Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

4-2006

Effect of changing requirements: A tracking mechanism for the
analysis workflow

Subhaijit DATTA
Singapore Management University, subhajitd@smu.edu.sg

Robert van Engelen
Florida State University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Software Engineering Commons

Citation

DATTA, Subhajit and van Engelen, Robert. Effect of changing requirements: A tracking mechanism for the
analysis workflow. (2006). Applied Computing 2006: Proceedings of the 2006 ACM Symposium on
Applied Computing, Dijon, France, April 23-27. 1739-174A4.

Available at: https://ink.library.smu.edu.sg/sis_research/6014

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6014&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Effects of Changing Requirements: A Tracking Mechanism
for the Analysis Workflow

Subhaijit Datta
Department of Computer Science
and School of Computational Science
Florida State University
Tallahassee, FL 32306, USA

sd05@fsu.edu

ABSTRACT

Managing the effects of changing requirements remains one
of the greatest challenges of enterprise software develop-
ment. The iterative and incremental model provides an ex-
pedient framework for addressing such concerns. This paper
presents a set of metrics — Mutation Index, Component
Set, Dependency Index — and a methodology to measure
the effects of requirement changes in the analysis workflow
from one iteration to another. Results from a sample case
study are included to highlight a usage scenario. Future
directions of our work based on this mechanism are also dis-
cussed.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, process metrics

General Terms

Algorithms, Management, Measurement, Design

Keywords

SDLC, Iterative and incremental model, Requirements, Anal-
ysis, Design, Metrics

1. INTRODUCTION

The iterative and incremental model is widely used for en-
terprise software development. The essence of this approach
involves :

e recognizing that requirement changes — even while a
software system is being designed and built — are in-
evitable,

e developing software through a controlled and coordi-
nated sequence of steps going back and forth over the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’06 April 23-27, 2006, Dijon, France

Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

1739

Robert van Engelen
Department of Computer Science
and School of Computational Science
Florida State University
Tallahassee, FL 32306, USA

rvaneng@fsu.edu

development stages of requirement specification, anal-
ysis, design, implementation and test.

Each set of such stages constitutes an iteration while the
additive realization of the system’s functionality results in
its incremental development. Unlike the traditional Water-
fall Model which insists on a chimerical freezing of require-
ments before any subsequent activity can start, (a condition
almost never satisfied in non-trivial systems), the iterative
and incremental paradigm seeks to successfully accommo-
date shifting stakeholder needs. Thus the focus revolves
around efficient tracking of the changing requirements and
understanding effects of such change on the system’s design.
In this paper we present a mechanism for quantitative evalu-
ation of the effects of changing requirements. The following
metrics are derived:

o Mutation Index
e Component Set
e Dependency Index

We also suggest a methodology for applying and inter-
preting the metrics. Following the introduction, Section 2
discusses the context of the metrics with emphasis on the
salient features of the analysis workflow. In Section 3 related
work is briefly reviewed. We next underscore the assump-
tions and derive the metrics. Section 6 proposes a methodol-
ogy - a process wrapper around the metrics. Results from a
case study are then presented, followed by future directions
of our work and concluding remarks.

2. THE ANALYSIS WORKFLOW

The analysis workflow is a vital juncture in the software
development life cycle (SDLC). This is when the description
of the system in the user’s language - captured in require-
ment specifications and illustrated through use cases - is first
sought to be interpreted in the developer’s idiom by intro-
ducing the essential formalism that helps clarify the internal
workings of the system. “An analysis model can be viewed
as a first cut at a design model (although it is a model of its
own), and thus an essential input when the system is shaped
in design and implementation” [1].

During requirement specification and use case modeling,
the focus is principally on understanding how the user de-
rives value from the behavior of the system; each usage sce-
nario is deliberately viewed as being atomic and indepen-

dent of others. Analysis discovers the significant perspec-
tive of interaction; how the components must collaborate to
deliver not just separate slices of functionality but one cohe-
sive system that facilitates understanding, implementation
and maintenance.

The set of metrics Mutation Index, Component Set and
Dependency Index, collectively isolate the effects of chang-
ing requirements on the collaborating system components
from one iteration to another. The metrics are useful in
clarifying the consequences of requirement changes to the
stakeholders, adjusting project schedule and budget based
on such change and discerning the drivers of overall archi-
tecture early in the life cycle.

3. RELATED WORK

Although it is common to use the terms measure, mea-
surement and metrics in place of one another, some authors
have underscored subtle distinctions [2], [3], [4]. For our
discussion, we take metrics to mean “a set of specific mea-
surements taken on a particular item or process” [5]. Hal-
stead’s seminal work [6] introduces metrics for source code.
Metrics for analysis include the closely reviewed function
point based approaches [7] and the Bang metric [8]. Card
and Glass [9] have proposed software design complexity in
terms of structural complexity, data complerity and system
complezity. [10] identifies some important uses of complex-
ity metrics. Fenton underscores the challenges of trying to
formulate general software complexity measures [4]. Mea-
surements of Coupling and Cohesion have been the focus of
several studies [11], [12].

Chidamber and Kemerer present a widely referenced set
of object oriented software metrics in [13], [14]. Harrison,
Counsell and Nithi have evaluated a group of metrics for
calibrating object-oriented design [15].

Karlsson et al. [16] use the Analytical Hierarchy Process
to model a cost value approach for prioritizing requirements.
An event based traceability approach is used by Cleland-
Huang et al. [17] to manage evolutionary change of devel-
opment artifacts. Lam and Loomes [18] have suggested an
EVE (EVolution Engineering) framework for dealing with
requirement evolution. Robinson et al. [19] propose a set of
activities codified as Requirements Interaction Management
(RIM), directed toward the discovery, management, and dis-
position of critical relationships among sets of requirements.

While these studies illuminate important aspects of soft-
ware engineering in general and understanding requirements
in particular, it is necessary to connect the effects of chang-
ing requirements with the analysis artifacts in a clear, quan-
tified strategy. The measurement scheme derived in the fol-
lowing sections aims at capturing the effects of requirements
changes in terms of the essential continuity of a development
process. Our mechanism also provides a framework for au-
tomating the tracking of requirement changes and their con-
sequences.

4. ASSUMPTIONS

During the analysis workflow, each requirement is scruti-
nized to ascertain the broad layers of the software system
that will be required for its fulfillment. (Fulfillment is intu-
itively understood to be satisfying any user defined criteria
to judge whether a requirement has been implemented to her
satisfaction.) At this level the software system may be seg-

1740

regated into the layers of Display, Processing and Storage.
Analysis reveals how these three categories can combine in
a feasible design to relate to a particular requirement.

We make the following assumptions:

e The context of our discussion is functional require-
ments. We recognize non-functional requirements may
warrant a different approach [20].

By reviewing a particular requirement, an experienced
analyst is able to recognize whether it concerns the
Display, Processing or Storage aspects of the system.
Display subsumes all features of the user interface and
interaction facilities between the user and the system.
Processing is any non-trivial modification of informa-
tion performed by the system. Storage includes all
activities associated with persisting information and
accessing such information.

When a requirement changes, the change can affect
Display(D), Processing(P) or Storage(S); singly or
collectively. Thus, between iterations, each chang-
ing requirement, R, is attributed a Mutation Value
MV (n) of D, P or S; or any of their combination.

The Display, Processing and Storage aspects may be
associated with the three basic stereotypes of analysis
classes; Boundary, Control and Entity in object ori-
ented analysis [1]. The following derivation is based
on this mapping; for non object oriented systems, cor-
responding components/modules may be substituted.
The derived metrics are independent of Object Ori-
ented Analysis and Design (OOAD) principles.

The metrics address requirement changes between iter-
ations; the identification of current, previous and next
iterations is implicit in the discussion.

System refers to the software under development along
with its interfaces. Component refers to logical /physical
entities whose interaction is necessary for the working
of the system.

S. DEFINING THE METRICS

The metrics we now derive are meant to be heuristics for
understanding and resolving the issues related to the evolu-
tion of a software system driven by customer needs. Anal-
ysis and design involve frequent decision making - choosing
one option over another based on a gamut of (often con-
flicting) inputs. These metrics introduce an element of 0b-
jectivity into the process such that the rationale behind the
decisions can be clearly justified, communicated and docu-
mented. When automated, the mechanism can also signifi-
cantly expedite the analysis of complex systems with closely
related requirements.

For a system, let every requirement identified in the re-
quirement workflow be uniquely named as R1, Rz, Rs, ..., Ry.
Between iterations I,,—1 and I,, each requirement is anno-
tated with its Mutation Value; a combination of the sym-
bols D, P and S. The symbols stand for:

D = Display(1)
P = Processing(3)
S = Storage(2)

The parenthesized numbers denote the Weights attached
to each symbol. The combination of more than one sym-
bol signifies the addition of their respective Weights, thus:
DP=1+3=14
DS=14+2=3
PS=3+2=5
DPS=1+3+2=6

Evidently, the order of the combination is irrelevant here,
i.e. DP=PD,DPS = SPD etc.

The Weight assigned to each category of components —
Display, Processing and Storage — is a relative measure of
their complexities. Processing components usually embody
application logic and are most design and implementation
intensive. Storage components encapsulate the access and
updating of application data stores; their level of complex-
ity is usually lower than that of the Processing compo-
nents but higher than Display ones. Accordingly, Display,
Processing and Storage have been assigned the Weights
1, 3 and 2 respectively. Exact values of Weights may be
varied from one project to another; the essential idea is to
introduce a quantitative differentiation between the types of
components.

5.1 Mutation Index

The Mutation Index MI(n) for a requirement R, is a
relative measure of the extent to which the requirement has
changed in terms of the components needed to fulfill it.

Expressed as a ratio, the M1(n) for requirement R, :

The Mutation Value for R,
The mazimum Mutation Value

MI(n) = (1)

Thus, if at iteration I,, Requirement R,, has been as-
signed a Mutation Value MV (m) = DS with reference to
iteration I,_1, MI(m) is calculated as :

DP

MI(m) = 553
MI(m) = %
MI(m) = 0.5

Intuitively, if change in R,, can only affect the Display
aspects of the system, the corresponding MI(m) = D/DPS
= 1/6 = 0.17, which is less significant than the changes
affecting only Processing, i.e. MI(m) = P/DPS = 3/6 =
0.5 or only Storage, i.e. MI(m) = S/DPS =2/6 = 0.33.

At the boundary conditions, if a requirement has not
changed from one iteration to another, the Mutation Value
isOand MI(m)=0/6=0. And, if all of Display, Processing
and Storage aspects will be affected by changes in the re-
quirement, the MI(m) =6/6 = 1. MI(m) for a requirement
R, can vary between these extreme values.

5.2 Component Set

The Component Set CS(n) for a requirement Ry is the
set of components required to fulfill the requirement.

During analysis, only the software components at the high-
est level are identified; they typically undergo several cycles
of refinement over subsequent workflows. The Component
Set is determined for components at their level of granu-
larity at the analysis stage. Let the following components
combine to fulfill requirement R,, :

1741

Cp = Set of Boundary classes
Cc = Set of Control classes
Cg = Set of Entity classes
Cx = Set of helper, utility and other classes.
Then, the Component Set CS(n) for R, is defined as,

CS(n)=CpUCcUCgUCx (2)

5.3 Dependency Index

The Dependency Index DI(m) for a requirement Ry, is a
relative measure of the level of dependency between the com-
ponents fulfilling Ry, and those fulfilling other requirements
of the same system.

For a set of requirements R1,Rs,...,Rm,...,Rn—1,Rn, let us
define,

Y =CS1)uCsS2)U..ulS(n—-1)ulCS(n)

For a requirement R,, (1 < m < n), let us define,
Z(m)=(CS1)NnCS(m))U..U(CS(m—-1)NnCS(m))uU

((CS(m) N (CS(m +1)) U... U ((CS(m) N (CS(n))

We can say, semantically, Z(m) is the set of components
that are not only relevant to R, but also to some other
requirement, say R;.
Expressed as a ratio, the DI(m) for requirement R, :
|Z

m)|
pim) = 2L 3)
Y]
(For a set S, |S| is taken to denote the number of ele-
ments of S.) We next present a process for applying and
interpreting the metrics defined in this section.

6. A METHODOLOGY

The Mutation Index, Component Set and Dependency
Index together with a methodology for applying them com-
prise a mechanism to evaluate of the effects of requirement
changes. The following sequence of steps is a suggested
methodology for the metrics :

During the analysis workflow,

1. Analyze each requirement for changes from the previ-
ous iteration.

2. Annotate each requirement with its Mutation Value.
3. Compute the Mutation Index for each requirement.

4. Identify the high level components (Cg, Cc, Cg, Cx
etc.) required to fulfill each requirement.

5. Compute the Component Set for each requirement.
6. Compute the Dependency Index for each requirement.

7. From the Mutation Inder and Dependency Index
values, analyze the potential impacts of change for
each requirement.

8. Refine the components to minimize the extent of such
impact. If the change of a particular requirement may
have serious budget/schedule impacts, intimate the
project management/customer on the possibilities be-
fore proceeding further with development. (This and
the immediately preceding step are best performed by
experienced analysts and designers.)

Perform the above steps for each iteration.

7. CASE STUDY AND DISCUSSION

The following case study illustrates a typical scenario for
applying the metrics and interpreting the results. We track
the effects of changing requirements across several iterations
of a sample application. Due to space constraints details of
calculations are not shown.

7.1 The Scenario

A book reseller, in this paper referred to as Books Inter-
national Inc. (BII) sells new and used books through their
retail outlets across the nation. BII also offers a premium
product, autographed books — first edition books signed by a
select group of authors.

As a part of its expansion plan, BII decided to webify their
business, launching an internet store and fulfilling electronic
orders. An online presence for BII is expected to result in
increased revenue from its standard as well as niche market
of autographed books.

A software development organization, which we will call
Next Gen Tech (NGT) has been contracted to develop the
online BII store. NGT decided to use an iterative and in-
cremental model for developing the system.

7.2 Results

We give the requirements for each iteration (I,,) and calcu-
late the corresponding values for MI(n), C'S(n) and DI(n)
as per the relations derived in section 5. Section 7.3 inter-
prets the results. It is implied that the requirements are
being forwarded by the stakeholders from BII; the analysts
and designers from NGT evaluate them using the metrics to
gauge their effects.

Requirements for [; :

Ry - The system will provide an online home page of BII,
including a masthead with BII’s logo, a static welcome mes-
sage, and a hyperlink to a catalog page.

R - The catalog page will contain alphabetical listing of BII’s
books. Initially BII will provide a list of up to 2000 different
titles on its online store. The system will allow a user to
select one/more listing(s) for purchase.

R3- The system will record the Name, Mailing Address, Credit
Card Number, Ezxpiration Date and Credit Card Billing Ad-
dress of the user wishing to purchase book(s).

Ra- The system will verify the credit card information and
provide confirmation to the user along with total cost of the
purchase (base price plus shipping and handling charges -
BII will only offer standard shipping).

In the very first iteration the requirements have not had
a chance to mutate, hence the MV (n) = 0 and MI(n) =0
for all R,.

A list of components identified at this time with a brief
description of their functionality is given below. These are
at a very high level of abstraction, and will likely undergo
refinements in subsequent workflows. The respective com-
ponent type as defined earlier is noted in parenthesis beside
the component’s name. (Here, we do not seek to justify
analysis and design decisions; focus is on the metrics val-
ues.)

List of components for I; :

Page generator(Cp): To generate web pages with dynamic
content.

User input verifier(Cp) :
user.

User info recorder(Cc¢) : To process user information be-

To validate form inputs from

1742

Table 1: Mutation Value, Mutation Index and
Dependency Index for requirements of I

R, | MV(n) | MI(n) | DI(n)

Ry 0 0 0.143

Ry 0 0 0.429

R3 0 0 0.286

R4 0 0 0.429

fore persisting.
Credit card verifier(Cc) : To verify credit card details.
Catalog store(Cg) : To persist book catalog information.
User info store(Cg) : To persist user information.
Total price calculator(Cx) : To calculate total price of
purchase.

Based on the above, the following is derived :
Component Sets CS(n) for I; :
CS(1) - {Page generator}
CS(2) - {Page generator,User input verifier,Catalog
store}
CS(3) - {Page generator,User input verifier,User info
recorder,User info store}

CS(4) - {Page generator,User input verifier,Total price

calculator,Catalog store,Credit card verifier}

The DI(n) values in Table 1 signifies, at a later stage,
changes to Ry will have the least impact on the overall cur-
rent design while changing Ry and R4 will affect the system
most.

For the next iteration Iz, the following versions of the re-
quirements were addressed.

Requirements for I :

R1 - In addition to earlier requirement, the home page will
present a list of authors whose autographed editions are cur-
rently available through BII. The list will be updated by BII’s
management once a month.

Rz - In addition to earlier requirement, the catalog will pro-
vide a facility to search all of BIl’s books by author’s name
and/or book title.

Rs3- In addition to earlier requirement, the system will present
a disclaimer that none of the personal information of the
user recorded by BII will be shared with any third party other
than credit card agencies.

R4- Remains unchanged

As a marketing drive, all pages will have a list of five new
arrivals at the top, under the heading, “BookWorm Recom-
mends”.

In the light of the changes, Table 2 shows the Mutation
Value assigned to each requirement and the corresponding
Mutation Index. It is worth noting, even as R4 is declared
to remain unchanged, it has a non zero Mutation Value
since all pages now need to display a list of new books.

It is apparent R2 has changed most and Rs3 least. The
corresponding DI(n) values from I; suggests, absorbing the
effect of R3’s change will be relatively easier than that of
R2’s . With this insight, the revised set of components re-
quired to fulfill the current requirements are listed below.
List of components for I» :

Page generator(Cpg): To generate web pages with dynamic
content.

User input verifier(Cp) : To validate form inputs from
user.

User info recorder(Cc) : To process user information be-

Table 2: Mutation Value, Mutation Inder and
Dependency Index for requirements of I

R, | MV(n) | MI(n) | DI(n)

Ri| DP 0.67 0.22

R> | D,P,S 1 0.33

R3 D 0.17 0.44

Ry D,S 0.5 0.44

fore persisting.

Credit card verifier(Cc) : To verify credit card details.
Catalog searcher(Cc) : To provide dynamic search facil-
ity of the catalog.

New arrival identifier(Cc) : To identify new additions
to the catalog.

Catalog store(Cg) : To persist book catalog information.
User info store(Cg) : To persist user information.

Total price calculator(Cx) : To calculate total price of
purchase.

The italicized components are the ones that have been
added to address the requirement changes.

Guided by each requirement’s Mutation Value the com-
ponents were reassigned as:

Component Sets CS(n) for I :

CS(1) - {Page generator, New arrival identifier}
CS(2) - {Page generator,User input verifier,Catalog
searcher, New arrival identifier}

CS(3) - {Page generator, User input verifier, User
information recorder, User information store, New
arrival identifier}

CS(4) - {Page generator, User input verifier, Total
price calculator, Catalog store, Credit card verifi
New arrival identifier, User information store}

The redesign necessitated by the mutating requirements
lead to a situation where R3 and R4 are now the most de-
pendent followed respectively by Rz and Ri. (As indicated
by the Dependency Index values for this iteration in Table
2.)

As each iteration lead to an incremental release of the
product, BII was satisfied with the project’s progress. Ac-
cordingly, another round of requirements were put forward.
Requirements for I3 :

Ri1 - Remains unchanged.

R2 - Remains unchanged.

R3- Remains unchanged.

R4- In addition to earlier requirement, BII will also accept
checks or BookWorm Coupons as payment for purchases.
BookWorm Coupons are valid only for specific purchases.
Items that can be bought with coupons will be marked in the
online listing.

This was put forward as a “minor addition” by BII’s
management; after all, R4 is the only one requirement that
changes.

NGT’s analysts were quick to detect, R4’s change also af-
fects R3 and has the potential to impact the existing design
as newer business rules (What qualifies a product for pur-
chase against coupons ¢ Can coupon purchases be combined
with card/check purchases ? etc.) need to be addressed and
interfaces (What other user information need to be recorded
for check payments ? Which agency would verify such pay-
ments ¢ etc.) built. Table 3 quantifies their qualms.

The M I(n) values, coupled with corresponding DI(n) val-

er,

1743

Table 3: Mutation Value, Mutation Index for require-
ments of I3

R, | MV(n) | MI(n)
R 0 0
R2 D,S 0.5
Rs PS 0.83
Ry | D,P,S 1
1.2
1
0.8
_ [I
0.6 — M2
[[
0.4 —
02—
0
MI(1) MI(2) MI(3) MI(4)

Figure 1: Variation of MI(n) across iterations for
the case study’s requirements

ues from the previous iteration indicate that far reaching
changes have to be introduced to fulfill the latest require-
ments. The Technical Lead of NGT’s development team
reviewed the situation with her Project Manager, recom-
mending the customer be notified of these implications.

We take leave of the case study now, when NGT is per-
suading BII for cost and timeline revisions before further
development can proceed.

7.3 Interpreting the Metrics

We highlight some key themes of the approach and sum-
marize the results of the case study.

The metrics are meaningful collectively, they together give
a view of the process continuum. Mutation Index is calcu-
lated with reference to the previous iteration, Component
Set summarizes the design for the current iteration and
Dependency Index reflects the potential effects in the next
iteration.

The metrics are essentially indicators, they are meant to
facilitate better understanding and judgment in the inher-
ently subjective exercises of analysis and design.

Overall, the mechanism presented complements existing
canons of software engineering. For example, calculation of
Dependency Index is based upon Component Set, which is
populated by component choices backed by common design
considerations of cohesion, coupling etc.

Ideally, a requirement’s low M1 (n) value reflects it has not
undergone significant change; an unusually high value may
indicate a need to spawn a new requirement or segregate
the original requirement into two or more parts. Similarly,
low DI(n) values suggest low interdependencies; in the lim-
iting case we may have independent components with zero

0.5

[T
B2

DI(1) DI(2)

DI(3)

DI(4)

Figure 2: Variation of DI(n) across iterations for the
case study’s requirements

interaction, an undesirable situation for interactive systems.

On the other hand, a high MI(n) for a requirement may
not necessarily be alarming if the corresponding DI(n) is
moderate. Likewise, a high DI(n) for a requirement with a
low MI(n) does not necessitate involved redesign.

The metrics thus signify general directions in the architec-
ture as a system is iteratively understood, built and refined.

Figures 1 and 2 show the MI(n) and DI(n) variations
across the iterations of the case study.

8. FUTURE WORK

The mechanism presented above gives quantitative in-
sight on changing requirement’s outcome on system com-
ponents. Work is currently in progress to incorporate this
intelligence in an automated requirement tracking and anal-
ysis tool. Given sets of requirements and analysis artifacts,
the utility will gauge the levels of interaction in the system,
the extent to which the overall design may be affected by
changes to the requirements, and suggest workarounds to
mitigate those effects. We are looking to leverage the exten-
sion mechanisms of Unified Modeling Language version 2.0
and the Eclipse Modeling Framework (EMF) of the Eclipse
platform towards this automation. A case study on a larger
scale is also planned.

9. CONCLUSION

In this paper, we cited the iterative and incremental model
as an expedient approach for tackling requirement changes
in enterprise software development. On the foundations of
this model, we have presented a set of a metrics - Mutation
Index, Component Set and Dependency Index — and a
sample process that together guide the development team
on how requirement changes may be negotiated during the
analysis workflow. We also discuss results from a case study
and the future directions of our work.

10. REFERENCES

[1] 1. Jacobson,G. Booch,J. Rumbaugh. The Unified
Software Development Process. Addison-Wesley, 1999.

1744

[2] R.S. Pressman. Software Engineering : A
Practitioner’s Approach, Fifth Edition. McGraw-Hill,
2001.

A.L. Baker J.M. Bieman, N. Fenton and

D.A. Gustafson. A Philosophy for Software
Measurement. The Journal of Systems and Software,
April 1990.

N. Fenton. Software Measurement : A Necessary
Scientific Basis. IEEE Transactions on Software
Engineering, vol. 20, no. 3, March 1994.

E.V. Berard. Metrics for Object-Oriented Software
Engineering. http://www.toa.com/pub/moose.htm,
1998.

M. Halstead. Elements of Software Science,
North-Holland, 1977.

A.J. Albrecht. Measuring Application Development
Productivity. Proc. IBM Application Development
Symposium, Monterey CA, October 1979.

T. DeMacro. Controlling Software Projects. Yourdon
Press, 1982.

D.N. Card and R.L. Glass. Measuring Software Design
Quality. Prentice-Hall, 1990.

T.J. McCabe and A.H. Watson. Software Complexity.
Crosstalk, vol. 7, no. 12, December 1994.

J.M. Bieman and L.M. Ott. Measuring Functional
Cohesion. IFEE Transactions on Software
Engineering, vol. 20, no. 8, August 1994.

H. Dhama. Quantitative Models of Cohesion and
Coupling in Software, The Journal of Systems and
Software, vol. 29, no. 4, April 1995.

S.R. Chidamber and C.F. Kemerer. Towards a metrics
suite for object oriented design. OOPSLA 91, 1991.
S.R. Chidamber and C.F. Kemerer. A metrics suite
for object oriented design. IEEE Transactions on
Software Engineering, vol. 20, no. 6, June 1994.

R. Harrison, S.J. Counsell and R.V. Nithi. An
Evaluation of the MOOD Set of Object-Oriented
Metrics. IEEE Transactions on Software Engineering,
vol. 24, no. 6, June 1998.

J. Karlsson and K. Ryan. A Cost-Value Approach for
Prioritizing Requirements. IEEE Software,
September/October 1997.

J. Cleland-Huang and C. Chang. Event-Based
Traceability for Managing Evolutionary Change. IEEE
Transactions on Software Engineering, vol. 29, no. 9,
September 2003.

W. Lam and M. Loomes. Requirements Evolution in
the Midst of Environmental Change : A Managed
Approach.2nd Euromicro Conference on Software
Maintenance and Reengineering(CSMR’98), 1998.
W. Robinson, S. Pawloski and V. Volkov.
Requirements Interaction Management. ACM
Computing Surveys, vol. 35, no. 2, June 2003.

S. Datta. Integrating the FURPS+ Model with Use
Cases - A Metrics Driven Approach. Accepted to be
presented at The 16th IEEE Symposium on Software
Reliability Engineering (ISSRE 2005), November 2005.

3]

4

[5]

[6

7

8]
[9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

	Effect of changing requirements: A tracking mechanism for the analysis workflow
	Citation

	Effects of Changing Requirements: A Tracking Mechanism for the Analysis Workflow

