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Abstract. Even today, software projects still suf fer from delays and budget 
overspending. The causes for this problem are compounded when the project 
team is distributed across different locations and generally attributed to the de-
creasing ability to communicate well (due to cultural, linguistic, and physical 
distance). Many projects, especially those with off-shoring component, consist 
of small iterations with changes, deletions and additions, yet there is no formal 
model of the flow of iterations available. A number of commercially available 
project prediction tools for projects as a whole exist, but the model adaptation 
process by iteration, if it exists, is unclear. Furthermore, no project data is avail-
able publicly to train on and understand the iterative process. In this work, we 
discuss parameters and formulas that are well founded in the literature and 
demonstrate their use within a simulation tool. Project timeline prediction capa-
bility is demonstrated on various scenarios of change requests. On a real-world 
example, we show that iteration-based data collection is necessary to train both 
the parameters and formulas to accurately model the software engineering proc-
ess to gain a full understanding of complexities in software engineering process.    

1   Introduction and Background 

Software projects often suffer from delays and budget overspending. With the addi-
tion of off-shoring in the software industry, the complexities of such projects have 
increased. While it is still very difficult to even understand the mechanics of regular 
projects, taking the next step in complexity to distributed teams, decreases the ability 
to trace th e effects of change requests on the course of the pro ject. Gaining under-
standing of and control over the timeline and consequently the costs of a pro ject is 
often accomplished through experience of the project manager. However, without that 
experience, no comprehensive mathematical model of how the timeline is affected 
throughout iterations is available to replace th at experience. Simulators of such a 
model would provide a deeper understanding of the parameters and how they drive a 
project.  
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For the case of total effort estimation, there are a number of function point estima-
tion tools on the market such as Charismatek, Softwaremetrics, TotalMetrics [29], 
EstimatorPal. But as far as the authors can tell, none of these open their parameters to 
the user or adapt these by iterations to the project itself. This can be problematic as 
depicted in Table 1. Despite the large number of studies on this subject, it can be seen 
how models of such projects can vary. While the trends (formula types) are consistent 
across studies, the parameters vary greatly, without providing enough guidelines in 
how they apply to a specific project.  

In order to deal with this adaptation, one has to look at iterations to learn the pa-
rameters from the project. Drappa et al. [9] developed a simulator to train project 
managers and give them hands on experience. The project manager interacts with the 
simulator as s/he would with a team of software developers. The project manager is 
required to have a set of theoretical skills and uses the tool to gain “practical” experi-
ence. This simulator works with function points, that the project manager enters into 
the tool along with the number of workers used and a set of directions. The simulator 
will then advance a set amount of time and reflect the status of the project. At each 
step the project manager continues making decisions to navigate through to the end. 
Thus, this work takes into account iterations within a project and decision making of 
the project manager at each stage to change the course of the project. However, while 
Drappa’s work deals with the interaction between project manager decisions and the 
workers, our work additionally deals with effects of change requests and opens both 
the parameters and formulas for adaptation. Both systems are based on similar rules 
of thumb [16]. Jones developed these rules of thumb that are widely quoted and used 
in the field of software engineering. However, it is still not proven that the same for-
mulae hold for iterations within a p roject. For now, the simulator uses the rules of 
thumb that define the parameters needed for data collection but with an understanding 
that the formula may need to be adapted as data is collected.  

Table 1. Table taken from Fairley [10] – demonstrating the large variety of models describing 
the relationship between development time and lines of code and time elapsed vs. man months  

Effort Equation Schedule Equation Reference 

PM = 5.2 (KDSI)0.91 TDEV = 2.47 (PM) 0.35 Walston [26] 

PM = 4.9 (KDSI)0.98 TDEV = 3.04 (PM) 0.36 Nelson [19] 

PM = 1.5 (KDSI)1.02 TDEV = 4.38 (PM) 0.25 Freburger et al[12] 

PM = 2.4 (KDSI)1.05 TDEV = 2.50 (PM) 0.38 Boehm [6] 

PM = 3.0 (KDSI)1.12 TDEV = 2.50 (PM) 0.35 Boehm [6] 

PM = 3.6 (KDSI)1.20 TDEV = 2.50 (PM) 0.32 Boehm [6] 

PM = 1.0 (KDSI)1.40  Jones [17] 

PM = 0.7 (KDSI)1.50  Freburger et al[12]  

PM = 28 (KDSI)1.83  Schneider [24] 
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In order to look at how change affects project timelines, it is necessary to under-
stand the relationships between artifacts. Cleland-Huang et al. [14] worked on a 
framework to capture traceability in artifacts in order to propagate changes across the 
project correctly. The framework contains three parts: event server, requirements man-
ager and the subscriber manager that combine to partially automate the process and 
support the workers in maintaining correct traceability. Our work builds on the  
subscription model for artifacts that she proposes in order to establish links between 
artifacts and propagate changes correctly. The traceability is important in order to cor-
rectly propagate the effects of change requests to all affected artifacts in the project.  

Finally, the degree of change in indirectly related artifacts is important. To this end, 
Datta [7][8] suggests three metrics: Mutation Index, Component Set, and Dependency 
index. Mutation Index indicates the level of change a requirement has undergone across 
iterations; Component Set specifies all the components a particular requirement needs 
for its fulfillment; and Dependency Index reflects on the extent to which a p articular 
requirement's implementation depends on the implementation of other requirements. 
These three metrics help evaluate the effects of requirement changes for a software  
system. Although our work groups function points according to use cases and not re-
quirements, under reasonable assumptions, the Dependency Index is applicable in our 
scenario, and is referred to in this paper as . Mechanisms for extracting this metric 
value automatically from code is under development by Datta.  

One of the difficulties in working on simulation of projects is t he dearth of rich, 
publicly available training data. A number of dat abases are available in the public 
market. The main repository is available through the International Software Bench-
marking Standard Group (ISBSG) [28]. This non-profit organization had put together 
a standard for benchmarking software development in three categories: software en-
hancements, software implementations, and software maintenance. The information 
enclosed in the repository is divided into a few types of data like: Rating, Sizing, Ef-
fort, Productivity, Schedule and others. However, this repository does not provide 
information on the changes of parameters as a function of time. The data is not given 
by iteration or phases.   

This work argues towards the collection of discussed parameters by iteration and 
the importance of adapting the simulator to the specific project by allowing the user 
to adjust the parameters. Currently, available databases are not yet sufficient to train 
an iteration-based simulator, nor do they collect sufficient data to appropriately ana-
lyze the effect of addition, change and deletion on each iteration or the project as a 
whole. Yet, iterations and adaptations to v ery project-specific data are absolutely 
essential when outsourcing is involved in order to reliably estimate timelines. A 
more accurate timeline prediction for distributed projects will lead to fewer unpre-
dictable events and will support management decisions by giving more specific and 
precise estimates. The rest of this paper will describe our approach to combining a 
number of formulas and parameters into a simulator that can then be used to simulate 
project timelines and collect data in order to adapt both functions and parameters 
built into the simulator. We demonstrate reasonable functionality of the current 
simulator based on well-known facts about projects and show that adaptation is abso-
lutely necessary based on a real-world example, therefore making the call for data 
collection based on iteration.  
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Section 2 will discuss the building blocks of the approach used in this paper.  
Section 3 will discuss trends and parameters within software engineering projects that 
are used within the simulator. Section 4 will discuss the implementation of the simu-
lator and validate the basic simulator functionality by looking at sequence of opera-
tions whose properties transcendent project-specific characteristics. Section 5 will 
conclude by looking at an example project, demonstrating the clear need and feasibil-
ity for both parameter and formula adaptation for any simulation tool on an iteration 
basis. Section 6 concludes by listing a number of enhancements necessary to expand 
the model under future work and propose the availability of a web-based tool for data 
collection and simulation and online adaptation.  

2    Foundations  

The theoretical foundations of this work include the methodology of software project 
management, Function Point estimation of project size based on Use Cases and 
Traceability usage in projects. These three topics are described in more detail before 
Section 3 will clarify their usage in this work.  

2.1   Methodology 

For the purpose of this work we use the terminology of the Rational Unified Process 
(RUP) because it presents the collection of best practices from industry and is readily 
reducible to other methods [15]. RUP defines the artifacts that the simulator produces 
to emulate a software project timeline. Artifacts are either final or intermediate work 
products that are produced and used during a project and generally include documen-
tation and software. They are used to capture and convey project information and re-
sults. The simulator works with the major artifacts listed below:  

• Use Case 
Use cases capture the functional requirements of a project. They are usually based on 
a number of requirements to come together in order to f ormulate a goal that an ac-
tor/specific user of the system will achieve, such as “withdraw money”. A Use Case 
contains both functional as well as non-functional requirements. The Use Case further 
is the primary document used by the implementation team to produce the Class dia-
gram, the implementation code and the test case.  
• Software Requirement Specification 
The Software Requirement Specification (SRS) is the document that contains all the 
functional and non-functional requirements of the system as a whole. The document 
refers to Use Case d ocumentation for the functional details but retains the overall in-
formation. While functional requirements are mainly covered through the use cases, 
non-functional requirements are usually found in the SRS and can be categorized as 
usability-, reliability, performance, and substitutability-requirements, design con-
straints, platform environment and compatibility issues, or applicable standards. In 
addition, requirements that specify need of compliance with any legal and regulatory 
requirements may be included. Non-functional requirements that apply to an individ-
ual use case are captured within the properties of that use case. 
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• Class Diagram 
The Class Diagram is a document which is based on the entirety of the project and 
therefore depends on all the Use Cases. A change to any Use Case can affect a change 
in the class diagram.  
• Code 
The Code is designed to implement a Use Case that describes its functionality. For the 
purpose of this paper the code may belong to several Use Cases as there may be some 
degree of overlap between Use Cases through common requirements. Therefore, 
change in one Use Case may affect different code pieces to varying degrees.  
• Test Case 
Test Cases are des igned to tes t the code for a particular Use Case. A change in the 
Use Case may effect both Test Case and Code.   
• Test Code 
Test Code implements the test case.  

2.2   Function Points 

Function Points (FP) is a metric for measuring the functional size of a software sys-
tem. The usage of function points is well known and a tested sizing technique in soft-
ware engineering [21][18][25][11][13]. FPs have been used since 1979 when Allan 
Albrecht of IBM [3][4] introduced them. There are oth er Functional Assessment 
techniques, mainly Bang, BMA, CASE Size, Entity, IE, Mark II FPA, MGM, and 
Usability. According to McDonell, Table 2 summarizes that the most tested and gen-
erally used functional assessment technique is Function Point Analysis. Mark II FP  
expects 19 adjustment factors instead of 14 on the original FPA method, making the 
adjustment factor more difficult to as ses in a s tep in the process where usually the 
user or PM has little information on the system. Boehm [6] developed and redesigned 
later an algorithmic cost model called (COCOMO). It provides formulas for the esti-
mation of programmer-month and development schedule based on the estimated 
number of Delivered Source Instructions (DSI). COCOMO model is based on LOC, 
this metric is harder to obtain in early stages of the product life cycle making FPA the 
only tested and validated and more reasonable choice.   

Table 2. Comparison of functional assessment and estimation methods (taken directly from 
McDonell [19]) 

Method Automation Comprehensive Objectivity Specification Testing Validity 
Bang No Yes No Yes Yes No 
BMA Yes Yes Yes Yes Yes No 
CAES Yes Yes Yes Yes Yes No 
Entity Yes Yes Yes Yes No No 
FPA No Yes No No Yes Yes 
IE No Yes No No Yes Yes 

Mark II 
FPA 

No Yes No Yes Yes Yes 

MGM No Yes No No No No 
Usability No No No Yes No No 
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In this work we focus on the existing relationship between Use Cases, Function 
Points and duration of code implementation that has been studied by a variety of re-
searchers in the past. While this is a controversial approach [1] [2], it has been shown 
to work in real-world industrial applications for certain types of projects [10] [5]. The 
following is a brief presentation of Function Points and the approach chosen for the 
simulation model in this work because it is empirically shown to work to a reasonable 
degree according among others also from the International Software Benchmarking 
Standards Group.   

Function Points can be calculated in two parts. The first part relates to the entire 
project with a h andful of parameters, such as: Data co mmunications, Distributed 
data/processing, performance objectives, tight configuration, high transaction rate, on-
line inquiry data entry, end user efficiency, on-line update, complex processing, code 
reusability, conversion/installation ease, o perational ease, multiple site in stallation, 
facilitate change. The second number is calculated at the Use Case level by looking at 
the number of inputs outputs, files accessed, inquiries, and number of Interfaces.  This 
model is based on Albrecht [4] and is more precise in estimation than the previous 
model of unadjusted function points.  

The measurement for a Use Case results from a formula which combines the over-
all and the specific values into a f inal FP value. This final number relates to time 
spent on their implementation through a fun ction that has been established [30] t o 
have a non-linear relationship similar to what is approximated by Figure 1. The rela-
tion of function points versus effort can be estimated automatically after a f ew itera-
tions, assuming that the workers are stable.  
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Fig. 1. Assumed relationship function between Function Points and Time spent on coding 

2.3   Traceability 

Traceability [27] is the process of tracking relationships between artifacts. It is used 
in software engineering for verification, cost reduction, accountability, and change 
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management. Tracking the effect of change requests, such as additions, changes or 
deletions of use ca ses on other artifacts are tracked in this manner. Its importance 
can be appreciated by this statement: “The US Department of Defense spends about 
4 percent of its IT costs on traceability.” [23][22]. A model to simulate project data, 
like artifacts, meeting minutes, meeting agendas, stakeholders, assumes certain re-
quired traceability links for artifacts involved in the project in order to propagate the 
effects of change correctly. Figure 2 below shows how change can be traced through 
various artifacts in a project.  

 

 

Fig. 2. Simplistic example of how change affects the software life cycle 

This project simulator will process specific input like use cases and change re-
quests through traceability models and assumptions into a static project spreadsheet 
that will capture specific changes in artifacts and all its links. In summary, traceability 
allows us to see how artifacts are interrelated within a project. This allows us to apply 
the rules to the project given the collected data. 

3   Implementation 

Each of the components described above covers aspects of project description that in 
combination are able to support the simulation model. In order to take the complex 
interrelationships into account that result in the model of iterations, this section de-
scribes a combination of formulas and parameters that make up the simulator.  

3.1   Model 

The Model presented in the previous section using the RUP terminology is now de-
scribed in more detail with further assumptions and parameters and outlining the 
interrelationships between the artifacts.  

 
• Software Requirement Specification 
The Software Requirement Specification (SRS) is the document that describes the sys-
tem as a whole and refers to the Use Cases for details of the functional specifications in 
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a modularized fashion. Change requests to Use Cases may affect the SRS. The time to 
write an SRS is related to the number of Use Cases and non-functional requirements of 
the system.  
• Use Cases 
For the purpose of this work, change requests act on Use Cases directly. More than 
one change request is required if more than one Use Case documentation is affected 
by the change. This does not hold true for code and class diagram. There is a degree 
of interdependence between class diagrams across Use Cases. A change request to a 
Use Case at the documentation level does affect code of other Use Cases to some 
degree. We model this interdependence with α as indicated by Figure 3. For the pur-
pose of this work, we can assume that there is some degree of overlap between Use 
Cases regarding the Classes/Objects and the corresponding code sections that are 
generated. For example, imagine a system with two use cases. The first one describes 
how books are entered with title only, the second one how to search for them by title. 
Now, the first use case, for entering new books, receives a change request to add the 
author field. After those changes are made, the second use case receives the change 
request to be able to search by author as well. This change is done much faster than 
the first change since the class diagram has already been updated and the only 
change that is needed is at the user interface level. This difference in effort required 
due to the overlap is denoted by α in Figure 3 below. The overlap or interdependency 
of requirements that make up each of the Use Cases results in various degrees of 
interdependence between the Use Cases and is one of the parameters of the simulator 
that can currently be v aried. However, it represents a value that can be extracted 
from the software and is currently studied by one of the authors, S. Datta.  

 
Fig. 3. Simplified view of interrelationships between artifacts 

• Class Diagram 
It is through the use cases that changes in the Class Diagram are effected and propa-
gated through to the Code. 
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• Code 
A change in the Use Case is measured in function points and effects a change in the 
code with the amount of effort related to the FP. Code can be r eused between Use 
Cases whish is related through  as described above. Therefore, change in one Use 
Case may affect different code pieces to varying degrees. Changes directly acting on 
code, such as refactoring of code, are not currently taken into account in this simulator.  
• Test Case 
A change in the Use Case effects a change in the test case directly.  
• Test Code 
Test Code implements the test case and is affected directly by a change in the Test 
Case.  

There are other artifacts that belong to the Rational process which should be taken 
into account in a later v ersion of this simulator. These are, among others the metrics 
report, the configuration management plan, the project plan, test management plan, 
the risk management plan, the risk list, the user manual and the installation manual. 
We currently leave their more detailed implementation for the future work section. 
Section 3.2 describes how it is possible to lump the entire lines of written documenta-
tion into an overall effort size that relates directly to function points as well.  

In addition to taking into account the interdependence between artifacts that add to 
the level of co mplexity of c hanges, we model the penalty factor called “Level of 
change”. It relates  to the time difference between modifications of an artifact under 
the assumption that it beco mes increasingly difficult to change older artifacts.  For 
example, if a use case is inserted in iteration 3 and modified in iteration 7 then the 
level of change is 7-3=4.  According to the level of change, x, the penalty is calcu-
lated by (1-(1/x^.5)) in the current simulator. This function is based on heuristics of 
managers, a verification of function and parameter is possibly only through iteration-
based data collection.     

3.2   Documentation Time 

A number of formulas and parameters derived from various sources are combined to 
formulate the duration of tasks within the project plan. In this section, the formulas 
are listed, the parameters identified and the default values stated. The equation for the 
total number of pages produced in a project is related to function points as defined by 
Caper Jones [16] and given by Equation 1, where AFP stands for the adjusted func-
tion points and TNP stands for Total Document Pages in Project. The parameter p is a 
value defined as 1.15 Jones and is the default value used by the simulator as specified 
in Table 2.  

TNP = pAFP  (1) 

The following documents are currently part of the simulator: Software Requirements 
Specifications, Use Case, and Test case documents. All other documents are lumped 
into a single set, co ntaining metrics report, the configuration management plan, the 
test management plan, the risk management plan, the risk list, the user manual and the 
installation manual. Equation 2 shows how these components make up the total num-
ber of pages TNP from Equation 1, where uc, srs, tc, and o denote the percentage of 
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added pages to the total number TNP. This relationship has to be collected from data. 
The assumptions made by the simulator are stated in Table 2 but can be adapted after 
several iterations of the project to reflect the specific project more accurately. 

TNP = uc·TNP + srs·TNP + tc·TNP + o·TNP (2) 

The total number of pages is converted into time by using yet another equation that 
relates writing time to page numbers [31]  as  defined by Equation 3, where WPP is 
words per page and WPM stands for Words per Minute.  

Documentation Minutes = TNP * WPP / WPM (3)

Though these formulas are research based, it seems unlikely that pages written for 
different documents can be written with equal speed. Therefore, this data should also 
be collected. The true relationship would have to be given through the data. Table 3 
depicts the default values that are used in the current system that can be adapted after 
a few iterations. Similarly, Equation 2 could be rewritten differently not in terms of 
Function Points but rather in terms of number of Use Cases as well as function points. 
One can assume that the size of a Use Case is a relatively constant number UC_base 
since Use Cases have a li mited size. The SRS also grows linearly with respect to  
the number of Use Cases added ( SRS_base + n · SRS_add ). Parts of the Use Case 
(activity diagram) and the Test Case (test scenarios dependent on act ivity diagram) 
depend heavily on the function points in terms of time to write those pages, but not 
necessarily in terms of number of pages. Therefore, none of these components weigh 
heavily in the polynomial. Most of the documenting pages therefore must be spent on 
the other documents that were lumped into “other” (such as project plan, risk man-
agement plan, test plan, etc.) or the formula seems wrong. Equation 4 depicts the form 
the resulting formula would take, which would need to be verified with real data.  

Time = n · FPA + qFPA  (4)

Table 3. List of variables needed by simulator and their initial values 

Documentation Variable Value 
 Use Case + Test Case + SRS   (uc + srs + tc)   n = .76 
 Exponent  p   1.15 [16] 
 Words per page  WPP  250 [31] 
 Words per Minute  WPM  19 [32] 

3.3   Coding Time 

As described in Section 2.1, coding time has a determinable relationship to function 
points usually depicted as a polynomial curve as defined by Equation 5, where the 
number of man months increases at a faster rate than the number of function points 
but is linear for sm aller function point levels. It is also well-known that the slope 
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depends largely on the team and the type of project. Therefore, the user is asked to 
supply this variable, q in Equation 5, with each iteration. It is necessary to record this 
variable for each iteration during data collection in order to see the detailed effects of 
changes in a particular project. The non-linearity effect is not visible for small Use 
Cases and change requests.  

SLOC = AFP^q; q = 0.6 (5)

Effort is then calculated based on rate of coding (LOCperday) and hours worked per 
day (hrsperday) as described by Equation 6.  

Hours = ( SLOC / LOCperDay ) · hrsperday (6)

These two formulas cover coding, but not really design. Class and database diagram 
are inherently related to function points as is the user interface. It is not unreasonable to 
assume a polynomial function relates Function Points to design effort in a similar way 
as it does to coding effort. This function can be approximated with a linear function for 
medium sized (3-6 months) projects, perhaps with a different constant that will have to 
be collected as well from the project. Table 4 summarizes the variables and their origi-
nal default values that are consequently adapted after each iteration. 

Table 4. List of variables relating design 

Artifact  Variable Formula 

Source Code  Hrsperday / LOCper-
Day  = 8/100 

Source Code  Q  = Entered by user; default .6 
Class/Database Dia-
gram  q'  = AFP^q' ; q' = q 

GUI Interface  q''  = AFP^q'' ; q'' = q 
 Source Code   SLOC = AFP^q  q = 0.6 
Test Code  SLOTC  = c ·SLOC, c=1 

3.4   Assumptions 

The model described above specifies key documents of the project management proc-
ess. Similar models have to be developed for other documents. In addition, communi-
cation and meeting time becomes a major component as a function of both project 
size and distance between team members, becoming potentially non-linear. These 
relationships and their changes need to be captured for each iteration. The current 
simulator assumes one worker, a f irst step before expanding the model to several 
workers and distributed environments. The simulator also follows the assumption that 
the formulas in the literature are correct. However, as data is collected, these formulas 
as well as their parameters are open for adaptation. Section 5 will demonstrate this 
necessity on a sample project.  
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4   Simulation 

The simulator proceeds in several steps that serve to collect project-specific data. In 
this manner the project variables can be set at the beginning and during the project.  

 

(a) 

 

(b) 

(c) 

 

(d) 

Fig. 4. Sequence of displays to start a project. (a) project specific information, (b,c) variables 
from Tables 3 and 4, (d) Use Case function points detailed entry form. 

 

Fig. 5. Data entry for Adding, Subtracting and Changing a Use Case in te rms of Function 
Points 

 



 Timeline Prediction Framework for Iterative Software Engineering Projects 27 

The entry of function points for each use case and change request into the simula-
tor is depicted in Figure 6 as described in Section 2. Each component (input, output, 
inquiries, files, interfaces) is qualified as simple, medium or complex. This categori-
zation is clearly defined by Paton and Abran [21].  

The resulting screenshot for the first iteration is shown in Figure 6. It shows the ar-
tifacts created within the project, using traceability rules: A Use Case as entered in the 
screen in Figure 5 is linked to several documents that depend on it: SRS, Code, Test 
Case and Test Code as well as the design documents.  

 

 

Fig. 6. Screenshot depicting the first iteration of Use Cases 

The basic operations in Software Engineering regarding change requests are th e 
adding, deleting and changing of use cases as well as the order and size these opera-
tions are presented in. There are well known effects on project timelines that result 
from particular scenarios. We know that change requests submitted late in the project 
are more expensive than early change requests, smaller use cases are easier to change 
than larger ones and less modular code and documentation is difficult to update ac-
cording to change requests. With the current set of formulas and parameters the simu-
lator is sufficiently complex to demonstrate the effects as expected. These scenarios 
hold true for a large range of parameters. That is because they transcendent project 
specific information. Below, are example simulation runs for specific parameters for 
each of these well-known scenarios.  
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“Change requests are more economical in the beginning of the project than in 
the end” 
In this example four Use Cases with 10 FP each, are added consecutively in sepa-
rate iterations. After four iterations the project is completed. The simulator should 
reflect that a change request to the first Use Case submitted in iteration 2 will affect 
the entire project less th an the same change request submitted late in  iteration 4. 
Below is the depiction of the project details of each scenario. A late change request 
has a bi gger impact on the project duration. This demonstrates both the level of 
change property as well as the impact provided by changes on more artifacts due to 
the parameter α. 

 
Scenario A: 4 Iterations with a new USE 
CASE in each iteration of 10FP with a 
change on iteration 2 of 8 FP 
Total Artifacts: 23 
Iterations 1: 1.38 days 
Iterations 2: 3.63 days 
Iterations 3: 1.63 days 
Iterations 4: 1.75 days 
Total: 8.38 days 

Scenario B: 4 Iterations with a new USE 
CASE in each iterations of 10FP with a 
change on iteration 4 of 8FP 
Total Artifacts: 27 
Iterations 1: 1.38 days 
Iteration 2: 1.38 days 
Iteration 3: 1.5 days 
Iteration 4: 5.5 days 
Total: 9.75days 

“A larger number of small use cases are more efficient than a smaller number of 
large use cases” 
In this experiment we want to show that all being equal a Project of 80FP at the first 
Iteration and a change of 10FP in second iteration will take less time if the project 
is broken into more functional units. In order to show the effect, two scenarios are 
created. The first project contains 2 use cases of 40 FP each totaling 80 FP.  Then 
Use Case 1  will be modified by adding 10 more FP.  In the second project 4 Use 
Cases of 20 FP each totaling 80 FP will be followed by a ch ange request to Use 
Case 1 by 10 FP.  

 
Scenario A:  2UC with 80FP Total Count
Amount of Artifacts: 15 
Iteration1: 21.88 days 
Iteration2: 7 days 
Total: 28.88 days 

Scenario B: 4UC with 80FP Total Count 
Amount of Artifacts: 25 
Iteration1: 15.63 days 
Iteration2: 7 days 
Total: 22.13 

In this example, a dela y of approximate 6 days is due because the Use Cases were 
larger in Scenario 2. The entire project takes less time in the second example because 
changes to smaller and well modularized code a) have less dependency on other code 
and b) are less d ifficult to change due to their size. Point (a) is denoted by α as de-
picted in Figure 3 and is set t o 5% for this demonstration. Point (b) is implemented 
with the non-linear function described in Equation 5. As a result, fulfilling a change 
request of 10 function points is less work when applied to a 20 FP Use Case than a 40 
FP Use Case.  
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“Show effect of non-modularity of Use Cases” 
In this example, the simulator compares two scenarios in which two use cases overlap 
to varying degrees as modeled by α depicted in Figure 3, a parameter that reflects the 
degree of overlap of components in the database model. In Scenario A, α is set to 5% 
overlap, modeling a good separation of the use cases; in Scenario B, α is set to  45% 
overlap, demonstrating a high degree of overlap between use cases. In both projects, a 
change request is s ubmitted in the second iteration. The simulator can show that a 
larger degree of dependence between use cases results in a longer duration as pre-
dicted by common sense and the model. Both projects have two use cases with 80 FP 
in total and were affected by the same change request in the second iteration.   
 
Scenario A: 5percent overlap within two 
usecases of 20FP each and a change of 
10FP 
Amount of Artifacts: 15 
Iteration 1: 7.38 
Iteration 2: 4.63 
Total: 12 days 

Scenario B: 45percent overlap within two 
usecases of 20FP each and a change of 
10FP 
Amount of Artifacts: 15 
Iteartion 1: 7.38 
Iteration 2: 6.63 
Total 14 days 

Scenario A is 2 days shorter due to the lesser degree of overlap between use cases. 
With increased overlap between use cases change requests add more effort to the total 
project because the change request has repercussions throughout a larger area of the 
project. It is appreciable that if you make a system more independent across use cases 
then you will diminish the amount of total time to create the changes across the life of 
the software development cycle. This effect is compounded as the project size in-
creases as we know from the previous example. 

5   Conclusion  

They key to this simulator is not (only) to show the effects of change requests on code, 
but to specify the rules governing those changes and distill the parameters and func-
tions that are essential to both model the data and define the data to be collected for 
each iteration. We have made the argument that only iteration-based data can support 
an accurate data-driven model for comparative studies of models based specifically on 
iterations. In this paper, the authors have suggested a number of parameters and func-
tions that need further study for iteration-based projects in order to model a software 
process accurately. Only through full understanding can we grasp the additional bene-
fits and difficulties that are involved in off-shoring parts of software projects.   

Looking at a sample real-world project developed with off-shoring, it can be seen 
that many of the assumed parameters and functions may or may not apply for itera-
tions and small- or medium-sized projects as can be seen in Figure 7. In this particu-
lar project at hand, provided by the fourth author S. Datta, the actual relationship is 
quite linear compared to the estimated relationships given by Equations 1 and 5.  
Figure 7 depicts the best fit linear function compared to t he polynomial from the 
literature. Additionally, Figure 7 shows that coding requires most of the effort, fol-
lowed by documentation, test code, code design and User Interface design. Each of 
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Function Point vs. Effort

0
20
40
60
80

100
120
140
160

0 50 100 150 200 250

Effort (hrs)

F
u

n
ct

io
n

 P
o

in
ts

code

test

GUI

design

documentation

Estimate Code

Estimate Documentation

Linear (code)

Linear (documentation)

 

Fig. 7. Actual relationship between Function Points and effort for various artifacts compared to 
estimated relationship  

the progressions seems linear up to the third iteration. This example clearly shows 
the need for iteration-based data collection to estimate both the function as well  
as the parameters by taking data of preceding iterations for the adaptation process to 
increase the prediction ability of the simulator for the next iteration.   

Different artifacts are related to f unction points in a similar manner, for example, 
test case and use case documentation efforts exhibit a linear relationship for the same 
function point value as depicted in Figure 8.  
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Fig. 8. Experimental data shows that not all artifacts are written at equal speeds 

The following are recommendations for collecting the required data.  

1. Parameters need to be collected with each iteration 
2. Parameters include the following by iteration:  

- list of changes per Use Case (add, delete, modify) 
- LOC/FP 
- LOC/day/person 
- Time spent on each Use Case and related code per change 
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- Time spent on each Test Case and related test code per change 
- Time spent on each other artifact (SRS, Design, GUI, etc.) 
- Pages added or changed for each artifact as function Use Case operation (add, 

delete, modify) 
3. Information that relates the factor [i,j] between artifacts i and j by describing how 

changes within one Use Case affect other Use Cases and their related code an d 
data-tables.  

4. Information about the amount of communication related to each  iteration in terms 
of time spent with emails, meetings and other forms of communication.  

6   Future Work 

Future work clearly includes analysis of the collected dat a including the new vari-
ables. The addition of division of work effort through additional personnel will be 
needed along with the communication components. Meeting and communication 
equations are essential additions to this model that will support understanding of the 
off-shoring component. Therefore, it is very important to collect off-shoring project 
data with the iteration-based model. Using the current ISBSG database, it seems pos-
sible to show that off-shoring does not add an element of complexity to the project 
[33]. This however seems to run contrary to industrial experience reports, leading us 
to the idea that some parameters are still missing. Perhaps, iteration-based data will 
illuminate this issue further. We also want to introduce mean and variance into the 
predicted schedule. It can be shown that off-shoring may not change the mean predic-
tion time of the project but the variance increases. We would like to show the origin 
of this increased variability and show how the variability can be controlled.  

Finally, current efforts are underway to move the desktop simulator to a web-based 
application in order to serve as a to ol and a d ata-collection instrument at t he same 
time. It should have the ability to adapt parameters as well as functions automatically 
with the incoming data.   
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