
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2008

Timeline prediction framework for iterative software engineering Timeline prediction framework for iterative software engineering

projects with changes projects with changes

Kay BERKLING
Polytechnic University of Puerto Rico

Georgios KIRAGIANNIS
Polytechnic University of Puerto Rico

Armin ZUNDEL
Polytechnic University of Puerto Rico

Subhajit DATTA
Singapore Management University, subhajitd@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
BERKLING, Kay; KIRAGIANNIS, Georgios; ZUNDEL, Armin; and DATTA, Subhajit. Timeline prediction
framework for iterative software engineering projects with changes. (2008). Software Engineering
Approaches to Outsourcing and Offshore Development: 2nd International Conference, SEAFOOD 2008,
Zurich, Switzerland, July 2-3: Revised papers. 16, 15-32.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6008

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6008&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 15–32, 2009.

Timeline Prediction Framework for Iterative Software
Engineering Projects with Changes

Kay Berkling1, Georgios Kiragiannis1, Armin Zundel1, and Subhajit Datta2

1 Polytechnic University of Puerto Rico, Department of Computer Science and Engineering,
377 Ponce de León Ave., San Juan, Puerto Rico 00918

kay@berkling.com, gakirag@gmail.com, azundel@pupr.edu
2 Department of Computer Science and School of Computational

Science, Florida State University,
Tallahassee, FL 32306, USA

sd05@fsu.edu

Abstract. Even today, software projects still suf fer from delays and budget
overspending. The causes for this problem are compounded when the project
team is distributed across different locations and generally attributed to the de-
creasing ability to communicate well (due to cultural, linguistic, and physical
distance). Many projects, especially those with off-shoring component, consist
of small iterations with changes, deletions and additions, yet there is no formal
model of the flow of iterations available. A number of commercially available
project prediction tools for projects as a whole exist, but the model adaptation
process by iteration, if it exists, is unclear. Furthermore, no project data is avail-
able publicly to train on and understand the iterative process. In this work, we
discuss parameters and formulas that are well founded in the literature and
demonstrate their use within a simulation tool. Project timeline prediction capa-
bility is demonstrated on various scenarios of change requests. On a real-world
example, we show that iteration-based data collection is necessary to train both
the parameters and formulas to accurately model the software engineering proc-
ess to gain a full understanding of complexities in software engineering process.

1 Introduction and Background

Software projects often suffer from delays and budget overspending. With the addi-
tion of off-shoring in the software industry, the complexities of such projects have
increased. While it is still very difficult to even understand the mechanics of regular
projects, taking the next step in complexity to distributed teams, decreases the ability
to trace th e effects of change requests on the course of the pro ject. Gaining under-
standing of and control over the timeline and consequently the costs of a pro ject is
often accomplished through experience of the project manager. However, without that
experience, no comprehensive mathematical model of how the timeline is affected
throughout iterations is available to replace th at experience. Simulators of such a
model would provide a deeper understanding of the parameters and how they drive a
project.

16 K. Berkling et al.

For the case of total effort estimation, there are a number of function point estima-
tion tools on the market such as Charismatek, Softwaremetrics, TotalMetrics [29],
EstimatorPal. But as far as the authors can tell, none of these open their parameters to
the user or adapt these by iterations to the project itself. This can be problematic as
depicted in Table 1. Despite the large number of studies on this subject, it can be seen
how models of such projects can vary. While the trends (formula types) are consistent
across studies, the parameters vary greatly, without providing enough guidelines in
how they apply to a specific project.

In order to deal with this adaptation, one has to look at iterations to learn the pa-
rameters from the project. Drappa et al. [9] developed a simulator to train project
managers and give them hands on experience. The project manager interacts with the
simulator as s/he would with a team of software developers. The project manager is
required to have a set of theoretical skills and uses the tool to gain “practical” experi-
ence. This simulator works with function points, that the project manager enters into
the tool along with the number of workers used and a set of directions. The simulator
will then advance a set amount of time and reflect the status of the project. At each
step the project manager continues making decisions to navigate through to the end.
Thus, this work takes into account iterations within a project and decision making of
the project manager at each stage to change the course of the project. However, while
Drappa’s work deals with the interaction between project manager decisions and the
workers, our work additionally deals with effects of change requests and opens both
the parameters and formulas for adaptation. Both systems are based on similar rules
of thumb [16]. Jones developed these rules of thumb that are widely quoted and used
in the field of software engineering. However, it is still not proven that the same for-
mulae hold for iterations within a p roject. For now, the simulator uses the rules of
thumb that define the parameters needed for data collection but with an understanding
that the formula may need to be adapted as data is collected.

Table 1. Table taken from Fairley [10] – demonstrating the large variety of models describing
the relationship between development time and lines of code and time elapsed vs. man months

Effort Equation Schedule Equation Reference

PM = 5.2 (KDSI)0.91 TDEV = 2.47 (PM) 0.35 Walston [26]

PM = 4.9 (KDSI)0.98 TDEV = 3.04 (PM) 0.36 Nelson [19]

PM = 1.5 (KDSI)1.02 TDEV = 4.38 (PM) 0.25 Freburger et al[12]

PM = 2.4 (KDSI)1.05 TDEV = 2.50 (PM) 0.38 Boehm [6]

PM = 3.0 (KDSI)1.12 TDEV = 2.50 (PM) 0.35 Boehm [6]

PM = 3.6 (KDSI)1.20 TDEV = 2.50 (PM) 0.32 Boehm [6]

PM = 1.0 (KDSI)1.40 Jones [17]

PM = 0.7 (KDSI)1.50 Freburger et al[12]

PM = 28 (KDSI)1.83 Schneider [24]

 Timeline Prediction Framework for Iterative Software Engineering Projects 17

In order to look at how change affects project timelines, it is necessary to under-
stand the relationships between artifacts. Cleland-Huang et al. [14] worked on a
framework to capture traceability in artifacts in order to propagate changes across the
project correctly. The framework contains three parts: event server, requirements man-
ager and the subscriber manager that combine to partially automate the process and
support the workers in maintaining correct traceability. Our work builds on the
subscription model for artifacts that she proposes in order to establish links between
artifacts and propagate changes correctly. The traceability is important in order to cor-
rectly propagate the effects of change requests to all affected artifacts in the project.

Finally, the degree of change in indirectly related artifacts is important. To this end,
Datta [7][8] suggests three metrics: Mutation Index, Component Set, and Dependency
index. Mutation Index indicates the level of change a requirement has undergone across
iterations; Component Set specifies all the components a particular requirement needs
for its fulfillment; and Dependency Index reflects on the extent to which a p articular
requirement's implementation depends on the implementation of other requirements.
These three metrics help evaluate the effects of requirement changes for a software
system. Although our work groups function points according to use cases and not re-
quirements, under reasonable assumptions, the Dependency Index is applicable in our
scenario, and is referred to in this paper as . Mechanisms for extracting this metric
value automatically from code is under development by Datta.

One of the difficulties in working on simulation of projects is t he dearth of rich,
publicly available training data. A number of dat abases are available in the public
market. The main repository is available through the International Software Bench-
marking Standard Group (ISBSG) [28]. This non-profit organization had put together
a standard for benchmarking software development in three categories: software en-
hancements, software implementations, and software maintenance. The information
enclosed in the repository is divided into a few types of data like: Rating, Sizing, Ef-
fort, Productivity, Schedule and others. However, this repository does not provide
information on the changes of parameters as a function of time. The data is not given
by iteration or phases.

This work argues towards the collection of discussed parameters by iteration and
the importance of adapting the simulator to the specific project by allowing the user
to adjust the parameters. Currently, available databases are not yet sufficient to train
an iteration-based simulator, nor do they collect sufficient data to appropriately ana-
lyze the effect of addition, change and deletion on each iteration or the project as a
whole. Yet, iterations and adaptations to v ery project-specific data are absolutely
essential when outsourcing is involved in order to reliably estimate timelines. A
more accurate timeline prediction for distributed projects will lead to fewer unpre-
dictable events and will support management decisions by giving more specific and
precise estimates. The rest of this paper will describe our approach to combining a
number of formulas and parameters into a simulator that can then be used to simulate
project timelines and collect data in order to adapt both functions and parameters
built into the simulator. We demonstrate reasonable functionality of the current
simulator based on well-known facts about projects and show that adaptation is abso-
lutely necessary based on a real-world example, therefore making the call for data
collection based on iteration.

18 K. Berkling et al.

Section 2 will discuss the building blocks of the approach used in this paper.
Section 3 will discuss trends and parameters within software engineering projects that
are used within the simulator. Section 4 will discuss the implementation of the simu-
lator and validate the basic simulator functionality by looking at sequence of opera-
tions whose properties transcendent project-specific characteristics. Section 5 will
conclude by looking at an example project, demonstrating the clear need and feasibil-
ity for both parameter and formula adaptation for any simulation tool on an iteration
basis. Section 6 concludes by listing a number of enhancements necessary to expand
the model under future work and propose the availability of a web-based tool for data
collection and simulation and online adaptation.

2 Foundations

The theoretical foundations of this work include the methodology of software project
management, Function Point estimation of project size based on Use Cases and
Traceability usage in projects. These three topics are described in more detail before
Section 3 will clarify their usage in this work.

2.1 Methodology

For the purpose of this work we use the terminology of the Rational Unified Process
(RUP) because it presents the collection of best practices from industry and is readily
reducible to other methods [15]. RUP defines the artifacts that the simulator produces
to emulate a software project timeline. Artifacts are either final or intermediate work
products that are produced and used during a project and generally include documen-
tation and software. They are used to capture and convey project information and re-
sults. The simulator works with the major artifacts listed below:

• Use Case
Use cases capture the functional requirements of a project. They are usually based on
a number of requirements to come together in order to f ormulate a goal that an ac-
tor/specific user of the system will achieve, such as “withdraw money”. A Use Case
contains both functional as well as non-functional requirements. The Use Case further
is the primary document used by the implementation team to produce the Class dia-
gram, the implementation code and the test case.
• Software Requirement Specification
The Software Requirement Specification (SRS) is the document that contains all the
functional and non-functional requirements of the system as a whole. The document
refers to Use Case d ocumentation for the functional details but retains the overall in-
formation. While functional requirements are mainly covered through the use cases,
non-functional requirements are usually found in the SRS and can be categorized as
usability-, reliability, performance, and substitutability-requirements, design con-
straints, platform environment and compatibility issues, or applicable standards. In
addition, requirements that specify need of compliance with any legal and regulatory
requirements may be included. Non-functional requirements that apply to an individ-
ual use case are captured within the properties of that use case.

 Timeline Prediction Framework for Iterative Software Engineering Projects 19

• Class Diagram
The Class Diagram is a document which is based on the entirety of the project and
therefore depends on all the Use Cases. A change to any Use Case can affect a change
in the class diagram.
• Code
The Code is designed to implement a Use Case that describes its functionality. For the
purpose of this paper the code may belong to several Use Cases as there may be some
degree of overlap between Use Cases through common requirements. Therefore,
change in one Use Case may affect different code pieces to varying degrees.
• Test Case
Test Cases are des igned to tes t the code for a particular Use Case. A change in the
Use Case may effect both Test Case and Code.
• Test Code
Test Code implements the test case.

2.2 Function Points

Function Points (FP) is a metric for measuring the functional size of a software sys-
tem. The usage of function points is well known and a tested sizing technique in soft-
ware engineering [21][18][25][11][13]. FPs have been used since 1979 when Allan
Albrecht of IBM [3][4] introduced them. There are oth er Functional Assessment
techniques, mainly Bang, BMA, CASE Size, Entity, IE, Mark II FPA, MGM, and
Usability. According to McDonell, Table 2 summarizes that the most tested and gen-
erally used functional assessment technique is Function Point Analysis. Mark II FP
expects 19 adjustment factors instead of 14 on the original FPA method, making the
adjustment factor more difficult to as ses in a s tep in the process where usually the
user or PM has little information on the system. Boehm [6] developed and redesigned
later an algorithmic cost model called (COCOMO). It provides formulas for the esti-
mation of programmer-month and development schedule based on the estimated
number of Delivered Source Instructions (DSI). COCOMO model is based on LOC,
this metric is harder to obtain in early stages of the product life cycle making FPA the
only tested and validated and more reasonable choice.

Table 2. Comparison of functional assessment and estimation methods (taken directly from
McDonell [19])

Method Automation Comprehensive Objectivity Specification Testing Validity
Bang No Yes No Yes Yes No
BMA Yes Yes Yes Yes Yes No
CAES Yes Yes Yes Yes Yes No
Entity Yes Yes Yes Yes No No
FPA No Yes No No Yes Yes
IE No Yes No No Yes Yes

Mark II
FPA

No Yes No Yes Yes Yes

MGM No Yes No No No No
Usability No No No Yes No No

20 K. Berkling et al.

In this work we focus on the existing relationship between Use Cases, Function
Points and duration of code implementation that has been studied by a variety of re-
searchers in the past. While this is a controversial approach [1] [2], it has been shown
to work in real-world industrial applications for certain types of projects [10] [5]. The
following is a brief presentation of Function Points and the approach chosen for the
simulation model in this work because it is empirically shown to work to a reasonable
degree according among others also from the International Software Benchmarking
Standards Group.

Function Points can be calculated in two parts. The first part relates to the entire
project with a h andful of parameters, such as: Data co mmunications, Distributed
data/processing, performance objectives, tight configuration, high transaction rate, on-
line inquiry data entry, end user efficiency, on-line update, complex processing, code
reusability, conversion/installation ease, o perational ease, multiple site in stallation,
facilitate change. The second number is calculated at the Use Case level by looking at
the number of inputs outputs, files accessed, inquiries, and number of Interfaces. This
model is based on Albrecht [4] and is more precise in estimation than the previous
model of unadjusted function points.

The measurement for a Use Case results from a formula which combines the over-
all and the specific values into a f inal FP value. This final number relates to time
spent on their implementation through a fun ction that has been established [30] t o
have a non-linear relationship similar to what is approximated by Figure 1. The rela-
tion of function points versus effort can be estimated automatically after a f ew itera-
tions, assuming that the workers are stable.

FP vs. effort (hrs)

0

20

40

60

80

100

120

0 50 100 150 200

effort (hrs)

F
u

n
ct

io
n

 P
o

in
ts

formula

real data

Fig. 1. Assumed relationship function between Function Points and Time spent on coding

2.3 Traceability

Traceability [27] is the process of tracking relationships between artifacts. It is used
in software engineering for verification, cost reduction, accountability, and change

 Timeline Prediction Framework for Iterative Software Engineering Projects 21

management. Tracking the effect of change requests, such as additions, changes or
deletions of use ca ses on other artifacts are tracked in this manner. Its importance
can be appreciated by this statement: “The US Department of Defense spends about
4 percent of its IT costs on traceability.” [23][22]. A model to simulate project data,
like artifacts, meeting minutes, meeting agendas, stakeholders, assumes certain re-
quired traceability links for artifacts involved in the project in order to propagate the
effects of change correctly. Figure 2 below shows how change can be traced through
various artifacts in a project.

Fig. 2. Simplistic example of how change affects the software life cycle

This project simulator will process specific input like use cases and change re-
quests through traceability models and assumptions into a static project spreadsheet
that will capture specific changes in artifacts and all its links. In summary, traceability
allows us to see how artifacts are interrelated within a project. This allows us to apply
the rules to the project given the collected data.

3 Implementation

Each of the components described above covers aspects of project description that in
combination are able to support the simulation model. In order to take the complex
interrelationships into account that result in the model of iterations, this section de-
scribes a combination of formulas and parameters that make up the simulator.

3.1 Model

The Model presented in the previous section using the RUP terminology is now de-
scribed in more detail with further assumptions and parameters and outlining the
interrelationships between the artifacts.

• Software Requirement Specification
The Software Requirement Specification (SRS) is the document that describes the sys-
tem as a whole and refers to the Use Cases for details of the functional specifications in

22 K. Berkling et al.

a modularized fashion. Change requests to Use Cases may affect the SRS. The time to
write an SRS is related to the number of Use Cases and non-functional requirements of
the system.
• Use Cases
For the purpose of this work, change requests act on Use Cases directly. More than
one change request is required if more than one Use Case documentation is affected
by the change. This does not hold true for code and class diagram. There is a degree
of interdependence between class diagrams across Use Cases. A change request to a
Use Case at the documentation level does affect code of other Use Cases to some
degree. We model this interdependence with α as indicated by Figure 3. For the pur-
pose of this work, we can assume that there is some degree of overlap between Use
Cases regarding the Classes/Objects and the corresponding code sections that are
generated. For example, imagine a system with two use cases. The first one describes
how books are entered with title only, the second one how to search for them by title.
Now, the first use case, for entering new books, receives a change request to add the
author field. After those changes are made, the second use case receives the change
request to be able to search by author as well. This change is done much faster than
the first change since the class diagram has already been updated and the only
change that is needed is at the user interface level. This difference in effort required
due to the overlap is denoted by α in Figure 3 below. The overlap or interdependency
of requirements that make up each of the Use Cases results in various degrees of
interdependence between the Use Cases and is one of the parameters of the simulator
that can currently be v aried. However, it represents a value that can be extracted
from the software and is currently studied by one of the authors, S. Datta.

Fig. 3. Simplified view of interrelationships between artifacts

• Class Diagram
It is through the use cases that changes in the Class Diagram are effected and propa-
gated through to the Code.

 Timeline Prediction Framework for Iterative Software Engineering Projects 23

• Code
A change in the Use Case is measured in function points and effects a change in the
code with the amount of effort related to the FP. Code can be r eused between Use
Cases whish is related through as described above. Therefore, change in one Use
Case may affect different code pieces to varying degrees. Changes directly acting on
code, such as refactoring of code, are not currently taken into account in this simulator.
• Test Case
A change in the Use Case effects a change in the test case directly.
• Test Code
Test Code implements the test case and is affected directly by a change in the Test
Case.

There are other artifacts that belong to the Rational process which should be taken
into account in a later v ersion of this simulator. These are, among others the metrics
report, the configuration management plan, the project plan, test management plan,
the risk management plan, the risk list, the user manual and the installation manual.
We currently leave their more detailed implementation for the future work section.
Section 3.2 describes how it is possible to lump the entire lines of written documenta-
tion into an overall effort size that relates directly to function points as well.

In addition to taking into account the interdependence between artifacts that add to
the level of co mplexity of c hanges, we model the penalty factor called “Level of
change”. It relates to the time difference between modifications of an artifact under
the assumption that it beco mes increasingly difficult to change older artifacts. For
example, if a use case is inserted in iteration 3 and modified in iteration 7 then the
level of change is 7-3=4. According to the level of change, x, the penalty is calcu-
lated by (1-(1/x^.5)) in the current simulator. This function is based on heuristics of
managers, a verification of function and parameter is possibly only through iteration-
based data collection.

3.2 Documentation Time

A number of formulas and parameters derived from various sources are combined to
formulate the duration of tasks within the project plan. In this section, the formulas
are listed, the parameters identified and the default values stated. The equation for the
total number of pages produced in a project is related to function points as defined by
Caper Jones [16] and given by Equation 1, where AFP stands for the adjusted func-
tion points and TNP stands for Total Document Pages in Project. The parameter p is a
value defined as 1.15 Jones and is the default value used by the simulator as specified
in Table 2.

TNP = pAFP (1)

The following documents are currently part of the simulator: Software Requirements
Specifications, Use Case, and Test case documents. All other documents are lumped
into a single set, co ntaining metrics report, the configuration management plan, the
test management plan, the risk management plan, the risk list, the user manual and the
installation manual. Equation 2 shows how these components make up the total num-
ber of pages TNP from Equation 1, where uc, srs, tc, and o denote the percentage of

24 K. Berkling et al.

added pages to the total number TNP. This relationship has to be collected from data.
The assumptions made by the simulator are stated in Table 2 but can be adapted after
several iterations of the project to reflect the specific project more accurately.

TNP = uc·TNP + srs·TNP + tc·TNP + o·TNP (2)

The total number of pages is converted into time by using yet another equation that
relates writing time to page numbers [31] as defined by Equation 3, where WPP is
words per page and WPM stands for Words per Minute.

Documentation Minutes = TNP * WPP / WPM (3)

Though these formulas are research based, it seems unlikely that pages written for
different documents can be written with equal speed. Therefore, this data should also
be collected. The true relationship would have to be given through the data. Table 3
depicts the default values that are used in the current system that can be adapted after
a few iterations. Similarly, Equation 2 could be rewritten differently not in terms of
Function Points but rather in terms of number of Use Cases as well as function points.
One can assume that the size of a Use Case is a relatively constant number UC_base
since Use Cases have a li mited size. The SRS also grows linearly with respect to
the number of Use Cases added (SRS_base + n · SRS_add). Parts of the Use Case
(activity diagram) and the Test Case (test scenarios dependent on act ivity diagram)
depend heavily on the function points in terms of time to write those pages, but not
necessarily in terms of number of pages. Therefore, none of these components weigh
heavily in the polynomial. Most of the documenting pages therefore must be spent on
the other documents that were lumped into “other” (such as project plan, risk man-
agement plan, test plan, etc.) or the formula seems wrong. Equation 4 depicts the form
the resulting formula would take, which would need to be verified with real data.

Time = n · FPA + qFPA (4)

Table 3. List of variables needed by simulator and their initial values

Documentation Variable Value
 Use Case + Test Case + SRS (uc + srs + tc) n = .76
 Exponent p 1.15 [16]
 Words per page WPP 250 [31]
 Words per Minute WPM 19 [32]

3.3 Coding Time

As described in Section 2.1, coding time has a determinable relationship to function
points usually depicted as a polynomial curve as defined by Equation 5, where the
number of man months increases at a faster rate than the number of function points
but is linear for sm aller function point levels. It is also well-known that the slope

 Timeline Prediction Framework for Iterative Software Engineering Projects 25

depends largely on the team and the type of project. Therefore, the user is asked to
supply this variable, q in Equation 5, with each iteration. It is necessary to record this
variable for each iteration during data collection in order to see the detailed effects of
changes in a particular project. The non-linearity effect is not visible for small Use
Cases and change requests.

SLOC = AFP^q; q = 0.6 (5)

Effort is then calculated based on rate of coding (LOCperday) and hours worked per
day (hrsperday) as described by Equation 6.

Hours = (SLOC / LOCperDay) · hrsperday (6)

These two formulas cover coding, but not really design. Class and database diagram
are inherently related to function points as is the user interface. It is not unreasonable to
assume a polynomial function relates Function Points to design effort in a similar way
as it does to coding effort. This function can be approximated with a linear function for
medium sized (3-6 months) projects, perhaps with a different constant that will have to
be collected as well from the project. Table 4 summarizes the variables and their origi-
nal default values that are consequently adapted after each iteration.

Table 4. List of variables relating design

Artifact Variable Formula

Source Code Hrsperday / LOCper-
Day = 8/100

Source Code Q = Entered by user; default .6
Class/Database Dia-
gram q' = AFP^q' ; q' = q

GUI Interface q'' = AFP^q'' ; q'' = q
 Source Code SLOC = AFP^q q = 0.6
Test Code SLOTC = c ·SLOC, c=1

3.4 Assumptions

The model described above specifies key documents of the project management proc-
ess. Similar models have to be developed for other documents. In addition, communi-
cation and meeting time becomes a major component as a function of both project
size and distance between team members, becoming potentially non-linear. These
relationships and their changes need to be captured for each iteration. The current
simulator assumes one worker, a f irst step before expanding the model to several
workers and distributed environments. The simulator also follows the assumption that
the formulas in the literature are correct. However, as data is collected, these formulas
as well as their parameters are open for adaptation. Section 5 will demonstrate this
necessity on a sample project.

26 K. Berkling et al.

4 Simulation

The simulator proceeds in several steps that serve to collect project-specific data. In
this manner the project variables can be set at the beginning and during the project.

(a)

(b)

(c)

(d)

Fig. 4. Sequence of displays to start a project. (a) project specific information, (b,c) variables
from Tables 3 and 4, (d) Use Case function points detailed entry form.

Fig. 5. Data entry for Adding, Subtracting and Changing a Use Case in te rms of Function
Points

 Timeline Prediction Framework for Iterative Software Engineering Projects 27

The entry of function points for each use case and change request into the simula-
tor is depicted in Figure 6 as described in Section 2. Each component (input, output,
inquiries, files, interfaces) is qualified as simple, medium or complex. This categori-
zation is clearly defined by Paton and Abran [21].

The resulting screenshot for the first iteration is shown in Figure 6. It shows the ar-
tifacts created within the project, using traceability rules: A Use Case as entered in the
screen in Figure 5 is linked to several documents that depend on it: SRS, Code, Test
Case and Test Code as well as the design documents.

Fig. 6. Screenshot depicting the first iteration of Use Cases

The basic operations in Software Engineering regarding change requests are th e
adding, deleting and changing of use cases as well as the order and size these opera-
tions are presented in. There are well known effects on project timelines that result
from particular scenarios. We know that change requests submitted late in the project
are more expensive than early change requests, smaller use cases are easier to change
than larger ones and less modular code and documentation is difficult to update ac-
cording to change requests. With the current set of formulas and parameters the simu-
lator is sufficiently complex to demonstrate the effects as expected. These scenarios
hold true for a large range of parameters. That is because they transcendent project
specific information. Below, are example simulation runs for specific parameters for
each of these well-known scenarios.

28 K. Berkling et al.

“Change requests are more economical in the beginning of the project than in
the end”
In this example four Use Cases with 10 FP each, are added consecutively in sepa-
rate iterations. After four iterations the project is completed. The simulator should
reflect that a change request to the first Use Case submitted in iteration 2 will affect
the entire project less th an the same change request submitted late in iteration 4.
Below is the depiction of the project details of each scenario. A late change request
has a bi gger impact on the project duration. This demonstrates both the level of
change property as well as the impact provided by changes on more artifacts due to
the parameter α.

Scenario A: 4 Iterations with a new USE
CASE in each iteration of 10FP with a
change on iteration 2 of 8 FP
Total Artifacts: 23
Iterations 1: 1.38 days
Iterations 2: 3.63 days
Iterations 3: 1.63 days
Iterations 4: 1.75 days
Total: 8.38 days

Scenario B: 4 Iterations with a new USE
CASE in each iterations of 10FP with a
change on iteration 4 of 8FP
Total Artifacts: 27
Iterations 1: 1.38 days
Iteration 2: 1.38 days
Iteration 3: 1.5 days
Iteration 4: 5.5 days
Total: 9.75days

“A larger number of small use cases are more efficient than a smaller number of
large use cases”
In this experiment we want to show that all being equal a Project of 80FP at the first
Iteration and a change of 10FP in second iteration will take less time if the project
is broken into more functional units. In order to show the effect, two scenarios are
created. The first project contains 2 use cases of 40 FP each totaling 80 FP. Then
Use Case 1 will be modified by adding 10 more FP. In the second project 4 Use
Cases of 20 FP each totaling 80 FP will be followed by a ch ange request to Use
Case 1 by 10 FP.

Scenario A: 2UC with 80FP Total Count
Amount of Artifacts: 15
Iteration1: 21.88 days
Iteration2: 7 days
Total: 28.88 days

Scenario B: 4UC with 80FP Total Count
Amount of Artifacts: 25
Iteration1: 15.63 days
Iteration2: 7 days
Total: 22.13

In this example, a dela y of approximate 6 days is due because the Use Cases were
larger in Scenario 2. The entire project takes less time in the second example because
changes to smaller and well modularized code a) have less dependency on other code
and b) are less d ifficult to change due to their size. Point (a) is denoted by α as de-
picted in Figure 3 and is set t o 5% for this demonstration. Point (b) is implemented
with the non-linear function described in Equation 5. As a result, fulfilling a change
request of 10 function points is less work when applied to a 20 FP Use Case than a 40
FP Use Case.

 Timeline Prediction Framework for Iterative Software Engineering Projects 29

“Show effect of non-modularity of Use Cases”
In this example, the simulator compares two scenarios in which two use cases overlap
to varying degrees as modeled by α depicted in Figure 3, a parameter that reflects the
degree of overlap of components in the database model. In Scenario A, α is set to 5%
overlap, modeling a good separation of the use cases; in Scenario B, α is set to 45%
overlap, demonstrating a high degree of overlap between use cases. In both projects, a
change request is s ubmitted in the second iteration. The simulator can show that a
larger degree of dependence between use cases results in a longer duration as pre-
dicted by common sense and the model. Both projects have two use cases with 80 FP
in total and were affected by the same change request in the second iteration.

Scenario A: 5percent overlap within two
usecases of 20FP each and a change of
10FP
Amount of Artifacts: 15
Iteration 1: 7.38
Iteration 2: 4.63
Total: 12 days

Scenario B: 45percent overlap within two
usecases of 20FP each and a change of
10FP
Amount of Artifacts: 15
Iteartion 1: 7.38
Iteration 2: 6.63
Total 14 days

Scenario A is 2 days shorter due to the lesser degree of overlap between use cases.
With increased overlap between use cases change requests add more effort to the total
project because the change request has repercussions throughout a larger area of the
project. It is appreciable that if you make a system more independent across use cases
then you will diminish the amount of total time to create the changes across the life of
the software development cycle. This effect is compounded as the project size in-
creases as we know from the previous example.

5 Conclusion

They key to this simulator is not (only) to show the effects of change requests on code,
but to specify the rules governing those changes and distill the parameters and func-
tions that are essential to both model the data and define the data to be collected for
each iteration. We have made the argument that only iteration-based data can support
an accurate data-driven model for comparative studies of models based specifically on
iterations. In this paper, the authors have suggested a number of parameters and func-
tions that need further study for iteration-based projects in order to model a software
process accurately. Only through full understanding can we grasp the additional bene-
fits and difficulties that are involved in off-shoring parts of software projects.

Looking at a sample real-world project developed with off-shoring, it can be seen
that many of the assumed parameters and functions may or may not apply for itera-
tions and small- or medium-sized projects as can be seen in Figure 7. In this particu-
lar project at hand, provided by the fourth author S. Datta, the actual relationship is
quite linear compared to the estimated relationships given by Equations 1 and 5.
Figure 7 depicts the best fit linear function compared to t he polynomial from the
literature. Additionally, Figure 7 shows that coding requires most of the effort, fol-
lowed by documentation, test code, code design and User Interface design. Each of

30 K. Berkling et al.

Function Point vs. Effort

0
20
40
60
80

100
120
140
160

0 50 100 150 200 250

Effort (hrs)

F
u

n
ct

io
n

 P
o

in
ts

code

test

GUI

design

documentation

Estimate Code

Estimate Documentation

Linear (code)

Linear (documentation)

Fig. 7. Actual relationship between Function Points and effort for various artifacts compared to
estimated relationship

the progressions seems linear up to the third iteration. This example clearly shows
the need for iteration-based data collection to estimate both the function as well
as the parameters by taking data of preceding iterations for the adaptation process to
increase the prediction ability of the simulator for the next iteration.

Different artifacts are related to f unction points in a similar manner, for example,
test case and use case documentation efforts exhibit a linear relationship for the same
function point value as depicted in Figure 8.

Test Case vs Use Case Documentation Time

0

1

2

3

4

5

6

7

8

0 2 4 6 8

Use Case Time

T
es

t C
as

e
T

im
e

Test Case, Use Case

Linear (Test Case,
Use Case)

Fig. 8. Experimental data shows that not all artifacts are written at equal speeds

The following are recommendations for collecting the required data.

1. Parameters need to be collected with each iteration
2. Parameters include the following by iteration:

- list of changes per Use Case (add, delete, modify)
- LOC/FP
- LOC/day/person
- Time spent on each Use Case and related code per change

 Timeline Prediction Framework for Iterative Software Engineering Projects 31

- Time spent on each Test Case and related test code per change
- Time spent on each other artifact (SRS, Design, GUI, etc.)
- Pages added or changed for each artifact as function Use Case operation (add,

delete, modify)
3. Information that relates the factor [i,j] between artifacts i and j by describing how

changes within one Use Case affect other Use Cases and their related code an d
data-tables.

4. Information about the amount of communication related to each iteration in terms
of time spent with emails, meetings and other forms of communication.

6 Future Work

Future work clearly includes analysis of the collected dat a including the new vari-
ables. The addition of division of work effort through additional personnel will be
needed along with the communication components. Meeting and communication
equations are essential additions to this model that will support understanding of the
off-shoring component. Therefore, it is very important to collect off-shoring project
data with the iteration-based model. Using the current ISBSG database, it seems pos-
sible to show that off-shoring does not add an element of complexity to the project
[33]. This however seems to run contrary to industrial experience reports, leading us
to the idea that some parameters are still missing. Perhaps, iteration-based data will
illuminate this issue further. We also want to introduce mean and variance into the
predicted schedule. It can be shown that off-shoring may not change the mean predic-
tion time of the project but the variance increases. We would like to show the origin
of this increased variability and show how the variability can be controlled.

Finally, current efforts are underway to move the desktop simulator to a web-based
application in order to serve as a to ol and a d ata-collection instrument at t he same
time. It should have the ability to adapt parameters as well as functions automatically
with the incoming data.

References

[1] Abran, A., Robillard, P.N.: Function Points: A Study of Their Measurement Processes
and Scale Transformations. Journal of Systems and Software 25, 171–184 (1994)

[2] Abran, A., Robillard, P.N.: Identification of the structural weakness of Function Point
metrics. In: 3rd Annual Oregon Workshop on Metrics, pp. 1–18 (1991)

[3] Albrecht, A.J.: Measuring application development productivity. In: IBM C orp. (ed.)
IBM Application Develop Symp. (1979)

[4] Albrecht, A.J., Gaffney, J.E.: Software Function, Source Lines of Code, and Develop-
ment Effort Prediction: A Software Science Validation. IEEE Transactions on Software
Engineering SE-9(9), 639 (1983)

[5] Angelis, L., Stamelos, I., Morisio, M.: Building a Software Cost Estimation Model Based
on Categorical Data. In: Pro. of the Seventh International Software Metrics Symposium
METRICS, pp. 4–15 (2001)

[6] Boehm, B., Englewood Cliffs, N. (eds.): Software Engineering Economics. Prentice-Hall,
Englewood Cliffs (1981)

32 K. Berkling et al.

[7] Datta, S.: A Mechanism For Tracking The Effects of Requirement Changes In Enterprise
Software Systems, Master’s thesis, Florida State University (2006)

[8] Datta, S., van Engelen, R.: Effects of Changing Requirements: A Tracking Mechanism
for the Analysis Workflow, pp. 1739–1744 (2006)

[9] Drappa, A., Ludewig, J.: Quantitative modeling for the interactive simulation of software
projects. Journal of Systems and Software 46(2-3), 113–122 (1999)

[10] Fairley, D.: Making Accurate Estimates. IEEE Software, 61–63 (2002)
[11] Fetcke, T.: A Generalized Structure for Function Point Analysis. In: International Work-

shop on Software Measurement, pp. 143–153 (1999)
[12] Freburger, K., Basili, V.: The Software Engineering Laboratoy: Relationship Equations,

Report TR764, Technical report, University of Maryland (1979)
[13] Ho, V.T., Abran, A., Oligny, S.: Using COSMIC -FFP to Quantify Functional Reuse in

Software Development. In: Proc. of the ESCOM-SCOPE, pp. 299–306 (2000)
[14] Huang, J.C., Chang, C.K., Christensen, M.: Event-Based Traceability for Managing Evolu-

tionary Change. IEEE Transactions on Software Engineering Journal 29, 796–810 (2003)
[15] IBM, Rational Unified Process Best Practices for Software Development Teams, Techni-

cal report, IBM (1998)
[16] Jones, C.: Software Estimating Rules of Thumb, 116–119 (2007)
[17] Jones, T.: Program Quality and Programmer Productivity, Technical report, IBM, IBM

TR 02.764 (1977)
[18] Lawrie, R., Radford, P.: Using Function Points in Early Life Cycle estimation. In: Proc.

of the 4th European Conference on Software Measurement and ICT Control, pp. 197–210
(2001)

[19] MacDonell, S.G.: Comparitive review of functional complexity assessment methods for
effort estimation. In: Software Engineering Journal, pp. 107–116 (1994)

[20] Nelson, R.: Software Data Collection and Analysis at RADC, Technical report, Rome Air
Development Center (1978)

[21] Paton, K., Abran, A.: A Formal Notation for the Rules of Function Point Analysis. Re-
search Report 247, University of Quebec, pp. 1–49 (1995)

[22] Ramesh, B.: Process Knowledge Management with Traceability. IEEE Software, 50–52
(2002)

[23] Ramesh, B., Jarke, M.: Toward Reference Models for Requirements Traceability. IEEE
Transanction on Software Engineering Journal 27(1), 58–93 (2001)

[24] Schneider, V.: Prediction of Software Effort and Project Duration: Four New Formulas.
In: ACM SIGPLAN Notices (1978)

[25] Symons, C.: Come Back Function Analysis (Modernised) - All Is Forgiven!. In: Proc. of the
4th European Conference on Software Measurement and ICT Control, pp. 413–426 (2001)

[26] Walston, C., Felix, C.: A Method of Programming Measurement and Estimation(1),
Technical report, IBM System (1977)

[27] Watkins, R., Neal, M.: Why and How of Requirements Tracing. IEEE Software 11, 104–106
(1994)

[28] http://www.isbsg.org
[29] http://www.totalmetrics.com
[30] http://www.engin.umd.umich.edu/CIS/course.des/cis525/js/

f00/harvey/FP_Calc.html
[31] http://www.writersservices.com/wps/p_word_count.htm
[32] http://en.wikipedia.org/wiki/Words_per_minute
[33] SMEF 2005 proceedings,

 http://realcarbonneau.com/Publications/
 Carbonneau2005_SoftDevProd_SMEF.pdf

	Timeline prediction framework for iterative software engineering projects with changes
	Citation

	Timeline Prediction Framework for Iterative Software Engineering Projects with Changes
	Introduction and Background
	Foundations
	Methodology
	Function Points
	Traceability

	Implementation
	Model
	Documentation Time
	Coding Time
	Assumptions

	Simulation
	Conclusion
	Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

