
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2019

Simulated annealing for the multi-vehicle cyclic inventory routing Simulated annealing for the multi-vehicle cyclic inventory routing

problem problem

Aldy GUNAWAN
Singapore Management University, aldygunawan@smu.edu.sg

Vincent F. YU
National Taiwan University of Science and Technology

Audrey Tedja WIDJAJA
Singapore Management University, audreyw@smu.edu.sg

Pieter VANSTEENWEGEN
Katholieke Universiteit Leuven

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons, and the

Theory and Algorithms Commons

Citation Citation
GUNAWAN, Aldy; YU, Vincent F.; WIDJAJA, Audrey Tedja; and VANSTEENWEGEN, Pieter. Simulated
annealing for the multi-vehicle cyclic inventory routing problem. (2019). 2019 IEEE 15th International
Conference on Automation Science and Engineering: Vancouver, Canada, August 22-26: Proceedings.
691-696.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6021

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6021&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Simulated Annealing for the Multi-Vehicle Cyclic Inventory Routing
Problem

Aldy Gunawan1, Vincent F. Yu2, Audrey Tedja Widjaja1 and Pieter Vansteenwegen3

Abstract— This paper studies the Multi-Vehicle Cyclic In-
ventory Routing Problem (MV-CIRP) as the extension of the
Single-Vehicle CIRP (SV-CIRP). The objective is to minimize
both distribution and inventory costs at the customers and to
maximize the collected rewards simultaneously. The problem
is treated as a single objective optimization problem. A subset
of customers is selected for each vehicle including the quantity
to be delivered to each customer. For each vehicle, a cyclic
distribution plan is developed. We construct a mathematical
programming model and propose a simulated annealing (SA)
metaheuristic for solving both SV-CIRP and MV-CIRP. For
SV-CIRP, experimental results on benchmark instances show
that SA is comparable to the state-of-the-art algorithms and it
is able to improve 12 best known solutions. For the MV-CIRP,
the results show that SA performs better than an Iterated Local
Search algorithm.

I. INTRODUCTION

In the traditional manufacturing supply chain context, sup-
plier and customers are independently making their decisions
on how and when to replenish the inventory. Both suppliers
and customers try to minimize their own costs, which are
the transportation cost for suppliers and the inventory han-
dling cost for customers. In order to synchronize different
activities, Vendor Managed Inventory (VMI) was introduced
[1]. In VMI, customers provide their stock levels to the
supplier. The supplier takes a full responsibility to manage
the inventory of his customers.

A class of routing problems, namely the Inventory Routing
Problem (IRP) is discussed as a VMI problem [2]. In
IRP, both managing the inventories at the customers and
distributing products from a central depot to the customers
are considered. The supplier manages the routing of vehi-
cles distributing products and the timely replenishment of
inventories at the customers as well. The Cyclic IRP (CIRP),
a variant of the IRP, assumes customer demand rates are
stable with an infinite planning horizon. The objective is to
find a cyclic distribution plan for a set of customers with
the objective of minimizing the long term transportation and
inventory costs [3].

The Single-Vehicle CIRP (SV-CIRP), a special case of the
CIRP, assumes that it is not compulsory to visit every cus-

1Aldy Gunawan and Audrey Tedja Widjaja are with the School
of Information Systems, Singapore Management University, 80
Stamford Road, Singapore aldygunawan@smu.edu.sg,
audreyw@smu.edu.sg

2Vincent F. Yu is with the Department of Industrial Management,
National Taiwan University of Science and Technology, 43, Sec. 4, Keelung
Road, Taipei 106, Taiwan vincent@mail.ntust.edu.tw

3Pieter Vansteenwegen is with the KU Leuven Mobility Research
Center, Celestijnenlaan 300 - box 2422, 3001 Leuven, Belgium
pieter.vansteenwegen@kuleuven.be

tomer. Therefore, the decision of selecting which customers
to be served should be carefully made in order to maximize
the profit collected minus the transportation and inventory
costs. Another property of the SV-CIRP is that the single
vehicle is allowed to make multiple trips from the depot
within one cycle. The cycle time represents the time between
two deliveries to each customer [2], [4], [5].

We extend the SV-CIRP problem by introducing the Multi-
Vehicle CIRP (MV-CIRP). In a big retail company, it is
common to have a limited number of vehicles available in
order to satisfy customers’ demands. The complexity of the
problem increases since we assume that each customer can
only be served by one vehicle, considering that the number
of vehicles is limited and split delivery is not allowed. The
problem is to decide which customers should be selected
for each vehicle. Each vehicle may have a different cycle
time due to different customers requiring a visit. However,
a crucial decision to be made in this problem is determining
which cycle time would minimize the combination of inven-
tory, handling and routing costs across all vehicles. Reference
[2] highlighted the complexity of having different cycle times
for each vehicle as a challenging path for future research.

The mathematical model of the MV-CIRP is first in-
troduced. Due to the complexity of the model, Simulated
Annealing (SA) is designed to solve both SV-CIRP and MV-
CIRP. SA is a descent algorithm modified by random ascent
moves in order to escape local minima. Computational results
show that SA obtains 12 new best known solutions for the
SV-CIRP while it also provides high-quality results for the
MV-CIRP that can be used as a baseline for future research.

II. LITERATURE REVIEW

In IRP, the decisions of inventory and routing are solved
simultaneously, with the objective of minimizing the total
cost including holding and transportation costs while avoid-
ing stockouts. Reference [6] introduced a model with an
infinite planning horizon for the IRP. This problem is called
CIRP [3], in which a route as well as a cyclic distribution
scheme for the selected vehicles have to be designed. The
vehicles are allowed to perform multiple trips on a single
day. Reference [7] proposed a new solution approach for
solving CIRP. It builds the solution in two different phases.
The first phase establishes routes that cover all customers
and the second one focuses on assigning routes to vehicles
such that the number of vehicles is minimized.

The Single-Vehicle CIRP (SV-CIRP) is a special case of
the CIRP. It is a one-to-many CIRP. An important aspect

of SV-CIRP is that it is not mandatory to visit all cus-
tomers. A reward will be imposed for every customer that
is visited. Therefore, the objective is thus to simultaneously
minimize transportation and inventory costs and maximize
the collected rewards from visited customers. Reference [8]
proposed a DC-programming approach which is combined
with the proposed steepest descent hybrid algorithm in
order to solve the benchmark SV-CIRP instances. Reference
[9] formulated the SV-CIRP as a mixed-integer program-
ming model with a nonlinear objective function. A steepest
descent-like exact algorithm is proposed for solving the
problem. In order to deal with larger instances, reference
[2] presented an iterated local search (ILS) metaheuristic.
Reference [5] reformulated the SV-CIRP as a convex opti-
mization problem and proposed a modified branch and bound
procedure to solve the problem.

III. THE MV-CIRP

Consider an undirected network graph G = (S+, A).
S+ = {0, 1, 2, . . . , |S|} is the set of nodes and A =
{(i, j) : i 6= j ∈ S+} refers to the set of arcs connecting
two different nodes i and j. Let S = S+ \ {0} be a set
of potential customers. Node 0 represents the depot. Let
V = {1, 2, . . . , |V |} be the set of vehicles that will be used.

Each customer j has an inventory cost ηj
(price/time.quantity), a handling cost φj (price), a demand
rate dj (quantity/time) and a fixed reward λj (price/time).
The reward corresponds to the collected profit when the
customer is selected for replenishment. The non-negative
travel time from customer i to customer j is represented
by tij . Each vehicle k is assumed to have a fixed operating
cost ψ (price/time), a fixed average vehicle speed v
(distance/time), the travel cost δ (price/distance) and the
vehicle capacity κ (quantity) [5]. It is assumed that each
customer has an infinite inventory capacity. The largest
possible quantity that can be delivered to customer j is
denoted as Qjmax, which is calculated as follows:

Qj
max = dj ×

κ

minj∈S{dj}
(1)

The decision variables of the mathematical model are
listed below:

• xij
k is a binary variable with the value of 1 if customer

j is replenished immediately after customer i by vehicle
k

• Qij
k represents the quantity of product remaining in

the vehicle k when it travels to customer j immediately
after it has replenished customer i. This quantity equals
zero if the link (i, j) is not on vehicle k’s trip

• qj
k is the quantity of the product delivered to customer

j using vehicle k in each cycle
• T k is the cycle time of the trip made by vehicle k

The MV-CIRP mathematical model is presented below.
This model is the extension of the one of SV-CIRP [5].

Min |V |ψ −
∑
k∈V

∑
i∈S+

∑
j∈S+,j 6=i

λjx
k
ij

+
∑
k∈V

∑
i∈S+

∑
j∈S+,j 6=i

((δvtij + φj)
1

T k
+

1

2
ηjdjT

k)xkij (2)

∑
k∈V

∑
i∈S+

xkij ≤ 1 ∀j ∈ S (3)

∑
i∈S+,i6=j

xkij −
∑

l∈S+,l 6=j

xkjl = 0 ∀j ∈ S+,∀k ∈ V (4)

∑
i∈S+

∑
j∈S+,j 6=i

tijx
k
ij − T k ≤ 0 ∀k ∈ V (5)

Qkij ≤ κxkij ∀i, j ∈ S+,∀k ∈ V (6)

∑
i∈S+

Qkij −
∑

l∈S+,l 6=j

Qkjl = qkj ∀j ∈ S,∀k ∈ V (7)

0 ≤ djT k−qkj ≤ Qmaxj (1−
∑
i∈S+

xkij) ∀j ∈ S,∀k ∈ V (8)

xkij ∈ {0, 1} ∀i, j ∈ S+,∀k ∈ V (9)

Qkij ≥ 0 ∀i, j ∈ S+,∀k ∈ V (10)

qkj ≥ 0 ∀j ∈ S+,∀k ∈ V (11)

T k ≥ 0 ∀k ∈ V (12)

The objective function (2) minimizes the difference be-
tween the total cost and the total collected reward. The
number of vehicles |V | is fixed beforehand. The total cost
consists of the transportation, delivery and holding costs.
Constraints (3) ensures that each customer is visited at
most once and only by one vehicle. Constraints (4) ensure
that for each vehicle that visits or enters a particular node
(customer), it also leaves that node. For each vehicle, the
total traveling time does not exceed the cycle time, as
expressed in (5). Constraints (6) ensure that the quantity
delivered by each vehicle does not exceed the capacity of
the vehicle. Constraints (7) are flow constraints that ensure
the difference between the quantities in the vehicle before it
visits a customer and after it has visited the customer equals
to the quantity delivered to that customer. Constraints (8)
guarantee that for a visited customer, the quantity delivered
should equal the demand during the cycle time. Qmaxj is
utilized as the upper bound limit of T k. Equations (9) - (12)
limit the domain of the decision variables.

IV. PROPOSED ALGORITHM

The initial solution is built by grouping customers into
clusters. Each cluster will be served by a vehicle. Each cus-
tomer will only be assigned to a particular cluster. Algorithm
1 gives an overview of the initial solution construction. Let
Si be a set of customers allocated to cluster/vehicle i. S′

represents a set of customers that has not been assigned.
For iter = 0, a customer is selected randomly and it
is assigned as the center of a cluster (lines 4 - 8). Each
unassigned customer is then selected one by one according
to the sequence in S′ and assigned to the nearest center of
a particular cluster with respect to the Euclidean distance
between them (lines 9 - 13). Once all customers have been
assigned to clusters, the center of the cluster for subsequent
iter is redefined by taking the average of coordinate values
of all customers in the cluster (lines 5 - 8) which is a standard
approach used in K-means Clustering. The allocation of all
customers to new cluster centers is repeated Niter times
(line 14), e.g. five times.

Algorithm 1: Initial Solution Construction
1 Input: (S, V)
2 iter = 0;
3 while iter < Niter do
4 S′ ← S
5 for i ∈ V do
6 Si ← ∅
7 Define the center of cluster i
8 end
9 while S′ 6= ∅ do

10 Select customer j ∈ S′ and assign to the nearest
cluster center i

11 Si ← Si ∪ {j}
12 S′ ← S′ \ {j}
13 end
14 iter ← iter + 1
15 end
16 Calculate the ratio values between two different customers

including depot using (13)
17 for i ∈ V do
18 Reorder customers in Si based on the highest ratio

values
19 Create a solution representation
20 Select a subset of customers in Si

21 Decode the solution representation into a sequence of
vehicle i

22 Calculate T i
min, T

i
max, T

i
EOQ

23 Define T i

24 Construct the final route of vehicle i
25 Update the solution representation of vehicle i
26 end
27 Calculate the objective function value (2)

In order to define the sequence of customers in vehicle
i (line 18), the ratiojj′ of two different customers j and
j′ including depot 0 (j, j′ ∈ S+) (line 16) is calculated by
(13). The underlying assumption is to calculate the reward
collected per each distance. A node with the higher ratio
value is more attractive.

ratiojj′ =
λj′

tjj′ × v
∀j, j′ ∈ S+ (13)

Fig. 1. An example of the clustering result

Fig. 1 illustrates an example of the clustering result with
|S| = 20 customers and |V | = 3 vehicles. Vehicle 3
considers customers 1, 10 and 20. We start from Depot
0 and find the customer with the highest ratio value, e.g.
customer 20. From customer 20, we then compare customers
1 and 10. The final sequence is 20, 10 and 1 (line 18). The
sequence of possible customers to be visited for each vehicle
is then represented as a string of numbers consisting of a
permutation of Si customers (line 19). In order to separate
vehicles, we include -1. Therefore, the number of elements
in a particular solution is (|S| + |V | − 1), as illustrated in
Fig. 2. Using this specially designed solution representation
scheme, the routes may be randomly terminated by the values
of -1 or by the route capacity constraints [10].

Fig. 2. An example of a solution representation

Since the vehicle may not be able to visit all customers,
a subset of customers is taken and treat them as selected
customers (line 20), e.g. half of them, for each vehicle,
which are shaded in Fig. 2. This solution representation does
not represent the final routing sequence of vehicles. It is
only utilized for the neighborhood search of SA that will
be explained in the next section. From Fig. 2, the solution
representation is decoded into a sequence of possible visited
customers (line 21), as shown in Fig. 3(a). The cycle time
of vehicle i, T i, is determined by finding the lower bound
value T imin and the upper bound value T imax [2] (line 22).
T imin is the total travel time required to visit all selected

customers which is based on the solution for the Travelling
Salesperson Problem (TSP). The sequence of customers is
determined by (13) while T imax is calculated by (14). It
could be possible that T imin is greater than T imax. In such
a case, we recalculate the values of T imin and T imax after
removing the customer with the highest demand rate until
T imin is less than T imax. By removing the customer with the
highest demand rate, T imin will decrease while T imax will
increase simultaneously. The ideal cycle time, denoted as the
”economic-order-quantity” T iEOQ [4], is calculated by (15).

T imax =
κ

maxj∈Si
dj
∀i ∈ V (14)

T iEOQ =

√√√√δ × v × T imin +
∑
j∈Sj

φj∑
j∈Sj

dj×ηj
2

∀i ∈ V (15)

There are three possible values of T i: T i = T iEOQ if
T imin ≤ T iEOQ ≤ T imax. If T iEOQ < T imin, then T i = T imin.
If T iEOQ > T imax, then T i = T imax (line 23).

Fig. 3. Decoding results (a) and final routing for each vehicle (b)

Due to the capacity constraint of the vehicle, a vehicle may
have multiple trips (e.g. return to the depot again) as long
as the total travel time does not exceed the cycle time T i.
As shown in Fig. 3(a), Vehicle 1 visits customer 17 with the
number of demand delivered d17×T 1. If the next customer,
customer 13, can also be served, Vehicle 1 will continue its
journey. Otherwise, it has to return to the depot in order to
replenish its capacity and visit customer 13. It is necessary
to ensure that the total travel time cannot exceed T i. For a
special case when T iEOQ < T imin, the problem is solved as
a Capacitated Vehicle Routing Problem (CVRP) [2].

Fig. 4. An example of the updated solution representation

The final routing for each vehicle is generated, as shown
in Fig. 3(b) (line 24). Some possible visited customers may
not be scheduled anymore, for example, Vehicle 1 does not
visit customer 15 although it was planned to be visited
in earlier steps. Vehicle 1 needs to return to depot (node
0) after serving customers 17, 13 and 18. The solution
representation (Fig. 2) is then updated based on the result
shown in Fig. 3(b) (line 25). Fig. 4 illustrates the updated
solution representation. Finally, the total objective function
value (2) is calculated (line 27).

SA with a random neighborhood structure that features
various types of moves, including SWAP, INSERT, INVERSE,
ADD and REMOVE, is proposed to improve the initial solu-
tion quality (Algorithm 2). Fig. 5 illustrates how all moves
are implemented in the solution representation to generate
neighborhood solutions. SWAP is performed by randomly
selecting two positions and then exchanging the locations
of them. INSERT is carried out by randomly selecting one
position and inserting it into the position before another

randomly selected customer. INVERSE is conducted by ran-
domly selecting two positions and reversing the order of all
customers between both. ADD is applied by selecting one
unshaded position randomly and converting it into shaded
position. REMOVE is the opposite of ADD. All possible
moves are randomly selected with the same probability,
unless a particular move cannot be performed.

SA use parameters: T0 refers to the initial temperature. α
is a coefficient to control the speed of the cooling schedule
(0 < α < 1). MAXINNERLOOP refers to the number of
iterations at a particular temperature. Let Sol0, Sol∗ and
Sol′ be the current solution, the best found solution so far
and the starting solution at each iteration, respectively. At
first, the current temperature Temp equals to T0 and will
be decreased after MAXINNERLOOP iterations by: Temp =
Temp×α. FOUNDBESTSOL is initially set as False since a
better solution has not been found yet. At a particular value
of temperature Temp, a possible move is selected randomly
in order to explore neighborhoods of Sol0. Every time one
move is selected, we continue with steps explained in lines
21 - 27 of Algorithm 1. For each iteration, the difference
between the objective function values of Sol0 and Sol′,
denoted as δ, is calculated. If δ is less than 0, which implies
that the objective function value is improved, Sol′ is replaced
by Sol0. If Sol0 also improves Sol∗, Sol∗ is then replaced
by Sol0 and FOUNDBESTSOL is defined as True. If Sol0
is worse than Sol′, a random number r (0 < r < 1) is
generated and compared with exp(-δ/Temp). If r is less
than exp(-δ/Temp), Sol0 is accepted and Sol′ is updated
accordingly; otherwise, we return to Sol′ since Sol0 is not
accepted. Sol′ is required to keep track of the initial solution
at a particular iteration and will be used as the starting point
for the next iteration if Sol0 is rejected. The algorithm will
be run until the number of no improvement NOIMPR reaches
a threshold LIMIT.

Fig. 5. Examples of neighborhood solutions

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

To the best of our knowledge, benchmark instances for
the MV-CIRP are not available; therefore, five sets of SV-
CIRP instances [2] are modified by increasing the number of
available vehicles |V |. Those instances are named according
to |V |, e.g. 2V-CIRP represents a problem with two vehicles.
The capacity for each vehicle is set to a constant value κ.

Algorithm 2: Simulated Annealing
1 Input: (S, V)
2 Sol0 ← Initial Solution Construction
3 Sol∗ ← Sol0
4 Sol′ ← Sol0
5 Temp ← T0

6 NOIMPR ← 0
7 while NOIMPR < LIMIT do
8 INNERLOOP ← 0
9 FOUNDBESTSOL ← False

10 while INNERLOOP < MAXINNERLOOP do
11 Sol0 ← select one move randomly
12 δ ← obj value of Sol0 - obj value of Sol′

13 if δ < 0 then
14 Sol′ ← Sol0
15 if Sol0 < Sol∗ then
16 Sol∗ ← Sol0
17 FOUNDBESTSOL ← True
18 NOIMPR ← 0
19 end
20 end
21 else
22 r ← rand[0, 1]
23 if r < exp(−δ/Temp) then
24 Sol′ ← Sol0
25 end
26 else
27 Sol0 ← Sol′

28 end
29 end
30 INNERLOOP← INNERLOOP + 1
31 end
32 Temp ← Temp× α
33 if FOUNDBESTSOL = False then
34 NOIMPR ← NOIMPR + 1
35 end
36 end
37 Return Sol∗

SA was coded in C++ and experiments were executed on a
PC with Intel Core i7-6700 CPU @ 3.40 GHz processor, 16.0
GB RAM. The quality of the computational results could
be influenced by the parameter values [10]. For the initial
experiments, we select a subset of instances. A full factorial
design with the above-mentioned parameters is implemented.
The final parameter values are: T0 = 10, MAXINNERLOOP
= 2000, LIMIT = 100 and α = 0.99, where they will be used
for further experiments.

The SV-CIRP instances are first solved. The results are
compared against those of the-state-of-the-art algorithms: the
combined DC-programming and Steepest Descent Hybrid
algorithm (DC-SDHA) [8], the Steepest Descent algorihm
(SDA) [9], the SDHA [11], Iterated Local Search (ILS) [4],
ILS [2] and the convex optimization [5].

References [8] and [9] provided the optimal solutions
(Table I) for Set 1. SA obtains the same solutions within
shorter computational times. SA is comparable with ILS
[2] and the convex optimization [5] where both obtain the
optimal solutions within short computational times as well
(less than 10 seconds).

For Sets 2 - 5, only important findings and results are sum-

Name DC-SDHA [8] SDA [9] SA
Cost CPU (s) Cost CPU (s) Cost CPU (s)

A15-0 -328.5 3168 -328.5 116 -328.5 10
A15-1 -295.2 1621 -295.2 308 -295.2 8
A15-2 -283.9 3902 -283.9 173 -283.9 9
A15-3 -386.9 1440 -386.9 812 -386.9 9
A15-4 -360.9 1838 -360.9 363 -360.9 9
A15-5 -348.6 5748 -348.6 724 -348.6 10
A15-6 -399.9 2233 -399.9 271 -399.9 10
A15-7 -347.1 2911 -347.1 291 -347.1 10
A15-8 -393.9 2827 -393.9 574 -393.9 10
A15-9 -316.7 4110 -316.7 166 -316.7 10

Average 2979.8 379.8 9.5

TABLE I
EXPERIMENTAL RESULTS FOR SET 1 (SV-CIRP)

marized. SV-CIRP and MV-CIRP instances including our so-
lutions are available on the website https://www.mech.
kuleuven.be/en/cib/op/#section-38. For Set 2,
SA outperforms SDHA [11] in terms of CPU time and solu-
tion quality. Compared to the results of ILS [2], SA performs
better in solving A20-3, A20-6 and A20-9 instances, at the
cost of more computational time. In terms of CPU time, SA
is faster than the convex optimization [5]. The average gap
of SA to the best solutions is 0.21%.

When comparing against the solution quality of ILS [2] for
Set 3, SA performs better in solving A25-1, A25-2, A25-6
and A25-8 instances. The average gap to the best solution is
around 0.48% while ILS’s gap to the best solution is 0.80%.
The convex optimization requires high computational times
(e.g. two hours) in order to reach the gap of 0.07% to the
best known solutions. The average CPU time of SA is only
76.3 seconds. SA improves one best known solution, A25-
8. For Set 4, SA performs better than ILS [2], [4] for all
instances at the cost of more computational time. Five new
best known solutions are found by SA and the average gap is
-1.46%. SA is also 16 times faster with respect to the convex
optimization. For Set 5, the solutions of SA are better than
those of ILS [2] except for one instance, Ys-VcapL-7 30. SA
is only 2 times slower than ILS [2]. SA improves 6 solutions
of the convex optimization.

For MV-CIRP instances, SA results are compared against
the ones obtained by the commercial software, BARON
18.5.8 as a general nonlinear optimizer. BARON uses the
CPU time of 5 hours. The performance of BARON deterio-
rates as |V | increases, none of the instances can be solved
to optimality. Only the best found solutions are reported.
BARON cannot even provide the best found solutions for
some instances.ILS is also implemented in order to compare
with SA using the same moves and CPU times. The average
results for different number of vehicles are summarized in
Table II. Both SA and ILS perform better than BARON in
terms of CPU time and quality of results. SA outperforms
ILS in solving all instances with the average gaps range from
-0.11% to -25.20%. Based on the statistical tests, the results
obtained by SA are significantly better than those obtained
by BARON and ILS.

The impact of increasing |V | towards the number of visited

Problem Set BARON ILS SA Gap (%)
Average Cost Average CPU (s) Average Cost Average CPU (s) Average Cost Average CPU (s) Baron ILS

2V-CIRP Set 1 -513.9 18000 -525.4 14 -565.0 14 -10.04 -7.71
Set 2 -927.9 18000 -897.2 24 -1044.4 24 -13.04 -17.57
Set 3 -2039.4 18000 -2094.9 86 -2111.1 86 -3.52 -0.77
Set 4 -1180.4 18000 -1232.7 599 -1522.8 599 -28.93 -25.20
Set 5 -1454.4 18000 -1750.7 643 -1945.7 643 -34.10 -11.34

3V-CIRP Set 1 -607.7 18000 -648.3 15 -658.8 15 -8.53 -1.70
Set 2 -1094.4 18000 -1112.6 38 -1204.2 38 -10.07 -8.93
Set 3 -1972.2 18000 -2010.9 105 -2031.0 105 -2.99 -1.00
Set 4 -1248.8* 18000 -1478.1 690 -1794.7 690 -34.23 -22.26
Set 5 -1855.3* 18000 -2100.2 808 -2311.1 808 -14.90 -9.84

4V-CIRP Set 1 -598.7 18000 -630.9 18 -634.8 18 -6.16 -0.65
Set 2 -1186.9 18000 -1170.7 54 -1238.5 54 -4.68 -6.49
Set 3 -1891.6 18000 -1936.2 118 -1950.7 118 -3.13 -0.75
Set 4 -1350.1* 18000 -1727.2 910 -1978.4 910 -30.28 -14.86
Set 5 -1807.7* 18000 -2349.8 849 -2489.3 849 -16.97 -5.52

5V-CIRP Set 1 -565.0 18000 -590.1 24 -590.7 24 -4.73 -0.11
Set 2 -1168.2 18000 -1155.5 79 -1199.7 79 -2.84 -4.03
Set 3 -1815.1 18000 -1852.2 111 -1869.2 111 -2.99 -0.92
Set 4 -1148.5* 18000 -1896.3 937 -2115.5 937 -47.39 -11.28
Set 5 -1844.7* 18000 -2445.9 897 -2548.4 897 -7.00 -3.73

* some instances cannot be solved

TABLE II
EXPERIMENTAL RESULTS FOR MV-CIRP

Instance Objective Function Value # visited customers # customersSV-CIRP 2V-CIRP 3V-CIRP 4V-CIRP 5V-CIRP SV-CIRP 2V-CIRP 3V-CIRP 4V-CIRP 5V-CIRP
A15-0 -328.5 -524.7 -649.5 -628.4 -585.2 8 12 15 15 15 15
A20-4 -480.5 -878.1 -1038.6 -1120.5 -1200.5 7 13 16 18 20 20

Ys-VcapS-7 30 -888.3 -1169.4 -1338.9 -1425 -1381.9 18 24 28 30 30 30
Ys-VcapL-5 67 -1581.4 -2191.3 -2711.7 -3024.6 -3444.6 32 43 52 57 64 67

TABLE III
ANALYSIS OF MV-CIRP RESULTS

customers and the objective function value is analyzed for
selected instances (Table III). When |V | is increased, the
number of visited customers also increases. As long as not
all customers are visited, the objective function value also
improves. The collected reward from additional customers
is much larger than the costs occurred. However, when all
customers are visited, adding vehicles will only increase
the costs, and therefore the objective function value will be
worse. The current MV-CIRP model enforces |V | vehicles
to be used.

VI. CONCLUSIONS

This work studies the Multi-Vehicle Cyclic Inventory
Routing Problem (MV-CIRP) as the extension of the Single-
Vehicle CIRP (SV-CIRP). The proposed Simulated Anneal-
ing algorithm performs comparably to the state-of-the-art
algorithms for solving the SV-CIRP. It is able to find 12
new best known solutions. For the MV-CIRP, high-quality
solutions obtained can be used as the baseline for future
research. Possible future research could be considered: not
all vehicles need to be used, demand and delivery lead
times uncertainties and applying other metaheuristics or
hybridizing other algorithms.

REFERENCES

[1] M. Waller, M. Johnson, and T. Davis, “Vendor-managed inventory in
the retail supply chain,” Journal of Business Logistics, vol. 20, pp.
183–203, 1999.

[2] P. Vansteenwegen and M. Mateo, “An iterated local search algorithm
for the single-vehicle cyclic inventory routing problem,” European
Journal of Operational Research, vol. 237, pp. 802–813, 2014.

[3] B. Raa and E.-H. Aghezzaf, “A practical solution approach for the
cyclic inventory routing problem,” European Journal of Operational
Research, vol. 192, pp. 429–441, 2009.

[4] Y. Zhong and E.-H. Aghezzaf, “Effective local search approaches
for the single-vehicle cyclic inventory routing problem,” International
Journal of Services Operations and Informatics, vol. 7, pp. 260–279,
2012.

[5] W. Lefever, E.-H. Aghezzaf, and K. Hadj-Hamou, “A convex optimiza-
tion approach for solving the single-vehicle cyclic inventory routing
problem,” Computers and Operations Research, vol. 72, pp. 97–106,
2016.

[6] E.-H. Aghezzaf, B. Raa, and H. V. Landeghem, “Modeling inventory
routing problems in supply chains of high consumption products,”
European Journal of Operational Research, vol. 169, pp. 1048–1063,
2006.

[7] B. Raa and W. Dullaert, “Route and fleet design for cyclic inventory
routing,” European Journal of Operational Research, vol. 256, no. 2,
pp. 404–411, 2017.

[8] Y. Zhong and E.-H. Aghezzaf, “Combining dc-programming and
steepest-descent to solve the single-vehicle inventory routing problem,”
Computers and Industrial Engineering, vol. 61, pp. 313–321, 2011.

[9] E.-H. Aghezzaf, Y. Zhong, R. Birger, and M. Mateo, “Analysis of the
single-vehicle cyclic inventory routing problem,” International Journal
of Systems Science, vol. 43, no. 11, pp. 2040–2049, 2012.

[10] V. Yu, S.-W. Lin, W. Lee, and C.-J. Ting, “A simulated annealing
heuristic for the capacitated location routing problem,” Computers and
Industrial Engineering, vol. 58, pp. 288–299, 2010.

[11] Y. Zhong, “Exact and heuristic methods for the cyclic inventory
routing problem with side-constraints,” Ph.D. dissertation, Ghent Uni-
versity, Ghent, Belgium, 2012.

	Simulated annealing for the multi-vehicle cyclic inventory routing problem
	Citation

	tmp.1625665960.pdf.O1XBB

