
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2006

Agility measurement index: A metric for the crossroads of Agility measurement index: A metric for the crossroads of

software development methodologies software development methodologies

Subhajit DATTA
Singapore Management University, subhajitd@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
DATTA, Subhajit. Agility measurement index: A metric for the crossroads of software development
methodologies. (2006). ACMSE 2006: Proceedings of the 44th Annual Southeast Conference, Melbourne,
Florida, March 10-12. 271-273.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6012

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6012&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6012&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Agility Measurement Index – A Metric for the Crossroads
of Software Development Methodologies

Subhajit Datta
Department of Computer Science and

School of Computational Science
Florida State University

Tallahassee, FL 32306, USA
datta@cs.fsu.edu

ABSTRACT
Software engineering's journey to maturity has been marked by
the advent of different development methodologies. While each
paradigm has its context and cognoscenti, project teams are often
faced with the choice of one approach over another in the grind
of delivering software on time and within budget. In this paper,
we briefly review the three major techniques of addressing
enterprise software development, namely the Waterfall, Unified
and Extreme styles. The metric Agility Measurement Index is
then proposed, which helps organizations choose the
methodology that best suites a particular project.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – complexity measures,
process metrics.

General Terms
Algorithms, Management, Measurement, Design, Economics,
Reliability, Human Factors, Standardization.

Keywords
Waterfall, Unified Process, Agile Methods, Extreme
Programming, Metrics.

1.INTRODUCTION
“In the beginning there was the waterfall” [1]. This technique
prescribed software be built in a succession of clearly defined
and demarcated sets of activities covering requirement
specification, analysis, design, implementation and testing [2].
The implicit assumption was everyone knew every relevant detail
a priori; customers knew what system they wanted and what the
system wanted from them, analysts knew what they heard from
the customers was what the customers wanted to tell them,
designers knew they could get the design right the first time,
implementors knew all they had to do was to translate the design
into code, and testers knew what to test. In the Waterfall model
projects progressed in a linear unidirectional path, like the
eternal truth of water flowing downhill. In spite of all the
inadequacy ascribed to the Waterfall model later – often
justifiably – its value lies in the first semblance of order it

sought to introduce in the hitherto free-form and instinct driven
pursuit of software development.

The Unified Software Development Process (aka Unified Process
or UP) took the best idea of the Waterfall model and made it
even better. Software Development Life Cycle (SDLC) was now
a two dimensional [3] matrix of phases – Inception, Construction,
Elaboration, Transition – and workflows Requirements,
Analysis, Design, Implementation, Test. The Unified Process is
use-case driven, architecture-centric, iterative, and incremental
[4]. In essence, UP places great emphasis on understanding the
scenarios of user interaction with the system, culturing an
architectural framework that supports reusabilty and
extensibility, and building software iteratively and incrementally.
It recognizes that getting it right the first time is an absurd
chimera for anything other than trivial systems, and seeks to
absorb effects of changing user needs through awareness and
coordination.

Extreme Programming (XP), almost eponymously, takes one
more radical step in the building of enterprise software. It is one
– perhaps the most promising – among a gamut of “agile”
methods, that “...attempt to offer once again an answer to the
eager business community asking for lighter weight along with
faster and nimbler software development processes” [5]. It
repositions the conventional software process sideways. “Rather
than planning, analyzing, and designing for the far-flung future,
XP programmers do all of these activities – a little at a time –
throughout development” [1]. The XP major practices, called the
“circle of life” [6] such as Planning game, Small releases,
Metaphor, Simple design, Tests, Refactoring, Pair programming,
Continuous integration, Collective ownership, On-site customer,
40-hour weeks, Open workspace, Just rules etc. are
unconventional and exciting perceptions of new ways of building
software in-the-large, as hinted by their maverick names.

All of the above methodologies embody key insights of software
engineering that have been learned through collective
experience, often at the cost of individual heroics, or martyrdom.
It is vacuous to dwell upon the superiority of one method over
another; every approach has a specific scope and facility. A
common problem of building software for customers is to decide
which methodology to adopt for a particular project. This
decision, necessitated by schedule and budget constraints has to
be taken very early in the SDLC, and once taken, has to be
adhered to. Thus the choice is of major consequence to the
project's final outcome.

In this paper, we propose a metric, the Agility Measurement
Index (AMI), which can serve as a heuristic to decide which
methodology is the best fit for a given project. The next section

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SE’06, March, 10-12, 2006, Melbourne, Florida, USA
Copyright 2006 1-59593-315-8/06/0004…$5.00.

271

highlights the theme of agility in the desiderata of different
software development strategies. We then present the idea of the
metric and follow up with its derivation. The usage scenarios of
the metric are outlined subsequently. We conclude with a
summary and directions of future work.

2.THE METHODOLOGY FRAY
The evolution of software development processes points to a
natural progression as one methodology begets another. A key
theme in the genesis of every new model is the need to better
understand, evaluate and manage change even as software is
designed and built. It is a fact of life that requirements – the
principal driver of a software system – will undergo change [7];
customers will change their mind, their perception of the role of
the software will change, the environment in which the software
operates will change and so will the technology with which the
software is built.

The most important aspect of a successful software process is its
ability to coordinate and control the effects of such changes. The
word agility, though applied only recently in the context of
software development, reflects a lasting holy-grail of software
development methodologies – the capacity of adapting to and
delivering in spite of, change.

Waterfall, UP and XP all have their own ways of embedding
agility into the process; each with concomitant advantages and
drawbacks. Even the latest “agile” methods, designed to deliver
from the quagmires of earlier approaches, raises concerns about
their supposed dependence on “premium people” (perhaps
evoking wraiths of Nietzche's supermen or Huxley's Alphas !) [8].
There is abounding consensus on an elusive “synthesis” between
methods [9], [10] without concrete ways to realize it.

3.AND THE NEED FOR A WAY
As a development organization engages with customers to deliver
a software project under predetermined cost and time constraints,
it faces the dilemma of which methodology to follow. There are
no ready answers, as the decision needs to take into account a
wide swath of factors and their combinations; and even situations
which can not be envisioned upfront.

We now derive the Agility Measurement Index (AMI), which
seeks to streamline the decisioning process.

3.1Agility Measurement Index – An Indicator
Metric
Intuitively, let us describe Agility Measurement Index (AMI) as
an indicator metric for determining whether a software
development project is best suited to the Waterfall, UP or XP
development methodologies. At the end of this section we will
reach a formal definition of AMI.

Let us define the following as the dimensions of a software
development project.

• Duration (D) – From project inception, how far ahead in
time is the delivery deadline ?

• Risk (R) – What is the impact of the project deliverable in
its usage scenario ? Is it mission critical, like a hospital
patient monitoring system, moon rocket controller; or is it
meant for relatively less razor-edge use ?

• Novelty (N) – Does the project involve a domain where the
users have never used a software before or the developers are
looking to use new and untested technology ?

• Effort (E) – How much effort, in person-hours, is the
customer willing to support and the development
organization prepared to spend over the project duration ?

• Interaction (I) – What is the level of regular interaction
between the development team and the customer ? Daily
meetings ? Weekly ? Monthly ? Or is the customer only
interested in seeing the finished product ?

Each dimension is given an Actual score(A), on a scale between
a Min score(N) and a Max score (X). Choice of the range
between N and X is based on the degree of granularity needed for
a particular dimension.

The Agility Measurement Index (AMI) is formally defined as,

AMI Actual score for each dimension
Maximum possible score for each dimension

We define the Specific Dimension(SD) for each dimension as the
ratio of Actual score and Max score.

Calculations for a hypothetical project is shown in Table 1.

Table 1. Sample calculation of Agility Measurement Index
(AMI) and Specific Dimension(SD)

Dimension N X A SD = A/X

Duration (D) 1 3 1.5 0.5

Risk (R) 1 5 2.5 0.5

Novelty (N) 1 4 1 0.25

Effort (E) 1 6 5 0.83

Interaction (I) 1 10 7 0.7

AMI = (1.5 + 2.5 + 1 + 5 + 7) / (3 + 5 + 4 + 6 + 10)
 = 17 / 28
 = 0.61

4.INTERPRETING THE METRIC
As stated earlier, the AMI is an indicator metric. A low value of
AMI signifies the project is of short duration, low risk, low
novelty, limited effort and with minimal customer interaction.
Readily, the Waterfall model suggests itself as a suitable
approach. However, for higher values of the AMI, the choices
between UP and XP are not that apparent. In such cases, we take
recourse to the Specific Dimension (SD) as calculated in Table 1.
Projects with high AMI and high SD for the dimensions Duration
(D) and Risk(R) are likely candidates for an UP approach,
whereas those with similar AMI and high SD for Novelty(N) and
Interaction(I) are best tackled through XP. Certain paradoxical
situations may arise due to arbitrary choices of the Max score
(X). For example, it is possible to have some very high values in
some fields, but still a low value of AMI. The only guarantee
against such cases is to appreciate that assignment of the scores
in the AMI calculation is best done by experienced analysts and
designers with a clear vision of the project's context – the Max

272

score (X) needs to be decided on the required granularity for the
dimension.

It must be underscored, AMI is not merely a number to blindly
commit a project to a methodology. The metric needs to be
interpreted in the light of a project's background and future
direction. An element of subjectivity is fundamental to
calculating and analyzing AMI results and talent at this task is
honed through experience.

5.CONCLUSION
In this paper, we reflected on the crossroads of different
methodologies every software development enterprise finds itself
in. To alleviate the situation, we have proposed the metric
Agility Measurement Index (AMI) to gauge the level of
adaptability to change required for a project's success, and help
decide on a suitable process thereon. A sample calculation of the
Agility Measurement Index (AMI) along with broad suggestions
on interpreting the metric have also been given. For further
development of this idea, we look to incorporate the Agility
Measurement Index (AMI) within analysis and design artifacts.
We believe the Agility Measurement Index (AMI) can be applied
to notable effect in enterprise software development.

6.ACKNOWLEDGMENTS
I would like to thank Dr. R. van Engelen for assistance
inpreparing this paper. This work is supported in part by the
Department of Energy grant DEFG02-02ER25543.

7.REFERENCES
[1] Beck K. Embracing Change with Extreme Programming.

IEEE Computer, October 1999.

[2] Tilley T. , Cole R. and Becker P. and Eklund P. A Survey
of Formal Concept Analysis Support for Software
Engineering Activities. Proceedings of the First
International Conference on Formal Concept Analysis –
ICFCA'03. February, 2003.

[3] Schach S. Object-oriented & Classical Software
Development, Sixth Edition, McGraw-Hill International
Edition, 2005.

[4] Jacobson I., Booch G., Rumbaugh J. The Unified Software
Development Process. Addison-Wesley, 1999.

[5] Abrahamsson P., Warsta J., Siponen M., Ronkainen J.,
New directions on agile methods: a comparative analysis.
Proceedings of the 25th International Conference on
Software Engineering, Portland, Oregon, 2003.

[6] Newkirk J. Introduction to Agile Process and Extreme
Programming. ICSE'02, May 2002.

[7] Fowler M.. The New Methodology.
http://www.martinfowler.com/articles/newMethodology.html.

[8] DeMacro T. and Boehm B. The Agile Methods Fray. IEEE
Computer, June 2002

[9] Boehm B. Get Ready for Agile Methods, with Care. IEEE
Computer, January 2002.

[10] Beck K. and Boehm B. Agility through Discipline : A
Debate. IEEE Computer, June 2003.

273

	Agility measurement index: A metric for the crossroads of software development methodologies
	Citation

	Proceedings Template - WORD

