
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2006

Crosscutting score: An indicator metric for aspect orientation Crosscutting score: An indicator metric for aspect orientation

Subhajit DATTA
Singapore Management University, subhajitd@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
DATTA, Subhajit. Crosscutting score: An indicator metric for aspect orientation. (2006). ACMSE 2006:
Proceedings of the 44th Annual Southeast Conference, Melbourne, Florida, March 10-12. 204-208.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6011

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6011&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6011&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Crosscutting Score- An Indicator Metric for Aspect
Orientation

Subhajit Datta
Department of Computer Science and

School of Computational Science
Florida State University

Tallahassee, FL 32306, USA
datta@cs.fsu.edu

ABSTRACT
Aspect Oriented Programming (AOP) provides powerful tech-
niques for modeling and implementing enterprise software
systems. To leverage its full potential, AOP needs to be
perceived in the context of existing methodologies such as
Object Oriented Programming (OOP). This paper addresses
an important question for AOP practitioners – how to de-
cide whether a component is best modeled as a class or an
aspect ? Towards that end, we present an indicator metric,
the Crosscutting Score and a method for its calculation and
interpretation. We will illustrate our approach through a
sample calculation.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, process metrics

General Terms
Algorithms, Management, Measurement, Design

Keywords
Aspects, Analysis, Design, Metrics

1. INTRODUCTION
Aspect Oriented Programming (AOP) has had several de-

scriptions; from the prosaic – another programming tech-
nique – to the poetic – a whole new paradigm of software
development. In the fall of 2003, Gregor Kiczales described
the then current state of AOP as “moving from the inven-
tion phase to the innovation phase”[1]. Two years prior,
in an article evocatively titled Through the looking glass,
Grady Booch had identified AOP as one of the most excit-
ing emergent areas, reflecting, “AOP, in a manner similar

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SE’06 March 10-12, 2006, Melbourne, Florida, USA
Copyright 2006 ACM 1-59593-315-8/06/0004 ...$5.00.

to classic patterns and Krutchen’s architectural views, rec-
ognizes that there are abstractions on a plane different than
object-oriented abstractions, which in turn are on a plane
different than our executable systems”[2].

AOP stands poised at an interesting juncture today. Its
power and grace are proven, best minds of the discipline are
delving into it, it is often hailed as the greatest thing to
happen to software engineering since object orientation.

It is often easy to appreciate the elan of a new approach in
the abstract; still practitioners need and seek guidelines to
get them started in the concrete. Under project pressures,
the leeway to bridge the cognitive gap in understanding a
technology and placing it in context is usually absent. Initial
explorations of AOP are often marked by recurrent confu-
sions about when to opt for an AOP solution vis-a-vis an
OOP one.

The basic question often asked is: when to use an aspect
rather than a class ?

This inspires the search for a metric to quantify the pa-
rameters on which such decision can be based. In this paper
we propose a rule of thumb centering around the Crosscut-
ting Score to help best decide what needs to be aspectualized,
i.e. what is to be or not to be an aspect.

In the next sections we discuss the context of AOP in its
connections to existing themes and recent research, followed
by a reflection on the different coordinates of aspect technol-
ogy. Next, the motivations for a thumb rule are introduced.
We then derive the Crosscutting Score metric and illustrate
its use. The Conclusion summarizes ideas presented in this
paper and their relevance to software development.

2. THE CONTEXT OF AOP
AOP gives a novel insight into the eternal issues of analyz-

ing, designing, building and maintaining software systems.
Like all successful innovation, AOP seeks solutions to prob-
lems that have been known to exist, only brought into recent
focus as software engineering grapples with deeper complex-
ity. 1

Many of the problems for which AOP promises better so-
lutions were and are being worked around by existent meth-
ods. Designers and developers are often faced with the co-
nundrum – when would the AOP-OOP combination offer

1As Grady Booch says so feelingly, “This stuff is fundamen-
tally, wickedly hard – and it’s not going to get any better in
my lifetime, and I plan on having a long life” [3].

204

better returns than conventional OOP; is a functionality
best modeled through a class or an aspect ?

This is a fundamental question all users of AOP face; and
there are no ready answers.

AOP focuses on situations that have been in limelight ever
since programming graduated to software engineering. Sep-
aration of concerns (and the criteria thereof) has been of
primary interest from the time understanding various facets
of the problem domain became a nontrivial task. In a pa-
per older than thirty years, (that has aged with amazing
grace) Parnas [4] “discusses modularization as a mechanism
for improving the flexibility and comprehensibility of a sys-
tem while allowing the shortening of its development time.”
He goes on to clarify “ ‘module’ is considered to be a re-
sponsibility assignment...” (Italics ours.) Every software en-
gineering methodology has arrived with covenants of making
systems simpler to understand, easier to extend and faster
to construct. Responsibility assignment remains a key fac-
tor for achieving these goals, to the extent it has been called
a “desert-island skill” [5] – the one critical ability that suc-
cessful software development must harness.

To be able to decide which component does what, the
foremost step is understanding the gamut of activities (ser-
vices, in recent terminology) expected from the system. The
word concern is often taken to connote the different behav-
iors of components that collaboratively deliver the system’s
functionality.

3. RECURRENT MOTIFS AND RELATED
WORK

Modularization of crosscutting concerns is often a theme
first introduced to AOP beginners [6]. This is indeed a
central motif of AOP, and it underscores the links of AOP
to some long-circulating ideas in software engineering. At
a high level of abstraction, crosscutting concerns can be
viewed as behavior such as logging, exception handling, se-
curity, instrumentation etc. that stretch across conventional
distributions of responsibility. In standard (i.e. non-AOP)
OO implementations, such behavior is achieved by special-
ized classes, whose methods are invoked as required. If at
ten different locations in a body of code logging is needed,
there will be ten statements where some log method of a
Logger class is called. AOP provides a mechanism to encap-
sulate such dispersed functionality into modules. Logging
et al. are not the only supposedly peripheral concerns AOP
handles. Aspects can be used to enforce a Design by Con-
tract style of programming, a number of OO design patterns
also have crosscutting structure and can be implemented in a
modular and reusable way using aspects [1], [7]. In addition,
there is scope for utilizing aspects to deal with the business
rules – often the most capricious and complex parameters
of a system.

Lopes highlights this positioning of aspects vis-a-vis ob-
jects as “Aspects are software concerns that affect what hap-
pens in the Objects but that are more concise, intelligible
and manageable when written as separate chapters of the
imaginary book that describes the application” [12].

Several recent studies have explored the feasibility of AOP
solutions in different locales and levels of software develop-
ment. Zhang and Jacobsen present middleware refactoring
techniques using aspects [13]. Use of aspects in specific ap-
plication areas are highlighted in [15], [16]. Design Structure

Matrix (DSM) and Net Options Value (NOV) approaches
are used in [14] to analyze the modularity of aspect oriented
designs.

Although these papers provide valuable insight into the
applicability of AOP, we believe a basic confusion contin-
ues to assail practitioners, when and why a departure from
conventional OOP to AOP will be beneficial. The following
sections introduce a mechanism to clarify such concerns.

4. ASPECT ORIENTATION – DIFFERENT
COORDINATES

As an evolving technology, we may perceive Aspects in
the following lights.

Aspects : Ideation – As an idea aspects are precisely
what the word “aspect” means, a way of looking at things or
how something appears when observed. In software contexts
that translates to looking at the functionality of a system
for common behavior that can be isolated. A method or a
function of programming languages is one way of aspectu-
alizing, it embodies behavior that is encapsulated and can
be invoked by a method call ; thus localizing the code that
implements the behavior.

Aspects : Incarnation – Formalizing ways of discover-
ing, understanding and using aspects as a software develop-
ment artifact, incarnates aspects into AOP. The acronym
AOSD (Aspect Oriented Software Development) is some-
what misleading; there seems a hint aspect orientation is
a whole new methodology of software development, to be
preferred over existing techniques. AOP serves to comple-
ment other models of software development – since OOP is
the dominant paradigm of the day, most AOP tool exten-
sions are OO tools [1],[2]. An aspect needs not necessarily
be associated with code, aspectual requirements [8] or cross-
cutting requirements [9] represent approaches for identifying
concerns from the requirement gathering phase. Jacobson
presents interesting ideas on how use cases and aspects can
“seamlessly” work together [10].

Aspects : Implementation – Aspects are implemented
through tools and frameworks which provide the hooks by
which aspect technology is attached to application code, and
ensures the combination works as a cohesive unit. AspectJ
has been the oldest of such tools, which recently joined hand
with another implementation, AspectWerkz to align their
features [11].

The procedure presented in this paper aids the incarnation
and implementation of aspects. Figure 1 shows how our
thumb rule positions amongst these perspectives.

5. A THUMB RULE - IMMEDIATE MOTI-
VATIONS

One of the earliest lessons one learns from AOP is that it is
best to identify aspects early. The weaving facilities offered
in aspect implementations sometimes give an impression –
mostly to starters – that AOP is a mechanism for adding
functionality that was not envisaged a priori, or to accom-
modate later needs, such as trace logging or performance
monitoring. AOP offers rich set of features for affecting pro-
gram flow: “Pointcuts and advice let you affect the dynamic
execution of a program; introduction allows aspects to mod-
ify the static structure of a program” [6]. However, arbitrary
use of these abilities has the danger of making software, in
Brooksean terms, more invisible and unvisualizable.

205

Figure 1: Different views of aspects

Rashid [8] advocates an approach for separating the spec-
ification of aspectual vs. non-aspectual requirements. [9]
argues the problem world “is often the most appropriate
source for early identification of concerns but not necessar-
ily of aspects.” [10] suggests strong correlation between use
case extensions and aspects, seeing an equivalence between
extension points and join points. These outlooks underscore
thinking in aspect terms early in the development life cycle.

As noted earlier, responsibility assignment is of central
importance in software design. One established canon of
OOAD is to have each class fulfill one primary responsibility.
Sound design, object oriented or classical, draws on some
basic principles. Cohesion and Coupling – the yin and yang
of software engineering – are some such; each class doing one
principal task promotes a design where components function
in relative independence, yet generating enough synergy to
deliver the user’s requirements.

In our discussion, we use component to mean an unit of
code that is in charge of a chief activity; other ancillary tasks
expected from it are deemed secondary. We seek to have a
structured way of deciding what best models a component,
a class or an aspect, based on the theme of responsibility
delegation.

During analysis, techniques such as noun-analysis, CRC
cards help identify components that will be given specific re-
sponsibilities. These are yet at a very high level, sometimes
referred to as coarse-grained, to be refined as development
proceeds. But identifying these components is a vital exer-
cise, marking the interface between analysis and design.

6. CROSSCUTTING SCORE
Let Θ(n) = (C1, C2, C3, ..., Cm, ..., Cn) represent the set

of n components for a system. To each component Cm,
(1 ≤ m ≤ n), we attach the following properties. A property
is a set of zero, one or more components.

• Core - α(m)

• Non-core - β(m)

• Adjunct - γ(m)

α(m) represents the set of component(s) required to fulfill
the primary responsibility of the component Cm. As already
noted, sound design suggest the component itself should be
in charge of its main function. Thus, α(m) = {Cm}.

β(m) represents the set of component(s) required to fulfill
the secondary responsibilities of the component Cm. Such
tasks may include utilities for accessing a database, date or
currency calculations, logging, exception handling etc.

γ(m) represents the component(s) that guide any condi-
tional behavior of the component Cm. For a component
which calculates interest rates for bank customers with the
proviso that rates may vary according to a customer type,
an Adjunct would be the set of components that determine
a customer’s type.

We define,
Ω(m) = β(m) ∪ γ(m)
cs(m) = Crosscutting Score of Cm.

Given Θ(n), cs(m) is computed as follows,

cs(m) =

nX
k=1

i(m, k)

where,

i(m, k) =

1 if α(m) ∩ (β(k) ∪ γ(k)) 6= 0
0 otherwise

The value of cs(m) for a component, relative to
those of other components, indicates whether it is a
candidate for an aspect.

We now examine the implications of this statement in an
example scenario.

7. PUTTING IT TO WORK
We consider an internet banking application. Our system

allows customers to view their transaction details online,
transfer funds between accounts, and print statements in ei-
ther spreadsheet or text format. Customers are classified
into two types, silver and gold depending on business rules
which the bank’s management revises from time to time.
Some of the application’s features are exclusive to gold cus-
tomers; the user interface needs to vary accordingly.

Table 1 shows the components identified with their pri-
mary responsibilities.

It may noted the core functionality of a component can
be among the non-core ones of another component. This is
most apparent in cases such as Logging and Exception han-
dling. But more obscure interaction occurs between User
Interface/Transaction Handling with Customer Type Identi-
fication; either of the former has conditional behavior based
on the functionality of the latter .

Table 2 calculates α(m), β(m), γ(m), Ω(m) and cs(m).
(Φ denotes a set with zero elements.) As an example, for C3,
α(3) = C3, β(3) = C5, C6, C7, C12, C13, since Currency cal-
culation requires Logging, Instrumentation, Exception han-
dling, Logging level determination (it is useful to control the
granularity of detail that must be logged; i.e. a mechanism is
needed to turn “on” or “off” respective logging levels), Per-
formance report generation (while tuning the system at the
time of delivery, performance reports based on specific crite-
ria helps discover bottlenecks faster). γ(3) = Φ, as Currency
Calculation has no conditional behavior based on customer

206

Table 2: Calculation of Crosscutting Score
Cm α(m) β(m) γ(m) Ω(m) cs(m)

C1 C1 C5, C6, C7, C8, C9, C10, C12, C13 C10 C5, C6, C7, C8, C9, C10, C12, C13 0
C2 C2 C5, C6, C7, C10, C11, C12, C13 C10 C5, C6, C7, C10, C11, C12, C13 0
C3 C3 C5, C6, C7, C12, C13 Φ C5, C6, C7, C12, C13 0
C4 C4 C7, C11 Φ C7, C11 0
C5 C5 C7 C12 C7, C12 7
C6 C6 C7 C13 C7, C13 6
C7 C7 C5, C12 Φ C5, C12 12
C8 C8 C5, C6, C7, C12, C13 Φ C5, C6, C7, C12, C13 1
C9 C9 C7 C10 C7, C10 1
C10 C10 C4, C5, C6, C7, C11, C12 Φ C4, C5, C6, C7, C11, C12 3
C11 C11 C5, C6, C7, C12, C13 Φ C5, C6, C7, C12, C13 3
C12 C12 C7 Φ C7 8
C13 C13 C7 Φ C7 6

Table 1: Components and the primary responsibili-
ties

Component Primary Responsibility

C1 User interface
C2 Transaction handling
C3 Currency calculation
C4 Data storage
C5 Logging
C6 Instrumentation
C7 Exception handling
C8 User input verification
C9 Print formatting
C10 Customer type identification
C11 Data access
C12 Logging level determination
C13 Performance report generation

type. Hence Ω(3) = β(m)∪γ(m) = C5, C6, C7, C12, C13. Ap-
plying the algorithm given earlier, cs(3) = 0. (Intuitively,
currency calculation has a localized concern, having no in-
teraction with other components.)

Similarly, for C6, α(6) = C3, β(6) = C7, γ(6) = C13, since
instrumentation is guided by the criteria of performance re-
port generation, conditionally measuring some parameters
over others. Ω(6) = C7, C13 and cs(6) = 6. Crosscutting
Score of 6 for the component indicates its core functionality
is being used across some other components – intuitively, in-
strumentation is needed for all components with nontrivial
processing. This value of cs(m) makes it a suitable to be
modeled as an aspect rather than a class.

We plot Cm vs. cs(m) in Figure 2. This graph serves
as the basis for deciding whether a component may be a
class or an aspect. The components with higher cs(m) val-
ues have primary behavior that is crosscutting – AOP offers
great benefits if they are aspectualized. The ones with lower
values deliver relatively isolated functionality, classes suffice
their implementation.

But a key question remains, what is the threshold between
high and low values of cs(m) ?

Figure 2: Components vs. Crosscutting Score

8. INTERPRETING THE RESULTS
Software design is subjective – we draw upon experience

and intuition to reach decisions. Calculation and survey of
the cs(m) values streamline the process to a certain extent,
helping designers select one option over another. In our
case, C7, C12, C5 , C6 and C13 are clearly aspectual. Be-
tween C10 and C11, the former encapsulates business logic
while the latter, data access mechanisms. Business logic is
usually prone to change and future enhancements may need
wider application of business rules; activities for accessing
databases (opening/closing connections, connection pooling
etc.) are relatively less volatile. It is reasonable to model
C10 as an aspect and C11 as a class, even though they have
the same Crosscutting Score value. C1, C2, C3, C4, C8,
C9, definitely on the lower side of cs(m) range, are clearly
classes.

Thus, there is no “cutoff” cs(m) value to segregate compo-
nents into classes and aspects. While some components will

207

be clear aspirants one way or the other, for the borderline
ones, the designer’s judgment comes into play.

A few subtleties are worth pointing out. Components
implementing logging, exception handling, database access
are easy to pick as potential aspects – their functionality
stretches across the application – the cs(m) values calcu-
lated above also support such observations. However it is
less obvious Customer type identification may also be as-
pectualized. The component decides whether a customer is
silver or gold (or even some other metal of commensurate
nobility, should there be more categories later). Calculating
the cs(m) helps in discovering such covert aspects.

As emphasized earlier, our algorithm is a judgment aid
for designers. The ranking of the components based on re-
spective cs(m) is of lesser importance than recognizing the
relative distribution of the Crosscutting Scores. The cs(m)
is one pointer in reaching an overall expedient design involv-
ing classes and aspects.

The thumb rule is summarized as,

• Identify components based on their primary (core) func-
tionality.

• Calculate Crosscutting Score cs(m) for each compo-
nent.

• Relatively higher cs(m) value signifies crosscutting func-
tionality – the corresponding component is a strong
aspirant for an aspect.

• Based on cs(m) value and other design desiderata,
model each component as an aspect or a class.

The choice of the phrase thumb rule has been deliberate;
this is a heauristic rather than a formula. The software engi-
neering community continues its quest for sure-shot recipes
of design nirvana.

9. CONCLUSION
AOP is not a revolutionary doctrine. It is one more step

in the evolutionary quest for simple and elegant foundations
to build complex software. Effective use of AOP happens
when it is successfully integrated, gelled as it is sometimes
colorfully called, into extant tools and techniques.

This paper introduces an approach for deciding whether
a piece of functionality is best abstracted in an aspect or
a class. The thumb rule centering around the Crosscutting
Score will assist the design of solutions best suited to AOP’s
reach and context.

10. ACKNOWLEDGMENTS
I would like to thank Dr. R. van Engelen for assistance

in preparing this paper. This work is supported in part by
the Department of Energy grant DEFG02-02ER25543.

11. REFERENCES
[1] G. Kiczales. Interview with Gregor Kiczales. Topic :

Aspect Oriented Programming (AOP).
www.theserverside.com, July 2003.

[2] G. Booch. Through the Looking Glass.
www.sdmagazine.com, July 2001

[3] G. Booch. The Complexity of Programming Models.
AOSD ’05, Chicago, USA, March 2005.

[4] D.L. Parnas. On the Criteria To Be Used in
Decomposing Systems into Modules. Communications
of the ACM, December 1972, Volume 15, Number 12.

[5] C. Larman. Applying UML and Patterns : An
Introduction to OOA/D and Iterative Development,
3rd Edition. Prentice Hall, 2005.

[6] N. Lesiecki. Improve modularity with aspect-oriented
programming. IBM developerWorks, January 2002.

[7] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza,
C. Lucena, A. von Staa. Modularizing Design Patterns
with Aspects: A Quantitative Study. AOSD ’05,
Chicago, USA, March 2005.

[8] A. Rashid, A. Moreira, J. Araujo. Modularization and
Composition of Aspectual Requirements. AOSD ’03,
Boston, USA, 2003.

[9] B. Nuseibeh. Crosscutting Requirements. AOSD’04,
Lancaster, UK, March 2004.

[10] I. Jacobson. Use Cases and Aspects Working
Seamlessly Together. Journal of Object Technology,
vol. 2, no. 4, July-August 2003.

[11] D. Sosnoski. Classworking toolkit: Putting aspects to
werk. IBM developerWorks, March 8, 2005.

[12] C.V Lopes. Aspect-Oriented Programming : An
Historical Perspective. ISR Technical Report
UCI-ISR-02-5, www.isr.uci.edu/tech-reprt.html,
December, 2002.

[13] C. Zhang, H. Jacobsen. Refactoring Middleware with
Aspects. IEEE Transactions On Parallel and
Distributed Systems, Vol. 14, No. 11, November 2003.

[14] C.V Lopes, S.K. Bajracharya. An Analysis of
Modularity In Aspect Oriented Design, AOSD ’05,
Chicago, USA, March 2005.

[15] E. Putrycz, G. Bernard. Using Aspect Oriented
Programming to Build a Portable Load Balancing
Service. Proc. 16th Int’l Conf. Distributed Computing
Systems Workshops, 2002.

[16] M. Kersten, C. Murphy. Atlas: A Case Study in
Building a Web-based Learning Environment Using
Aspect-Oriented Programming. Proc. ACM Conf.
Object-Oriented Programming, Systems, Languages,
and applications, 1999.

208

	Crosscutting score: An indicator metric for aspect orientation
	Citation

	tmp.1624514421.pdf.Yc3hv

