, where the service can be passenger or cargo  
• 𝑋𝑖  = number of aircraft allocated for the service, where the service can be passenger or cargo 

 
The model attempts to maximize the profit from the passenger service and cargo service, accounting for the expense 
incurred due to storage of planes, by trading off the revenues generated and expenses incurred. The constraints include, 

• Constraint (1) – ensures that the final demand served should not exceed the forecasted demand figures. It is 
due to this constraint and the objective function, that the number of aircraft allocated will be optimized. 

• Constraint (2) – computes the total revenue generated from providing the service which is equal to the final 
demand served multiply by the revenue earned per unit demand for the service. 
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• Constraint (3) – computes the total expense incurred for providing the service which is equal to the number 
of aircraft allocated multiply by the expense incurred per aircraft for the service. 

• Constraint (4) – ensures that the number of aircraft allocated for each service cannot exceed the total number 
of aircraft T. 

• Constraint (5) – ensures that the total number of aircraft allocated for all services cannot exceed the total 
number of aircraft T. 

• Constraint (6) – is the integer constraint for the number of aircraft allocated. 
 
4. Results and Discussion 
 
4.1 Results for SIA 
Using the data extracted on 26 October 2020, and the results from the proposed forecasting, financial computations, 
and optimization model, we present SIA’s forecasted total profit chart in Figure 3. SIA’s profits will increase gradually 

from 2021 to 2025, with steep increase happening only from 2023 onwards. Even in 2025, SIA’s profit will not be 
able to reach that of pre-COVID level. 
 

 
 

Figure 3. SIA’s forecasted total profit versus passenger demand growth 
 
The optimal number of aircrafts allocated to passenger, cargo or for storage is given in Table 7. As we have assumed 
that cargo demand will remain constant, the allocation of aircrafts will be between passenger service and storage. 
Having said that, the forecasted cargo demand can be adjusted in the model, and the optimal cargo aircraft allocation 
will be determined accordingly. From our results, we can see that even in 2025, there will be 21 aircrafts still parked 
in storage. Therefore, it may be worthwhile for SIA to consider retiring a few older aircrafts which are nearing their 
25 years of age (IATA 2018) or scrap or sell them instead of storing, if it makes better economic sense. 
 

Table 7. SIA’s aircraft allocation from 2021 to 2025 using data on 26 October 2020 
 

 2021 2022 2023 2024 2025 
Passenger 5 10 34 69 105 
Cargo (assume constant cargo demand) 7 7 7 7 7 
Storage 121 116 92 57 21 

 
4.2 Sensitivity Analysis 
The results of our analysis are highly dependent on several input values, especially the forecasted passenger demand 
which is in turn dependent on the vaccine release date. When the vaccine release date is modified to different dates 
(Dec 2020, Jun 2021, Dec 2021, Jun 2022, and Dec 2022), in steps of 6 months, SIA’s forecasted total profit will 
change according to Figure 4. We can see that the different vaccine release dates will not have much impact on SIA’s 
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profits in 2021 and 2025, but will have the most significant impact in 2023, followed by 2024. Similarly, in Figure 5, 
the number of passenger aircraft allocated is also very sensitive to the vaccine release date, especially in 2023 and 
2024. SIA can take note of how the different vaccine release dates will adversely affect its profitability and aircraft 
allocation, particularly in 2023 and 2024. 
 

 
 

Figure 4. SIA’s forecasted total profit for different vaccine release dates 
 

 
 

Figure 5. Number of passenger aircraft allocated for different vaccine release dates 
 
5. Conclusion 
In the face of immense uncertainty of the COVID-19 situation, our models were built based on several reasonable 
assumptions. Based on the analysis of COVID-19 new cases data extracted on 26 October 2020, we have performed 
detailed analysis to shed some insights into how SIA can expect its profit to recover, the number of aircrafts to be 
allocated to serve passengers and cargo, as well as the number of aircraft which will go to storage, from 2021 to 2025. 
Our sensitivity analysis shows that SIA’s profitability and aircraft allocation in 2023 and 2024 will be very sensitive 
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to the vaccine release dates. Our models can be applied to another airline, by replacing the financial and operation 
data, to provide similar insights. In interpreting the models, analysis and results presented in this paper, one must bear 
in mind that the pandemic is still on-going. As the COVID-19 situation unfolds, some assumptions made may become 
invalid, and some countries may perform better or worse than expected. Therefore, it only represents a viable solution 
methodology for SIA or any other airlines to perform sufficient analysis to guide better decision making. 
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