
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2007

Experiences with tracking the effects of changing requirements Experiences with tracking the effects of changing requirements

on Morphbank: A web-based bioinformatics application on Morphbank: A web-based bioinformatics application

Subhajit DATTA
Singapore Management University, subhajitd@smu.edu.sg

Robert van Engelen
Florida State University

David GAITROS
Florida State University

Neelima JAMMIGUMPULA
Florida State University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Bioinformatics Commons, and the Software Engineering Commons

Citation Citation
DATTA, Subhajit; van Engelen, Robert; GAITROS, David; and JAMMIGUMPULA, Neelima. Experiences with
tracking the effects of changing requirements on Morphbank: A web-based bioinformatics application.
(2007). ACMSE 2007: Proceedings of the 45th Annual Southeast Conference, Winston-Salem, NC, March
23-24. 413-418.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6013

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6013&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Experiences with Tracking the Effects of Changing
Requirements on Morphbank: A Web-based

Bioinformatics Application

Subhajit Datta
∗

Robert van Engelen
David Gaitros

Neelima Jammigumpula
School of Computational Science

Florida State University
Tallahassee, FL 32306, USA

{subhajit, engelen, gaitros, jammigum}@scs.fsu.edu

ABSTRACT
In this paper, we present a case study of applying the met-
rics Mutation Index, Component Set, Dependency Index [1]
on Morphbank– a web based bioinformatics application – to
track the effects of changing requirements on a software sys-
tem and suggest design modifications to mitigate such im-
pact. Morphbank is “an open web repository of biological
images documenting specimen-based research in compara-
tive anatomy, morphological phylogenetics, taxonomy and
related fields focused on increasing our knowledge about
biodiversity” [2]. This paper discusses the context of the
case study, analyzes the results, highlights observations and
learning, and mentions directions of future work.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, process metrics

General Terms
Algorithms, Management, Measurement, Design

Keywords
Analysis, Design, Metrics

1. INTRODUCTION
∗Email correspondence may be directed to this author at
subhajit@scs.fsu.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACMSE 2007 March 23-24, 2007, March 23-24, 2007, Winston-Salem, N.
Carolina, USA
Copyright 2007 ACM 978-1-59593-629-5/07/0003 ...$5.00.

Managing the effects of changing requirements remains
one of the greatest challenges of enterprise software devel-
opment. Based on Fowlers’ insights [3] we note some of
the characteristics of enterprise software systems to be: per-
sistent data, concurrent access of data, lot of user interface
screens, need to bridge “conceptual dissonance” between the
demands of diverse stakeholders, etc.

[1] derives a set of metrics and suggests a methodology to
measure the effects of requirement changes from one itera-
tion to another, and to facilitate design decisions to mitigate
these effects. To evaluate this approach, we undertook a case
study of the Morphbank project. The project was suited to
the technique as it underwent (and is still undergoing) sev-
eral cycles of user driven requirement modifications. (We
describe the context of Morphbank in a later section.)

The case study was an interesting exercise, giving us new
insights on the applicability of the metrics and scope of fur-
ther work. In the next section we present an overview of the
metrics, followed by a brief description of the project, scope
of our case study, results and interpretations, directions of
future work, and conclusion.

2. OVERVIEW OF THE METRICS
As stated earlier detailed derivation of the metrics and

discussion on the methodology are covered in [1]. We give
an overview below.

The metrics are developed on the idea that a software
system fulfills user requirements through the interaction of
its components. Intuitively, the Mutation Index measures
the extent to which a requirement changes from one iteration
to another; Component Set is the collection of components
needed to fulfill a particular requirement and is used in the
calculation of the next metric; Dependency Index measures
the level of interaction between a particular requirement’s
components with other components in the system.

The following assumptions were made:

• The context of the discussion is functional require-
ments.

• By reviewing a particular requirement, an experienced
analyst is able to recognize whether it concerns the

413

Display, Processing or Storage aspects of the system.
Display subsumes all features of the user interface and
interaction facilities between the user and the system.
Processing is any nontrivial modification of informa-
tion performed by the system. Storage includes all
activities associated with persisting information and
accessing such information.

• When a requirement changes, the change can affect
Display(D), Processing(P) or Storage(S); singly or
collectively. Thus, between iterations, each chang-
ing requirement, Rn is attributed a Mutation V alue
MV (n) of D, P or S; or any of their combination.

• The Display, Processing and Storage aspects may be
associated with the three basic types of components;
Boundary, Control, and Entity [4].

• The metrics address requirement changes between it-
erations; identification of current, previous and next
iterations is implicit in the discussion.

• System refers to the software under development along
with its interfaces. Component refers to logical/physical
entities whose interaction is necessary for the working
of the system.

For a system, let every requirement identified during re-
quirement elicitation be uniquely named asR1, R2, R3, ..., Rn.
Between iterations In−1 and In each requirement is anno-
tated with its Mutation V alue; a combination of the sym-
bols D, P and S. The symbols stand for:
D ≡ Display(1)
P ≡ Processing(2)
S ≡ Storage(3)

The parenthesized numbers denote the Weights attached
to each symbol. The combination of more than one sym-
bol signifies the addition of their respective Weights, thus:
DP ≡ 1 + 2 = 3
DS ≡ 1 + 3 = 4
PS ≡ 2 + 3 = 5
DPS ≡ 1 + 3 + 2 = 6

Evidently, the order of the combination is irrelevant here,
i.e. DP ≡ PD,DPS ≡ SPD etc.

It should be pointed out the Weights as assigned above
are different from [1]. Since Morphbank is a database in-
tensive application, we thought it fit to assign the highest
Weight to the Storage aspect vis-a-vis the other ones. Sim-
ilar changes may be introduced when other applications are
studied, depending on their scope and complexity.

The Weight assigned to each category of components –
Display, Processing and Storage – is a relative measure
of their complexities. Storage components encapsulate the
access and updating of application data stores – a key func-
tionality of Morphbank – Processing components embody
application logic – not very involved in this project – and
Display components deal with user interface, which in this
case is of the level of complexity usual for a web based
project. Accordingly, Display, Processing and Storage
have been assigned the Weights 1, 2 and 3 respectively.
Exact values of Weights may be varied from one project
to another; the essential idea is to introduce a quantitative
differentiation between the types of components.

2.1 Mutation Index
The Mutation Index MI(n) for a requirement Rn is a rel-

ative measure of the extent to which the requirement has
changed from one iteration to another in terms of the com-
ponents needed to fulfill it.

Expressed as a ratio, the MI(n) for requirement Rn :

MI(n) =
The Mutation V alue for Rn

The maximum Mutation V alue
(1)

Thus, if at iteration In, Requirement Rm has been as-
signed a Mutation V alue MV (m) = DS with reference to
iteration In−1, MI(m) is calculated as :

MI(m) =
DS

DPS

MI(m) =
4

6

MI(m) = 0.67

Intuitively, if change in Rm can only affect the Display
aspects of the system, the corresponding MI(m) = D/DPS
= 1/6 = 0.17, which is less significant than the changes
affecting only Processing, i.e. MI(m) = P/DPS = 2/6 =
0.33 or only Storage, i.e. MI(m) = S/DPS = 3/6 = 0.5.

At the boundary conditions, if a requirement has not
changed from one iteration to another, the Mutation V alue
is 0 andMI(m) = 0/6 = 0. And, if all ofDisplay, Processing
and Storage aspects will be affected by changes in the re-
quirement, the MI(m) = 6/6 = 1. MI(m) for a requirement
Rm can vary between these extreme values.

2.2 Component Set
The Component Set CS(n) for a requirement Rn is the

set of components required to fulfill the requirement.
As a system’s design evolves, components fulfilling a par-

ticular requirement typically undergo several cycles of re-
finement. So for each iteration, a requirement may have
Component Set different from preceding or succeeding it-
erations. Let the following components combine to fulfill
requirement Rn :
CB ≡ Set of Boundary components
CC ≡ Set of Control components
CE ≡ Set of Entity components
CX ≡ Set of helper, utility and other components.

Then, the Component Set CS(n) for Rn is defined as,

CS(n) = CB ∪ CC ∪ CE ∪ CX (2)

2.3 Dependency Index
The Dependency Index DI(m) for a requirement Rm is a

relative measure of the level of dependency between the com-
ponents fulfilling Rm and those fulfilling other requirements
of the same system.

For a set of requirements R1,R2,...,Rm,...,Rn−1,Rn, let
Y = CS(1) ∪ CS(2) ∪ ... ∪ CS(n− 1) ∪ CS(n)

For a requirement Rm, (1 ≤ m ≤ n), let
Z(m) = (CS(1) ∩ CS(m)) ∪ ... ∪ ((CS(m− 1) ∩ CS(m)) ∪
((CS(m) ∩ (CS(m+ 1)) ∪ ... ∪ ((CS(m) ∩ (CS(n))

Z(m) denotes the set of components that play a part in the
implementation of Rm, as well as some other requirement,
say Rj .

414

The DI(m) for requirement Rm is expressed as the ratio:

DI(m) =
|Z(m)|
|Y | (3)

(For a set S, |S| is taken to denote the number of elements
of S.)

The approach in [1] examines the metrics values in the
light of one another as development proceeds through itera-
tions and incremental releases. At iteration k, the Mutation
Index indicate how much the requirements have changed
from iteration (k − 1). The Dependency Index values for
iteration (k− 1) convey how much the requirements are de-
pendent on one another for their fulfillment. Analyzing the
MI(n) and DI(n) values for some Rn for these two itera-
tions, the level of design modification needed to implement
the changed requirements can be gauged. For frequently
changing requirements, design choices that will bring down
their respective DI(n) values will be most amenable towards
absorbing future changes.

We will now discuss the application of the metrics on Mor-
phbank.

3. BACKGROUND OF MORPHBANK
Morphbank serves the biological research community as

an open web repository of images. “It is currently being
used to document specimens in natural history collections,
to voucher DNA sequence data, and to share research re-
sults in disciplines such as taxonomy, morphometrics, com-
parative anatomy, and phylogenetics” [2]. The Morphbank
system uses open standards and free software to store im-
ages and associated data and is accessible to any biologist
interested in storing and sharing digital information of or-
ganisms. Morphbank was founded in 1998 by a Swedish-
Spanish-American consortium of systematic entomologists
and is currently being developed and maintained by an in-
terdisciplinary team at a United States university.

Morphbank’s principal goal lies in developing an web-
based system to support the biological sciences in disciplines
such as taxonomy, systematics, evolutionary biology, plant
science and animal science. Morphbank facilitates collabora-
tion amongst biological scientists by allowing for the sharing
of specimen images, annotating existing images, remotely
curate natural history collections, and build phylogenetic
character matrices.

Morphbank provides features such as browsing, searching,
submitting, editing, annotating of biological specimen data.
Since the Morphbank was taken up by the current develop-
ment team, the project has passed through releases 2.0, 2.5,
with releases 2.7 and 3.0 being planned.

The key element of Morphbank is supporting a collabo-
rative environment. Thus expectedly, the requirements un-
dergo frequent changes as different groups of users commu-
nicate their changing needs. We focus our attention on the
changing requirements for the Browse functionality.

4. BROWSE FUNCTIONALITY
Morphbank functional areas can be broadly classified into

Browse, Search, Submit, Edit, Annotate etc. [5]. Out of
these we choose the Browse functionality for our case study.
This choice is inspired by the fact that Browse has under-
gone several requirement changes between Morphbank 2.0
to Morphbank 2.5 and changes are also expected in the fu-

ture versions. Browse remains by far the most visible of the
functional areas; thus user needs undergo frequent modifica-
tions. The major requirements under the Browse functional
area are listed in Table 1 and their changes noted from Mor-
phbank 2.0 to Morphbank 2.5. We will apply the metrics on
these requirements and their changes. The changes can be
summarized as: between Morphbank 2.0 and Morphbank
2.5 three new ways of Browsing, by Collection, by Image,
and by Taxon were introduced, as well as Search facilities
were provided from within the Browse interface. The Search
feature of Morphbank allows users to find a specific record
or a set of records based on a specific input criteria.

As an example, Browse by View screen image is given in
Figure 1.

Figure 1: Morphbank Browse by View

5. CODE COMPONENTS
Morphbank uses PHP components and the Morphbank

and ITIS (Integrated Taxonomic Information System) [6]
databases to deliver its functionality. Table 2 lists the com-
ponents for each of the Browse requirements for Morphbank
2.0 and Morphbank 2.5. In addition, the following common
components were used across the requirements:

5.1 Common components for Morphbank 2.0
• config.inc.php,footer.inc.php,head.inc.php,

http build query.php,mail.php,menu.inc.php,nusoap.php,
objOptions.inc.php,pop.inc.php,queryLogFunctions.php,
qlODBC.inc.php,thumbs.inc.php,treeview.inc.php,
tsnFunctions.php,webServices.inc.php,
layersmenunoscript.inc.php,
layersmenuprocess.inc.php,template.inc.php

• layersmenu.inc.php,layersmenu.inc.php.orig,
layersmenunoscript.inc.php,layersmenuprocess.inc.php,
template.inc.php

• annotateMenu.php,datescript.js,layersmenu.js,
layersmenubrowser detection.js,layersmenufooter.ijs,
layersmenuheader.ijs,layersmenulibrary.js,layerstreemenu.ijs,
layerstreemenucookies.js

415

Table 1: Morphbank Browse Requirements
Req.ID Morphbank 2.0 Morphbank 2.5
R1 Browse by Location Added search facilities
R2 Browse by Name Added search facilities
R3 Browse by Specimen Added search facilities
R4 Browse by View Added search facilities
R5 Did not exist Browse by Collection with search facilities
R6 Did not exist Browse by Image with search facilities
R7 Did not exist Browse by Taxon with search facilities

5.2 Common components for Morphbank 2.5

• config.inc.php,footer.inc.php,head.inc.php,
http build query.php,mail.php,menu.inc.php,nusoap.php,
objOptions.inc.php,pop.inc.php,queryLogFunctions.php,
sqlODBC.inc.php,thumbs.inc.php,treeview.inc.php,
tsnFunctions.php,webServices.inc.php,
collectionFunctions.inc.php,copyCollection.php,
editExtLinks.php,editjavascript.php,editjavascripts.php,
ExtLinks.php,imageFunctions.php,postItFunctions.inc.php,
showFunctions.inc.php,XML.inc.php,navigation.php

• layersmenu.inc.php,layersmenu.inc.php.orig,
layersmenunoscript.inc.php,layersmenuprocess.inc.php,
template.inc.php

• annotateMenu.php,datescript.js,layersmenu.js,
layersmenubrowser detection.js,layersmenufooter.ijs,
layersmenuheader.ijs,layersmenulibrary.js,
layerstreemenu.ijs,layerstreemenucookies.js,
date.js,determinationJS.inc.php,extLinks.js,general.js,
gotoRecord.js,localityEdit.js,popupdate.js,
specimenEdit.js,viewEdit.js

• collectionFilter.class.php,filter.class.php,
filters.class.php,keywordFilter.class.php,
localityFilter.class.php,resultControls.class.php,
sort.class.php,specimenFilter.class.php,
tsnFilter.class.php,viewFilter.class.php

There were minor database related changes between Mor-
phbank 2.0 to Morphbank 2.5 but these did not directly af-
fect the Browse functionality. The introduction of the search
mechanism within Browse was handled by the code compo-
nents.

6. CALCULATING THE METRICS
Morphbank 2.0 and Morphbank 2.5 represent incremental

releases in the system’s evolution. We take iteration 1 (I1)
and iteration 2 (I2) to be the collection of activities which
lead to these two releases respectively.

Based on the discussion in the earlier sections we calcu-
late theMutation V alue, Mutation Index andDependency
Index for I1 and I2 in Table 3 and Table 4. (As explained
earlier the Component Set is used in an intermediate step
in the calculation of the Dependency Index.) We note the
changes to the existing requirements of Morphbank 2.0 to
Morphbank 2.5 relate to the Display, and Storage aspects;
as search functionality was added to all of the Browse cat-
egories. There was no change in Processing as such, only
modifications to database access logic and presentation. It

Table 3: Metrics for I1 of Morphbank Browse func-
tionality

Req MI(n) Y |Z(n)| DI(n)
R1 0 40 32 0.8
R2 0 40 32 0.8
R3 0 40 32 0.8
R4 0 40 32 0.8
R5 - - - -
R5 - - - -
R5 - - - -

Table 4: Metrics for I2 of Morphbank Browse func-
tionality

Req MI(n) Y |Z(n)| DI(n)
R1 0.67 82 61 0.74
R2 0.67 82 61 0.74
R3 0.67 82 61 0.74
R4 0.67 82 61 0.74
R5 0 82 61 0.74
R6 0 82 61 0.74
R7 0 82 61 0.74

may be also underlined each PHP component combines all of
Display, Processing, and Storage. Thus change in any one
of these aspects necessitates modification of the component.

7. INTERPRETATION
The MI(n) values for all the requirements in I1 is 0, which

is expected, as in the very first iteration, there is no pre-
vious iteration to measure a requirement change against.
We find the DI(n) values for the requirements R1,...,R4 are
all 0.8. This is due the fact that as per the design, differ-
ent Browse requirements are implemented by independent
groups of components. The only shared components across
requirements are the so called common components listed
in an earlier section. Figure 2 shows the variation of the
metrics between Morphbank 2.0 and Morphbank 2.5.

So the dependencies across the components are evenly dis-
tributed, although the level of dependency is significantly
high with uniform DI(n) values of 0.8. The changes in
Browse requirements between Morphbank 2.0 and Morphbank
2.5 manifested as additional functionality for R1,...,R4 and
introduction of the new requirements R5, R6, and R7. As
stated above, for all the requirements, the changes were
in the Display and Storage aspects, resulting in the same
MV (n) values of DS ≡ 1 + 3 = 4, and hence, MI(n) =
4/6 = 0.67. Given these MI(n) values for I2 and the high
DI(n) values for I1, corresponding to each requirement, it

416

Table 2: Morphbank Browse Code Components
Req.ID Morphbank 2.0 Morphbank 2.5
R1 index.php,mainBrowseByLocation.php index.php,mainBrowseByLocation.php, resultControls.class.php
R2 index.php,mainBrowseByName.php index.php,mainBrowseByName.php
R3 index.php,mainBrowseSpecimen.php index.php,mainBrowseSpecimen.php,resultControls.class.php
R4 index.php,mainBrowseByView.php index.php,mainBrowseByView.php,resultControls.class.php
R5 Not Applicable index.php,mainBrowseByCollection.php,resultControls.class.php
R6 Not Applicable index.php,copyToCollection.php,copyToNewCollection.php,

listImageThumbs.inc.php,mainBrowseByImage.php,
resultControls.class.php

R7 Not Applicable index.php,mainBrowseByTaxonTree.php

is expected a significant amount of change in implementa-
tion will be needed to accommodate the modified function-
ality. Let us examine the extent of code change between
Morphbank 2.0 to Morphbank 2.5.

8. VALIDATION OF METRICS BASED IN-
SIGHT

Between I1 and I2, the number of Morphbank Browse
components increased by more than 102% (40 components in
Morphbank 2.0 vis-a-vis 81 components in Morphbank 2.5).
Additionally, 45% of the components from I1 were modi-
fied in I2 (18 of the 40 components of Morphbank 2.0 were
changed and deployed in Morphbank 2.5). Figure 3 shows
the new, changed and unchanged components between Mor-
phbank 2.0 and Morphbank 2.5. To detect modification of
a component, a textual comparison of the corresponding file
for I1 and I2 was done by the Examdiff visual file compari-
son tool [8]. The number of differences between two versions
of a component ranged from minimum of 1 to maximum of
41. This empirical data validates the metric based insight
of high Dependency Index values indicating need for sig-
nificant rework even for changes in requirements related to
Display and Storage (as given by the Mutation Index val-
ues).

We observe the DI(n) values for I2 are somewhat lower
at 0.74 compared to 0.8 for I1. So the extent of rework for
similar mutation of requirements in a subsequent iteration is
expected to be lower than that necessitated in I2. However,
as we discuss in the following section, the trend of require-
ment changes for the Browse functional area may be better
served in the long run by a different direction of the design.

9. OBSERVATIONS AND LEARNING

• The metrics in [1] assume a clear separation of con-
cerns in the system design: separate components im-
plement Display, Processing, and Storage aspects of a
functionality. But the PHP components in Morphbank
2.0 and Morphbank 2.5 combine the implementation of
all of these aspects. Although the original approach is
based on the standard n-tier architecture of enterprise
software systems, the metrics are equally applicable
in the Morphbank scenario. This was established in
the preceding sections by the close correlation of the
prediction from the metrics and the empirical data on
the extent of code change between Morphbank 2.0 and
Morphbank 2.5.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R1 R2 R3 R4

Requirements

M
et

ri
c

va
lu

es

MB2 (Iter 1) - DI(n) MB2.5 (Iter 2) - MI(n)

Figure 2: Variation of DI(n) & MI(n) values for
Browse requirements between Morphbank 2.0 and
2.5

• The existing Morphbank architecture makes the im-
plementation of each requirement as concentrated as
possible amongst a small number of components. This
uniformity is reflected by the same DI(n) values for
all the requirements in both in first and the second it-
eration. A high degree of component independence is
expected to insulate the components to a large extent
from the effects of changing requirements. However
indications from elevated DI(n) values as well as em-
pirical evidence cited above suggest significant changes
in the code between I1 and I2. How do we reconcile
this contradiction?

• It is important to note there is a large body of com-
mon components across all of Browse requirements.
This group contributes heavily in increasing the de-
pendencies between the requirements and pushing up
the respective DI(n) values. These common compo-
nents occur in more than 61% (11 out of 18) of the
changes to existing components and more than 70%
(29 out of 41) of the new components introduced, be-
tween I1 and I2. This in effect destroys much of the
modularity of the underlying design, where small sets
of independent components service each requirement.

• One of the vital insights we have gained into the work-
ings of systems with changing requirements may be ex-
pressed as (paraphrasing the enduring motto of George
Orwell’s Animal Farm): some requirements are more
equal than others. This boils down to the fact that
every system will have requirements which are more

417

0
10
20
30
40
50
60
70
80
90

MB2 (Iter 1) MB2.5 (Iter 2)

Iterations

Nu
m

be
r o

f C
om

po
ne

nt
s

New Changed Unchanged

Figure 3: Variation of the number of code compo-
nents for Browse between Morphbank 2.0 and 2.5

used by users and subject to greater changes, com-
pared to other more stable ones. The DI(n) values for
these “more equal” requirements have to be as low as
possible, such that no matter how high their MI(n)
values are for a particular iteration, the changes can
be absorbed with minimal impact. So every require-
ment with same DI(n) value indicates an uniformity
of design that affects the system’s ability to respond
to changing requirements without much rework. It
is expedient to implement requirements that change
most in a way their components are the most loosely
coupled in the system, with other less volatile require-
ments being serviced by more closely meshed compo-
nents. These design tradeoffs are guided by the met-
rics. An optimal distribution of responsibility across
the components will facilitate maximum responsive-
ness to changing requirements with minimal overall
impact.

10. RECOMMENDATIONS
In view of the above discussion, we recommend the fol-

lowing:

• Given that Browse functionality is likely to undergo
frequent changes in the future (for instance, there is
likely to be a requirement to provide a different taxo-
nomic structure to search which is not provided through
ITIS), we suggest the Morphbank design be modified
to reflect clearer separation of concerns across compo-
nents. Display, Processing, and Storage aspects of
a requirement’s fulfillment should be implemented by
separate, interacting components instead of ones do-
ing all of these by themselves. This will ensure when
a changing requirement affects one aspect, there is
higher localization of corresponding code changes: if
only the user interface changes there will be no need
to modify components which also have database access
logic in them, and so on.

• As Morphbank’s services are preeminently web based,
a Web-Service based architecture may offer better scal-
ability. This will entail more intense development ef-
fort in the short run, which will be offset by the long
term benefits in enhancement and maintenance.

• In the Browse functionality of Morphbank 2.0 and Mor-

phbank 2.5 there is very little of what is called “busi-
ness logic”. However as the scope of the system is
expanded in the future it is not unlikely there will be
a need for more processing between the access and dis-
play of information. So introducing to a Model-View-
Controller (MVC) pattern of architecture will be help-
ful.

11. FUTURE WORK
We plan to continue the case study into future versions

of Morphbank. As further requirement changes need to be
incorporated into the system, the metrics will be able to fa-
cilitate design decisions to absorb their effects with minimal
impact.

We also plan to develop an Eclipse [7] based tool to auto-
mate the calculation and interpretation of the metrics. We
expect to use the Morphbank case study to test and refine
the tool.

12. CONCLUSION
In this paper we reported the results from a case study

of applying a set of metrics to gauge the effects of chang-
ing requirements on the design of a system. The metrics,
Mutation Index, Component Set, and Dependency Index
[1], were applied on the Browse functionality of Morphbank
– a web-based interactive system for biological research –
across two of its releases, versions 2.0 and 2.5. The indi-
cations from the metrics on the extent of code change due
to changing requirements were shown to correlate closely
with the empirical data. Based on the observations, we also
recommended certain modifications in the system’s architec-
ture to better absorb future requirement changes. We also
mention future directions of our work.

13. REFERENCES
[1] S. Datta and R. van Engelen. Effects of Changing

Requirements: A Tracking Mechanism for the
Analysis Workflow. Proceedings of the 21st Annual
ACM Symposium on Applied Computing (SAC-SE-06)
vol. 2, pp.1739–1744, April, 2006.

[2] Morphbank. http://www.morphbank.net/, 2006.

[3] M. Fowler. Patterns of Enterprise Application
Architecture. Addison-Wesley, 2003.

[4] I. Jacobson,G. Booch,J. Rumbaugh. The Unified
Software Development Process. Addison-Wesley, 1999.

[5] Morphbank User Manual.
http://morphbank.net/docs/mbUserManual.pdf, 2006.

[6] http://www.itis.usda.gov/. http://www.itis.usda.gov/,
2006.

[7] Eclipse - an open development platform.
http://www.eclipse.org/, 2006.

[8] ExamDiff - Visual File Comparison Tool.
http://www.prestosoft.com/ps.asp?page=edp examdiff,
2006.

418

	Experiences with tracking the effects of changing requirements on Morphbank: A web-based bioinformatics application
	Citation

	tmp.1624515829.pdf.5EPeX

