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Partisan Conflict and Stock Price

Abstract

Partisan conflict has been one dominant theme in U.S. politics in recent years. By using the textual index of

Azzimonti (2018), this paper shows that partisan conflict positively predicts market returns, controlling for

economic predictors and proxies for uncertainty, disagreement, geopolitical risk, and political sentiment. A

one standard-deviation increase in partisan conflict is associated with a 0.58% increase in next month market

return. The forecasting power concentrates in periods when the president is from the Republican Party or

the majority of House is Republicans. Partisan conflict is positively related to downside risk, and makes

investors more conservative when its value increases.

JEL Classification: G12, G17, P16

Keywords: Partisan conflict, Political disagreement, Political sentiment, Downside risk
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1 Introduction

Partisan conflict has been one dominant theme in U.S. politics in recent years. According to the survey

conducted by Pew Research Center in 2017, the gap between the political values of Republicans and

Democrats is now larger than any point dating back to 1994. For example, in 1994, 36% of Republicans

are more liberal than the median Democrat, while 30% of Democrats are more conservative than the

median Republican. By comparison, in 2017, the corresponding two numbers decrease to 5% and 3%,

respectively. On the other hand, compared with partisan conflict, other gaps, such as age, education, gender,

and race, remain stable over the same sample period. According to another survey conducted by the Business

Roundtable in 2013, half of all chief executive officers (CEOs) claim that political conflict within the federal

government over the upcoming budget negotiations and the looming debt ceiling crisis is likely to have an

adverse effect on their short-term hiring decisions, suggesting that partisan conflict may have a side-effect

on the real economy.

This paper investigates the asset pricing implications of partisan conflict, with a focus on its pre-

dictability for future U.S. stock market returns. The rise in partisan conflict has been widely discussed

by commentators (e.g., Krugman, 2004) and scholars (e.g., McCarty, Poole, and Rosenthal, 2006), because

partisan conflict has substantive policy consequences, associated with increased levels of political gridlock

(Jones, 2001), implying much reduced rates of policy innovation and a decreased ability to adapt to changes

in economic, social, or demographic circumstances (McCarty, 2007). However, it is an open empirical

question whether partisan conflict has a real effect on the stock market.

To answer our research question, we use a recently proposed partisan conflict index, which is constructed

by Azzimonti (2018) to track the degree of political disagreement among U.S. politicians at the federal level,

by measuring the frequency of newspaper articles reporting disagreement in a given month. Naturally, higher

index values indicate greater conflict among political parties, Congress, and the President. By focusing on

political disagreement about government policy, both within and between national parties, Azzimonti (2018)

shows that the increases in partisan conflict are associated with presidential elections and well-known fiscal

policy debates, such as the debt ceiling debate and debates on the Affordable Care Act (both related to its

approval and potential repeal in early 2017). Azzimonti (2018) also shows that the partisan conflict index

is different from the economic policy uncertainty (EPU) index in Baker, Bloom, and Davis (2016). For

1



 Electronic copy available at: https://ssrn.com/abstract=3221659 

example, the 9/11 attack introduces uncertainty in the economy, but there is very little disagreement about

which policies should be implemented. Generally, American politics are very polarized regarding economic

policy, but less divided when it comes to national defense issues.

We find that the partisan conflict index significantly and positively predicts future market returns. Over

the sample period from January 1981 to December 2017 (444 months), a one-standard deviation increase

in partisan conflict is associated with a 0.58% increase in the next one month expected market return. This

predictive power remains significant in different subsample periods and slightly changes after controlling

for the well-know economic predictors (Welch and Goyal, 2008), uncertainty measures (Bali, Brown, and

Caglayan, 2014; Choi, Mueller, and Vedolin, 2017; Jurado, Ludvigson, and Ng, 2015; Baker, Bloom, and

Davis, 2016), geopolitical risk (Caldara and Iacoviello, 2018), and disagreement measures (Bali, Brown,

and Tang, 2017).

Partisan conflict, as a measure of political disagreement, is different from political sentiment. In the

spirit of Addoum and Kumar (2016), we measure political sentiment as the return differential between high

and low political-sentiment portfolios and find it negatively correlated with partisan conflict. In predicting

market returns, the forecasting sign is positive for partisan conflict and negative for political sentiment, both

of which are significant.

In more robustness tests, we find that partisan conflict 1) negatively predicts the following one- to 12-

month market returns, in- and out-of-sample, 2) is robust with alternative detrending approaches, and 3) has

stronger predictive power for industries such as chemicals, drugs, construction, fabricate, machinery, and

finance. In a state-dependent regression, we show that the predictive power of partisan conflict concentrates

in periods when the president is affiliated with Republican party or the majority of House is Republicans.

To interpret the results, we show that partisan conflict does not predict future macroeconomic activities,

such as industrial production, consumption, and unemployment, etc. By using the decompositions of

Campbell, Giglio, Polk, and Turley (2018), we find that partisan conflict can only predict discount rates,

rather than cash flows and variance shocks. We attribute the higher risk premium when partisan conflict is

high to the higher downside risk. Our interpretation is as follows. The government, through its regulatory

institutions and budgetary decisions, implements policies that affect the environment in which firms operate.

These policies are typically designed to prevent negative economic outcomes such as recessions and crises.

2
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When parties are polarized and the government is divided, partisan conflict is elevated, and the quality of

policies adopted is lower. Thus, partisan conflict exacerbates economic risk by increasing the likelihood of

recessions or crises.

To test our interpretation, we measure downside risk with Kelly and Jiang (2014) tail risk and Giglio,

Kelly, and Pruitt (2016) partial quantile regression-based systemic risk, where the former is proposed to

capture the rare diaster risk in financial markets, and the latter has been proved to be the most robust and

powerful measure for the systemic risk of real economic activities. In this paper, we find that partisan

conflict is positively related to these two measures. A one-standard deviation increase in partisan conflict is

associated with a 0.17 increase in tail risk and a 0.07 increase in systemic risk, both of which are significant

at the 5% level.

Do investors pay attention and respond to partisan conflict? To answer this question, we perform two

tests. First, we collect the search interest index data for each keyword used in Azzimonti (2018) from

Google trends and construct an equally-weighted search interest index on partisan conflict, and find that

the search interest index is positively associated with the partisan conflict index, with a correlation of 0.31,

suggesting that the public does pay attention to partisan conflict. Second, we collect ETF flows into stocks

and bonds and show that when partisan conflict increases, the flows to bonds significantly increase and to

stocks significantly decrease, suggesting that investors become more cautionary for investments.

The rest of this paper is organized as follows. Section 2 presents some basic facts about U.S. partisan

conflict, which are the motivation of this paper. Section 3 shows that the Azzimonti (2018) partisan conflict

index positively predicts market returns and is robust with different controls. Section 4 explores an economic

channel by showing that partisan conflict is positively related with downside risk and that investors make

more conservative investments when partisan conflict increases, thereby positively predicting market returns.

Section 5 concludes.

3
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2 U.S. Partisan Conflict

2.1 Evidence from surveys

The conflicts between Republicans and Democrats on fundamental political values—on government, race,

immigration, national security, environmental protection and other areas—reached record levels during

Obama’s presidency. Republicans talk about “death taxes”, “illegal aliens”, and “tax reform”, whereas

Democrats refer to “estate taxes”, “undocumented workers”, and “tax breaks for the wealthy”.

Based on surveys of more than 5,000 adults conducted over the summer of 2017, Pew Research Center

finds widening differences between Republicans and Democrats on a range of measures the Center has been

asking about since 1994. Figures 1 and 2 show that the gap between the political values of Republicans and

Democrats is now larger than at any point dating back to 1994, a continuation of a steep increases in the

ideological divisions between the two parties over more than two decades. For example, in 2017, the median

(middle) Republican is now more conservative than 97% of Democrats, and the median Democrat is more

liberal than 95% of Republicans. By comparison, in 1994, the two corresponding numbers are only 70%

and 64%, respectively. That is, 64% of Republicans are to the right of the median Democrat, while 70% of

Democrats are to the left of the median Republican.

Figure 2 also shows that while partisan conflict has been widening in the past two decades, other gaps,

such as age, education, gender, and race, relatively remain modest.

2.2 Partisan conflict index

Azzimonti (2018) constructs a partisan conflict index by using a semantic search approach to measure the

frequency of newspaper coverage of articles reporting political disagreement about government policy–both

within and between national parties–normalized by the total number of news articles to average 100 in

1990. The semantic search for this benchmark index is performed in Factiva (by Dow Jones), a newspaper

database containing digitalized copies of all major U.S. newspapers, such as The Washington Post, The New

York Times, Los Angeles Times, Chicago Tribune, The Wall Street Journal, Newsday, The Dallas Morning

News, The Boston Globe, and Tampa Bay Times. For self-contained, in Appendix we present the newspaper

coverage and the set of words used by Azzimonti (2018) in constructing the index.
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Specifically, Azzimonti (2018) counts the number of articles that discuss disagreement between political

parties, branches of government, or political actors (e.g., candidates not yet in office, legislators, etc.) in a

given month. She searches for articles containing at least one keyword in the following two categories,

political disagreement and government, and focuses on specific terms related to partisan conflict, such as

“divided party”, “partisan divisions”, and “divided Congress”. This search approach captures disagreement

not only about economic policy (e.g., related to budgetary decisions, tax rates, deficit levels, welfare

programs, etc.), but also about private-sector regulation (e.g., financial and immigration reform), national

defense issues (e.g., wars, terrorism), and other dimensions that divide policymakers’ views (e.g., same-sex

marriage, gun control, and abortion rights, among others)

Figure 3 plots the monthly partisan conflict index over the period from January 1981 to December

2017. As expected, the rise of this index accelerates with partisan debates, such as Obamacare and debt

ceiling, and peaks around the 2013 government shutdown and the 2016 Trump-Clinton president election.

The index also dramatically shrinks on some remarkable political and military incidences, such as the 1987

Beirut Bombing, 1990 Gulf War, and 2001 9/11.

The partisan conflict remains relatively stable from 1981 to the late 2009, but appears to display an

upward trend thereafter, during Obama’s presidency and it has grown even larger in Donald Trump’s first

year as president. To ensure it to be stationary in use, Figure 3 also plots the quadratically detrended series,

which will be used throughout the paper. In Section 3.6, we show that our results remain the same when

alternative detrending methods are used.

3 Partisan Conflict and Return Predictability

3.1 Forecasting market returns

The market return to be predicted is the continuously compounded log return of the S&P 500 index in excess

of the risk-free rate. To have an intuitive understanding about the relationship between partisan conflict and

market return, Table 1 presents the following one month market returns when the partisan conflict index

reaches its top and bottom 10 historical records, respectively. In Panel A, after the index experiences a

historical high in month t, the market return in month t +1 is more likely to be positive. For example, after
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the index reaches its historical mark in October 2013, the market return is 3.04% in November 2013. In

contrast, in Panel B after the index experiences a historical low in month t, the market return in month t +1

is more likely to be negative. For example, in August 2015 the index reaches its 10th historical low, the

market realizes a −2.49% return in September 2015.

It appears in Table 1 that partisan conflict is associated with future market returns. To formally test this

conjecture, we estimate variants of the following standard predictive regression:

Rt+1 = α +βpartisan conflictt +ψZt + εt+1, (1)

where Zt is one of the well-known return predictors in Welch and Goyal (2008), including dividend-price

ratio, dividend yield, earnings-price ratio, dividend-payout ratio, book-to-market ratio, net equity expansion,

treasury bill rate, long-term bond yield, long-term bond return, term spread, default yield spread, default

return spread, inflation rate, and stock sample variance. The sample period runs from January 1981 through

December 2017.

Table 2 presents the regression results, in which all independent variables are normalized to have a mean

zero and variance one, so that the regression slope measures the variation of next month expected market

return in response to one standard deviation increase in the independent variable of interest. As can be seen,

partisan conflict has substantial forecasting power for future market returns. In the first row when partisan

conflict is the only predictor, a one standard deviation increase in partisan conflict in month t is positively

associated with a 0.58% step-up of expected market return in month t +1.

In the second to last row, we include the 14 known return predictors one by one as a control variable to

explore whether the partisan conflict index has incremental forecasting power. The results are encouraging

and the regression slope on partisan conflict is virtually unchanged from its value in the first row. Consistent

with Welch and Goyal (2008), none of the 14 known predictors is significant. Thus, the predictive power of

partisan conflict for future market returns appears to be somewhat more robust than known return predictors,

at least in our sample period.

Having shown that partisan conflict has significant predictive power on market return, a suspicious reader

may wonder how stable the estimator is in regression (1) or to what extent the results in Table 2 are driven
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by a subsample period. To address this concern, we estimate the slope of partisan conflict with a rolling

20-year window, and plot the time-varying estimates in Figure 4, where the data point labeled “200501”

reflects an estimate based on the 1985:02–2005:01 sample period. As the figure shows, although volatile,

nearly 90% of the slopes are statistically significant at 10% level. More importantly, the estimates after 2005

are persistently larger than the full-sample estimate, suggesting that including the early years tend to reduce

the economic magnitude of our results.

3.2 Controlling for uncertainty

As argued by Azzimonti (2018), high levels of partisan conflict are interpreted as situations where agreement

between the two parties is hard to reach, so policies are expected to be less effective at preventing

recessions and tail risks. Moderate levels of partisan conflict should be associated with positive economic

policy uncertainty, as investors cannot predict which policies will be undertaken. Examples are the debt

ceiling debate (will the government change taxes to avoid a fiscal cliff?), the passage of Obamacare (will

Congress modify the health care system effectively, or will this result in an explosion of public debt?),

or the uncertainty associated with tax expirations (will tax cuts expire or will the two parties agree on

further extensions?) In these situations, partisan conflict should be correlated with macroeconomic risk and

uncertainty, such as the EPU in (Baker, Bloom, and Davis, 2016).

However, Azzimonti (2018) shows in details that an increase in partisan conflict does not necessarily

lead to an increase in EPU. Under extreme levels of partisan disagreement (e.g., when Congress is divided

and polarization levels are high) the government may enter a gridlock state, or even a shutdown and the

relationship between EPU and partisan conflict may break, at least in the short-run. This is consistent with

the 2013 shutdown and the first half of 2017. When the partisan conflict index reaches extreme values,

investors become very pessimistic about the ability of the government to take the appropriate measures to

reduce tail risks or less the effects for recessions, and this may depress investment (Azzimonti, 2018).

To reduce the concern that the information embedded in partisan conflict largely overlaps with

macroeconomic uncertainty, we consider the bivariate regression (1) by replacing Zt with a proxy for

macroeconomic uncertainty. For comprehensive, we consider seven measures, including the economic

uncertainty index from Bali, Brown, and Caglayan (2014), treasury implied volatility from Choi, Mueller,
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and Vedolin (2017), economic policy uncertainty and monetary policy uncertainty from Baker, Bloom, and

Davis (2016), financial uncertainty from Jurado, Ludvigson, and Ng (2015), VIX, and geopolitical risk

measure from Caldara and Iacoviello (2018).

Panel A of Table 3 presents the results. As the table shows, the predictive power of partisan conflict is

not affected by any of the uncertainty measures, and its regression slope is similar to, or even larger in some

cases than, the univariate case in which partisan conflict is used alone. It is also interesting that five out of 7

macroeconomic uncertainty proxies are not statistically significant in predicting future market returns, and

the rest two, financial uncertainty and geopolitical risk, are only marginally significant at the 10% level.

To have a clear understanding of the difference between partisan conflict and uncertainty, Figure 5 plots

the time-series of partisan conflict vs. VIX, where the latter is widely used as an uncertainty measure in

the literature (Manela and Moreira, 2017). We can make two statements from the figure immediately. First,

the two indexes generatively move in opposite directions, with a correlation of −0.30. For example, in the

1990-1998 sample period, VIX is persistently low, while the partisan conflict index almost always stays

above its long-term mean. After the 2008 financial crisis, VIX stays at a low level again, while the partisan

conflict index keeps breaking its historical high records. Second, both partisan conflict and VIX reach their

high marks in different periods. For example, VIX reaches its historical high in the 2008 financial crisis

period, whereas the partisan conflict index breaks its record in the 2013 government shutdown.

Figure 6 plots the time-series of the partisan conflict index vs. geopolitical risk index. Accordingly

to Caldara and Iacoviello (2018), geopolitical risk refers to the risk associated with wars, terrorist acts,

and tensions between states that affect the normal and peaceful course of international relations, and

is constructed by counting the frequency of articles related to geopolitical risks in leading international

newspapers published in the U.S., the United Kingdom, and Canada. Figure 6 shows that although the

partisan conflict index coincides with the geopolitical risk index around the period of U.S. bombs Libya

and Gulf war, it reflects the turbulence caused by political debates most of the other times. In contrast,

geopolitical risk index mainly captures the influence of wars, terrorism, and events, which break the peaceful

international relationships. Indeed, these two indexes generally have a negative −0.14 correlation in our

sample period. In sum, it is not possible to simply attribute the predictive power of partisan conflict to that

of macroeconomic uncertainty.

8
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3.3 Controlling for disagreement

As argued by Azzimonti (2018), the partisan conflict index is a measure of political disagreement, which

raises a concern as to whether its predictive power is subsumed by traditional macroeconomic disagreement

measures (Anderson, Ghysels, and Juergens, 2005; Banerjee, 2011; Atmaz and Basak, 2018).

To differentiate partisan conflict from macroeconomic disagreement, we construct ten measures

based on the Blue Chip Economic Indicator surveys, including disagreement on gross domestic product,

consumer price index, 3-month treasury bill rate, unemployment rate, industrial production, disposable

personal income, non-residential fixed investment, housing starts, 10-year treasury bond rate, and personal

consumption expenditure, respectively. Each disagreement measure is computed as the standard deviation

of economists forecasts on these macroeconomic variables.

Panel B of Table 3 reports the results from the bivariate regression (1) by replacing Zt with a

macroeconomic disagreement measure. The results show that the predictive ability of partisan conflict

remains the same as the standalone case, while none of the macroeconomic disagreement measures has any

predictive power.

3.4 Controlling for political sentiment

Recent literature shows that changes in political climate influence stock prices. For instance, Addoum and

Kumar (2016) argues that investor demand can be shifted if there is a change of the majority party. They

define this shift as political sentiment and argue that cash flows and asset prices of firms or industries with

higher political exposures will be more sensitive to this sentiment measure. To offer a clear comparison

between political sentiment and partisan conflict, we construct political-sensitivity portfolios following

Addoum and Kumar (2016) and construct a political sentiment index as the return differential between

high and low political-sensitivity portfolios. We smooth the index with the 6-month moving averages to iron

out idiosyncratic noises.

Figure 7 provides a graphical illustration on the difference between partisan conflict and political

sentiment. Clearly, these two indexes capture different information, with a correlation of −0.16. To explore

9



 Electronic copy available at: https://ssrn.com/abstract=3221659 

how they are related to future stock returns, Table 4 presents the results of the following bivariate regressions:

Rt+1 = α +βpartisan conflictt +ψpolitical sentimentt + εt+1. (2)

When used as a standalone predictor, a one-standard deviation increase in political sentiment suggests a

0.44% decrease in the next one month expected market return. This magnitude is statistically significant

and economically sizeable. When partisan conflict is included, the regression slope of political sentiment

slightly decrease in magnitude from 0.44% to 0.40%, but remains statistically significant. Similarly, the

slope on partisan conflict also slightly decreases from 0.58%, the standalone case, to 0.55% and remains

significant as well. As a result, partisan conflict and political sentiment capture different aspects of the U.S.

politics.

3.5 Alternative forecasting horizons

This section explores whether the predictive power of partisan conflict extends to multiple months. As such,

we consider the following regression:

Rt,t+h = α +βpartisan conflictt + εt,t+h, (3)

where Rt,t+h is the h-month market return from month t to month t +h (h = 1,3,6, and 12). Table 5 reports

the results and shows that partisan conflict can predict the market up to a horizon of one year. A one-

standard deviation increase in partisan conflict in month t is associated with a 1.08% increase of expected

market return in the following one quarter and a 4.80% increase in the following one year.

In addition to in-sample forecasting, Table 5 also reports the out-of-sample performance. We use

Campbell and Thompson (2008) out-of-sample R2 statistic as the out-of-sample performance evaluation

criterion, and define it as:

R2
OS = 1− ∑

T
t=K+1(Rt − R̂t)

2

∑
T
t=K+1(Rt − R̄t)2

, (4)

where K is the size for in-sample parameter training and T −K is the number of out-of-sample observations.
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R̂t and R̄t are the return forecasts with partisan conflict and historical mean, both of which are estimated using

data up to month t−1. If partisan conflict is a viable predictor, the R2
OS will be positive and its mean-squared

forecast error (hereafter MSFE) will be lower than the MSFE with the forecast based on the historical return

mean. Campbell and Thompson (2008) show that a monthly R2
OS of 0.5% can generate significant economic

value. The null hypothesis of interest is therefore R2
OS ≤ 0 against the alternative hypothesis that R2

OS > 0.

We test this hypothesis by using the Clark and West (2007) MSFE-adjusted statistic.

In this paper, we use the first 15-year data as in-sample training and the rest 21-year data as out-of-

sample evaluation. Following Welch and Goyal (2008) and Campbell and Thompson (2008), we recursively

estimate the expected market returns using the expanding window approach to reduce estimation error. The

last column of Table 5 shows that the predictive ability remains significant with this stringent evaluation

criterion. The R2
OSs are 2.48%, 2.02%, and 9.74% at the one-month, one-quarter, and one-year forecasting

horizons, respectively.1

3.6 Alternative detrending methods

To ensure that our results are not driven by the specific quadratic detrending approach, this section explores

the predictive ability of partisan conflict with alternative detrending methods. For robustness, we consider

four alternatives: 1) raw partisan conflict index, 2) linear detrending, 3) cubic detrending, and 4) stochastic

detrending. Following Campbell (1991) and Rapach, Ringgenberg, and Zhou (2016), stochastic detrending

is based on a five-year window and the detrended partisan conflict in month t is the difference between the

raw partisan conflict in month t minus its average from month t−59 to month t.

Table 6 presents the in- and out-of-sample performance over various forecasting horizons. The results

show that the predictive power of partisan conflict is robust to different detrending methods: the regression

estimates are economically and statistically significant for all detrending specifications and at all horizons.

3.7 Forecasting industry portfolio returns

Belo, Gala, and Li (2013) show that industry government spending exposure reflects predictable variations in
1It should be mentioned that, although the out-of-sample R2

OS can be negative and is usually smaller than the in-sample R2,
theoretically they do not have a strict relationship (Welch and Goyal, 2008; Campbell and Thompson, 2008). One reason is that
they are based on different sample periods with different econometric criteria.

11
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cash flow and stock returns over political cycles. Firms with higher (lower) government spending exposure

experience higher (lower) cash flows and stock returns during Democratic (Republican) presidencies. In

addition, Addoum and Kumar (2016) show that shifts in political climate generate predictable patterns in

industry returns, which are more pronounced at the aggregate level than at firm level. In this section, we

investigate how the predictive power of partisan conflict varies across industry portfolios. Specifically, we

consider the following predictive regression:

Ri
t+1 = α +βpartisan conflictt + εt+1, (5)

where Ri
t+1 is the excess return of one of the 17 industry portfolios in Fama and French (1997). Results in

Table 7 show that partisan conflict significantly predicts nine industries in-sample and eight industries out-

of-sample, among which seven industries are significantly predicted both in- and out-of-sample, including

Chems (Chemicals), Cnsum (Drugs, Soap, Perfumes, Tobacco), Cnstr (Construction and Construction

Materials), FabPr (Fabricated Products), Machn (Machinery and Business Equipment), Finan, and Other.

Apparently, most of these sectors are heavily regulated by the government and therefore related to the

variations of partisan conflict.

3.8 Forecasting the market over different political regimes

Santa-Clara and Valkanov (2003) and Pastor and Veronesi (2018) show that market returns exhibit a

striking pattern: they are much higher under Democratic presidents than under Republican ones. In this

section, we examine whether the predictive power of partisan conflict differs over different political regimes.

Specifically, we predict the market return with a state-dependent regression as

Rt+1 = α +β1Irepublican
t partisan conflictt +β2Idemocratic

t partisan conflictt + εt+1, (6)

where Irepublican
t is a dummy variable that equals one if the president is affiliated with republican party or

the majority of House/Senate is republican, and zero otherwise. Idemocratic
t is a dummy variable that equals

one if the president is affiliated with democratic party or the majority of House/Senate is democrats, and

zero otherwise. Results in Table 8 show that all the coefficients of republican indicators are positive and

12



 Electronic copy available at: https://ssrn.com/abstract=3221659 

significant at the 5% level. In contrast, the significance of democratic indicators is much weaker with

Idemocratic
t being only significant at the 10% level when the majority of Senate is democrats. In sum, Table 8

demonstrates a clear pattern that the predictive power of partisan conflict concentrates in the periods when

the Republican party is in power.

4 Interpreting the Results

4.1 Forecasting economic activities

One possible explanation as to why partisan conflict predicts market returns is that it is positively associated

with future macroeconomic activities. To test this possibility, we forecast economic activities with partisan

conflict as

yt+1 = α +βpartisan conflictt +
12

∑
i=1

λiyt−i+1 + εt+1 (7)

for monthly data, and

yq+1 = α +βpartisan conflictt +
4

∑
i=1

λiyq−i+1 + εq+1 (8)

for quarterly data. We consider eight proxies for economic activities, including the Chicago fed

national activity index (CFNAI), industrial production growth, real personal consumption expenditure

(consumption), unemployment rate, private gross domestic investment (investment), real GDP growth,

business inventory, and capacity utilization (Greenwood, Hercowitz, and Huffman, 1988). In the regressions,

these economic variables are adjusted for seasonality and annualized for ease of exposition. Except for the

gross private domestic investment and real GDP growth, all of them are measured at monthly frequency.

Panel A of Table 9 shows that partisan conflict cannot predict any of the eight economic activity

measures. This result is not necessarily inconsistent with Azzimonti (2018), who shows that, to some extent,

partisan conflict represents one type of uncertainty and negatively predicts future firm investments. The main

difference is that we focus on the aggregate market level analysis, while Azzimonti (2018) considers the firm

level analysis. Since firms’ investments are highly heterogenous (Clementi and Palazzo, 2018), the firm level

pattern does not necessarily hold at the aggregate level.

According to Campbell, Giglio, Polk, and Turley (2018), if a variable predicts future market returns, it
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must predict future cash flows or discount rates or variance shocks or all of the three terms. Based on the

results in Panel A, we can exclude the cash flow channel, and thus, partisan conflict must predict discount

rates or variance shocks or both. To test this hypothesis, we consider the following regression:

yq+1 = α +βpartisan conflictq +ψP/Eq + εq+1, (9)

where the dependent variable is future discount rates, cash flows, or variance shocks, and P/E is the price-

earnings ratio.2 We take the average of the partisan conflict index within one quarter as the quarterly partisan

conflict measure.

Panel B of Table 9 shows that partisan conflict can only significantly predict discount rates, but not cash

flows and variance shocks. A one-standard deviation increase in partisan conflict leads to a 1.40% increase

in next quarter discount rates. In contrast, the coefficients on cash flow shock and variance shock are close

to zero and not significant, which is consistent with the results in Panel A.

4.2 Relationship with downside risk

The government, through its regulatory institutions and budgetary decisions, implements policies that affect

the environment in which firms operate. These policies are typically designed to prevent negative economic

outcomes such as recessions and crises. When parties are polarized and the government is divided, partisan

conflict is elevated, and the quality of policies adopted is lower. Thus, partisan conflict exacerbates economic

risk by increasing the likelihood of recessions or crises.

To test this implication, we consider two downside risk measures, the tail risk in Kelly and Jiang (2014)

and the partial quantile regression-based systemic risk in Giglio, Kelly, and Pruitt (2016), and run the

following predictive regression:

yt+1 = α +βpartisan conflictt +ψyt + εt+1. (10)

Table 10 shows that a one-standard deviation increase in partisan conflict is positively associated with a 17%

increase in tail risk and a 0.07% increase in systemic risk.

2We thank Christopher Polk for providing these data on his webpage.
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4.3 Do investors pay attention to partisan conflict?

Azzimonti (2018) constructs the partisan conflict index by counting the number of articles related to political

disagreement published in widely-circulated newspapers. It reflects the opinions from a relatively small

group of professionals with sophisticated knowledge. One natural question is wether investors pay attention

to partisan conflict. To address this issue, we collect the search interest index data for each keyword used in

Azzimonti (2018) from Google trends and construct an equally-weighted search interest index on partisan

conflict. Figure 8 shows that the search interest index is positively associated with the partisan conflict

index, with a correlation of 0.31. This suggests that the public does pay attention to partisan conflict.

Gentzkow and Shapiro (2010) construct a metric of media slant based on the language used by media

outlets, and argue that readers’ preferences in the political spectrum are the key drivers of the newspapers

content.

4.4 Do investors respond to partisan conflict?

If investors pay attention to partisan conflict, do they adjust their investments accordingly? To answer this

question, we offer some evidences from observational data. We compute the weight of investment flows into

bonds (stocks) as quarterly ETF flows into bonds (stocks) at quarter q normalized by the sum of total net

asset in bonds and stocks at quarter q -1. We use quadratic detrending method to remove the time trend in

flows. Following Lian, Ma, and Wang (2018), we control the Campbell-Shiller price-earnings ratio (P/E10),

the past 12-month excess stock return, V IX2 (the square of VIX, which measures the expected variance

of S&P500 index), real GDP growth, and the credit spread (Gilchrist and Zakrajsek, 2012). We consider

two sets of political dummy variables including presidential affiliation and House majority. The dummy

variable equals to one if the president is affiliated with Republican (House majority is Republican), and zero

otherwise. We take the average of partisan conflict index within one quarter as the quarterly partisan conflict

measure and run the following regression:

∆Wq = α +βpartisan conflictq ∗dummyq + γpartisan conflictq +ρdummyq +X ′q−1ψ +
4

∑
i=1

λi∆Wq−i + εq,

(11)
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where ∆W denotes the change in weight of ETF flows into bonds or stocks, and partisan conflict*dummy

refers to the interaction term between partisan conflict and political dummy. X includes all the control

variables which are lagged by one period. All regressions include four lags of ∆W in case that ETF flows

are persistent over time.

5 Conclusion

By using the textual index of Azzimonti (2018), this paper shows that partisan conflict positively predicts

market returns, controlling for economic predictors and proxies for uncertainty and disagreement. A one

standard-deviation increase in partisan conflict is associated with a 0.58% increase in next month market

return. The forecasting power concentrates in periods when the president is from the Republican Party or

the majority of House is Republicans. Economically, partisan conflict is positively related to downside risk,

and makes investors more conservative when its value increases.

There are a number of subjects that are of interest for future research. First, while we focus on the stock

market, it is interesting to examine the predictability of partisan conflict in other markets. Second, while it

is beyond the scope of this paper, it would be interesting to explore the effect of partisan conflict in a general

equilibrium model. Finally, what drives the movements of partisan conflict deserves further research.
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Figure 1 Political polarization in the American public (2017, Pew Research Center)
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Figure 2 Political polarization vs. other gaps in the American public (2017, Pew Research Center)
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Figure 3 Partisan conflict index

This figure plots the partisan conflict index in Azzimonti (2018). The sample period is 1981:01–2017:12
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Figure 4 Rolling slopes from the regressions of market returns on partisan conflict index

This figure plots the slopes from the regressions of market returns on partisan conflict index with a rolling
window of 20 years, where the dashed line indicates the full sample estimate. The political conflict index is
from Azzimonti (2018), and the sample period is 1981:01–2017:12.
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Figure 5 Partisan conflict vs. VIX

This figure plots the partisan conflict index and VIX, where the former is from Azzimonti (2018) and
the latter is from CBOE. The sample period is 1981:01–2017:12 for partisan conflict index and 1990:01–
2017:12 for VIX.
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Figure 6 Partisan conflict vs. geopolitical risk

This figure plots the partisan conflict and geopolitical risk indexes, where the former is from Azzimonti
(2018) and the latter is from Caldara and Iacoviello (2018). The sample period is 1981:01–2017:12 for
partisan conflict index and 1985:01–2017:12 for geopolitical risk index.
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Figure 7 Partisan conflict vs. political sentiment

This figure plots the partisan conflict and political sentiment indexes, where the former is from Azzimonti
(2018), and the latter is measured as the return differential between high and low political-sentiment
portfolios following Addoum and Kumar (2016), which is smoothed by the 6-month moving averages to
iron out idiosyncratic noises. The sample period is 1981:01–2017:12.
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Figure 8 Partisan conflict vs. its attention index

This figure plots the Azzimonti (2018) partisan conflict index and its attention index (i.e., Google search
interest), where the attention index is constructed by equally weighting the Google search volumes of the
partisan conflict key words used in Azzimonti (2018). The sample period is 2004:01–2017:12.
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Table 1 Market returns following historical records of the partisan conflict index

This table reports the next one month market returns following the top and bottom 10 historical records of
the Azzimonti (2018) partisan conflict index. The sample period is 1981:01–2017:12.

Partisan conflict Next one month return

Panel A: Returns following top 10 historical records
Oct-2013 109.24 3.04
Mar-2017 104.52 1.01
Jul-2017 75.82 0.13
Feb-2017 75.35 0.14
Jan-2017 74.36 3.83
Oct-1990 60.55 5.69
Nov-2016 55.13 1.87
Nov-1995 54.34 1.26
Oct-1992 48.81 3.09
Apr-1993 45.74 2.37

Panel B: Returns following bottom 10 historical records
Aug-2015 −40.41 −2.49
Aug-2009 −40.50 3.58
Sep-2005 −40.94 −1.85
Dec-2008 −42.10 −8.62
Jan-1982 −43.27 −6.09
Dec-2006 −47.98 1.08
Apr-1984 −48.20 −0.49
Jan-1981 −49.80 1.04
Aug-1981 −49.89 −6.41
Feb-1981 −53.43 2.55
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Table 2 Forecasting market returns with partisan conflict index

This table reports the results of predicting market returns with Azzimonti (2018) partisan conflict index as

Rt+1 = α +βpartisan conflictt +ψZt + εt+1,

where Zt is one of the economic predictors in Welch and Goyal (2008). Reported are the regression slope,
t-value, and R2. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively. The sample
period is 1981:01–2017:12.

β t-value ψ t-value R2

0.58∗∗∗ 3.01 1.81

Dividend-price ratio 0.57∗∗∗ 2.98 0.24 1.15 2.12
Dividend yield 0.57∗∗∗ 2.96 0.26 1.24 2.17
Earning-price ratio 0.56∗∗∗ 3.02 0.14 0.50 1.90
Dividend payout ratio 0.59∗∗∗ 3.20 0.10 0.36 1.86
Book-to-market ratio 0.59∗∗∗ 3.03 0.15 0.67 1.92
Net equity expansion 0.59∗∗∗ 3.26 −0.10 −0.42 1.86
Treasury bill rate 0.56∗∗∗ 2.77 −0.12 −0.57 1.88
Long-term bond yield 0.57∗∗∗ 2.89 −0.13 −0.64 1.90
Long-term bond return 0.57∗∗∗ 2.96 0.24 1.17 2.11
Term spread 0.57∗∗∗ 2.79 0.01 0.06 1.80
Default yield spread 0.61∗∗∗ 3.44 0.10 0.32 1.85
Default return spread 0.57∗∗∗ 3.01 0.38 1.17 2.59
Inflation rate 0.57∗∗∗ 3.02 0.16 0.64 1.94
Stock sample variance 0.62∗∗∗ 3.27 0.26 1.37 2.17
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Table 3 Controlling for uncertainty and disagreement

This table reports the results of predicting market returns with Azzimonti (2018) partisan conflict index as

Rt+1 = α +βpartisan conflictt +ψZt + εt+1,

where Zt is one of the economic uncertainty or disagreement measures. Economic uncertainty measures
include the economic uncertainty index from Bali, Brown, and Caglayan (2014), treasury implied volatility
from Choi, Mueller, and Vedolin (2017), economic policy uncertainty, financial uncertainty from Jurado,
Ludvigson, and Ng (2015), monetary policy uncertainty from Baker, Bloom, and Davis (2016), CBOE VIX,
and geopolitical risk measure from Caldara and Iacoviello (2018), and economic disagreement measures
are calculated as the standard deviations of economists’ forecasts from the Blue Chip Economic Indicator
survey, including gross domestic product, consumer price index, 3-month treasury bill rate, unemployment
rate, industrial production, disposable personal income, non-residential fixed investment, housing starts,
10-year treasury bond rate, and personal consumption expenditure. Reported are regression slopes, t-values,
and R2s. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively. The sample period
is 1981:01–2017:12.

β t-value ψ t-value R2

Panel A: Controlling for uncertainty
Economic uncertainty index 0.81∗∗∗ 3.66 0.06 0.16 3.62
Treasury implied volatility 0.70∗∗∗ 2.84 −0.22 −0.54 3.12
Economic policy uncertainty 0.57∗∗ 2.34 0.11 0.34 1.91
Financial uncertainty 0.43∗∗ 2.10 −0.59∗ −1.67 3.36
VIX 0.79∗∗∗ 3.91 0.22 0.59 3.40
Monetary policy uncertainty 0.58∗∗ 2.65 0.16 0.55 1.99
Geopolitical risk 0.65∗∗∗ 2.97 0.40 1.86 2.73

Panel B: Controlling for disagreement
Disagreement on gross domestic product 0.58∗∗∗ 2.73 0.09 0.35 1.85
Disagreement on consumer price index 0.59∗∗∗ 2.89 0.08 0.28 1.84
Disagreement on 3-month treasury bill 0.58∗∗∗ 2.73 0.04 0.24 1.81
Disagreement on unemployment rate 0.56∗∗∗ 2.65 0.29 1.28 2.26
Disagreement on industrial production 0.59∗∗∗ 2.83 0.23 1.03 2.09
Disagreement on disposable personal income 0.57∗∗∗ 2.76 −0.06 −0.21 1.83
Disagreement on non-residential fixed investment 0.59∗∗∗ 2.84 0.15 0.64 1.93
Disagreement on housing starts 0.58∗∗∗ 2.78 0.01 0.07 1.81
Disagreement on 10-year treasury bond 0.84∗∗∗ 3.22 0.27 0.82 3.77
Disagreement on personal consumption expenditure 0.73∗∗∗ 3.50 −0.17 −0.60 3.70
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Table 4 Controlling for political sentiment

This table reports the results of predicting market returns with Azzimonti (2018) partisan conflict index as

Rt+1 = α +βpartisan conflictt +ψpolitical sentimentt + εt+1,

where political sentiment is defined as the return differential between high and low political-sensitivity
portfolios in Addoum and Kumar (2016). ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels,
respectively. The sample period is 1981:01–2017:12.

β t-value ψ t-value R2

−0.44∗∗ −2.07 1.05
0.55∗∗∗ 2.84 −0.40∗ −1.91 2.67
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Table 5 Forecasting market returns with different horizons

This table presents the results of predicting market returns with partisan conflict index as:

Rt,t+h = α +βpartisan conflictt + εt,t+h,

where Rt,t+h = ∑
h
j=1 Rt+ j/h is the average market return between months t and t + h (h = 1,3,6,12).

Reported are regression slope, t-value, in-sample R2, and out-of-sample R2
OS. Statistical significance for

R2
OS is based on the p-value of the Clark and West (2007) MSFE-adjusted statistic for testing: H0 : R2

OS 6 0
against HA : R2

OS > 0. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively. The
in-sample period is 1981:01–2017:12 and the out-of-sample period is 1996:01–2017:12.

Horizon β t-value R2 R2
OS

h = 1 0.58∗∗∗ 3.01 1.80 2.48∗∗∗

h = 3 1.08∗∗ 2.22 2.03 2.02∗

h = 6 2.58∗∗∗ 2.60 5.15 4.18∗∗

h = 12 4.80∗∗∗ 2.63 7.96 9.74∗∗∗
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Table 6 Forecasting market returns using alternative detrended partisan conflict indexes

This table presents the results of predicting market returns as:

Rt,t+h = α +βpartisan conflictt + εt,t+h,

Rt,t+h = ∑
h
j=1 Rt+ j/h is the average market return between months t and t +h (h = 1,3,6,12). We consider

the raw partisan conflict index without detrending and with alternative detrended methods, including linear,
cubic, and stochastic detrending approaches, respectively. Reported are regression slope, t-value, in-sample
R2, and out-of-sample R2

OS. Statistical significance for R2
OS is based on the p-value of the Clark and West

(2007) MSFE-adjusted statistic for testing: H0 : R2
OS 6 0 against HA : R2

OS > 0. ∗∗∗, ∗∗, and ∗ indicate
significance at the 1%, 5%, and 10% levels, respectively. The in-sample period is 1981:01–2017:12 and the
out-of-sample period is 1996:01–2017:12.

Horizon β t-value R2 R2
OS

Panel A: No detrending

h = 1 0.48∗∗∗ 3.10 1.27 1.44∗∗∗

h = 3 0.96∗∗∗ 2.63 1.63 1.59∗∗∗

h = 6 2.16∗∗∗ 2.93 3.97 2.23∗∗∗

h = 12 4.44∗∗∗ 2.81 7.08 7.79∗∗∗

Panel B: Linear detrending

h = 1 0.52∗∗∗ 2.75 1.46 1.71∗∗∗

h = 3 1.02∗∗ 2.14 1.81 2.12∗∗

h = 6 2.40∗∗∗ 2.47 4.53 4.27∗∗

h = 12 4.92∗∗∗ 2.57 8.70 10.50∗∗∗

Panel C: Cubic detrending

h = 1 0.46∗∗∗ 2.61 1.14 1.53∗∗

h = 3 0.63∗ 1.67 0.69 0.51
h = 6 1.86∗∗∗ 2.62 2.65 1.19∗∗

h = 12 3.48∗∗∗ 2.92 4.28 4.31∗∗∗

Panel D: Stochastic detrending

h = 1 0.48∗∗ 2.55 1.20 1.50∗∗

h = 3 0.72∗ 1.74 0.88 0.74∗

h = 6 1.74∗∗ 2.47 2.62 2.61∗∗∗

h = 12 3.60∗∗∗ 2.65 4.87 5.87∗∗∗
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Table 7 Forecasting industry portfolio returns

This table presents the results of predicting industry portfolio returns as:

Ri
t+1 = α +βpartisan conflictt + εt+1,

where Ri
t+1 is industry i’s return from Ken French’s website. Reported are the regression coefficient,

t-value, in-sample R2, and out-of-sample R2
OS. Statistical significance for R2

OS is based on the p-value of the
Clark and West (2007) MSFE-adjusted statistic for testing: H0 : R2

OS 6 0 against HA : R2
OS > 0. ∗∗∗, ∗∗, and ∗

indicate significance at the 1%, 5%, and 10% levels, respectively. The in-sample period is 1981:01–2017:12
and the out-of-sample period is 1996:01–2017:12.

Industry β t-value R2 R2
OS

Food 0.25 1.58 0.37 0.39∗

Mines 0.01 0.01 0.01 −0.52
Oil 0.42 1.55 0.61 −0.31
Clths 0.30 1.03 0.24 −0.01
Durbl 0.52∗ 1.85 0.88 0.91
Chems 0.56∗∗ 2.01 0.92 0.71∗

Cnsum 0.42∗∗ 2.36 0.95 1.48∗∗∗

Cnstr 0.71∗∗∗ 2.70 1.43 1.95∗∗∗

Steel 0.36 0.89 0.21 −0.12
FabPr 0.48∗∗ 2.01 0.79 0.81∗

Machn 0.59∗∗ 2.10 0.76 0.65∗

Cars 0.42 1.42 0.42 0.17
Trans 0.38 1.60 0.54 0.55
Utils 0.32∗ 1.85 0.70 0.38
Rtail 0.32 1.44 0.39 −0.06
Finan 0.66∗∗ 2.42 1.47 1.84∗∗

Other 0.52∗∗∗ 2.53 1.13 1.42∗∗
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Table 8 Forecasting market returns with partisan conflict index over different political regimes

This table presents the results of forecasting market return with a state-dependent regression as:

Rt+1 = α +β1Irepublican
t partisan conflictt +β2Idemocratic

t partisan conflictt + εt+1,

where Irepublican
t is a dummy variable that equals one if the president is affiliated with republican party or

the majority of House/Senate is republican, and zero otherwise. Idemocratic
t is a dummy variable that equals

one if the president is affiliated with democratic party or the majority of House/Senate is democrats, and
zero otherwise. Reported are the regression slopes, t-values, and R2. ∗∗∗, ∗∗, and ∗ indicate significance at
the 1%, 5%, and 10% levels, respectively. The sample period is 1981:01–2017:12.

State determination β1 t-value β2 t-value R2

Presidential affiliation 0.52∗∗ 2.45 0.26 1.63 1.88
House majority 0.53∗∗∗ 3.63 0.28 1.17 1.92
Senate majority 0.36∗∗∗ 2.56 0.46∗ 1.91 1.86
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Table 9 Forecasting economic activities

Panel A presents the results of predicting economic and corporate activities with partisan conflict index as:

yt+1 = α +βpartisan conflictt +
12

∑
i=1

λiyt−i+1 + εt+1

for monthly data, and

yq+1 = α +βpartisan conflictq +
4

∑
i=1

λiyq−i+1 + εq+1

for quarterly data. The economic activity measures include Chicago fed national activity index (CFNAI),
industrial production growth, real personal consumption expenditure (consumption), unemployment rate,
private gross domestic investment (investment), Real GDP growth, business inventory, and capacity
utilization (Greenwood, Hercowitz, and Huffman, 1988). Panel B reports the results of predicting discount
rate shock, cash flow shock, and variance shock of the market return with partisan conflict index and price
earning ratio as

yq+1 = α +βpartisan conflictq +ψP/Eq + εq+1,

where the shocks and quarterly P/E data are from Campbell, Giglio, Polk, and Turley (2018). We take the
average of the index within one quarter as the quarterly partisan conflict measure. Reported are the slope of
disagreement, its Newey-West t-value, and R2. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10%
levels, respectively.

y β t-value R2

Panel A: Forecasting economic activities
CFNAI −0.08 −0.21 40.82
Industrial production 0.61 1.60 21.44
Consumption 0.07 0.25 19.06
Unemployment −0.12 −1.30 20.59
Investment (quarterly) 1.48 1.42 20.84
Real GDP (quarterly) 0.20 1.03 28.44
Business inventory 0.13 0.48 58.66
Capacity utilization 0.36 1.21 20.24

Panel B: Forecasting market return component shocks
Discount rate shock 1.40∗∗ 1.98 3.02
Cash flow shock 0.05 0.16 0.02
Variance shock 0.01 0.01 0.58
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Table 10 Relationship with downside risk

This table reports the relationship between partisan conflict index and tail risk as:

yt+1 = α +βpartisan conflictt +ψyt + εt ,

where yt is the tail risk in Kelly and Jiang (2014) tail risk or partial quantile regression-based systemic risk
in Giglio, Kelly, and Pruitt (2016). Reported are the regression slope, t-value, and R2. ∗∗∗, ∗∗, and ∗ indicate
significance at the 1%, 5%, and 10% levels, respectively.

β t-value ψ t-value R2

Tail risk 0.17∗∗ 1.96 0.83∗∗∗ 27.08 72.73

Systemic risk 0.07∗∗ 2.29 0.73∗∗∗ 15.73 60.17
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Table 11 Predicting ETF flows

This table reports the results of predicting ETF flows as:

∆Wq = α +βpartisan conflictq ∗dummyq + γpartisan conflictq +ρdummyq +X ′q−1ψ +
4

∑
i=1

λi∆Wq−i + εq

where Wq refers to quarterly ETF flows into bonds (stocks) at quarter q normalized by the sum of total net
asset in bonds and stocks at quarter q−1, and ∆Wq is the change in weight of ETF flows into bonds (stocks).
X includes control variables following Lian, Ma, and Wang (2018): the Campbell-Shiller price-earnings
ratio (P/E10), the past 12-month excess stock return, V IX2 (the square of V IX , which measures the expected
variance of the S&P500 index), real GDP growth, and the credit spread (Gilchrist and Zakrajsek, 2012). We
lag all the control variables by one period. All regressions include four lags of ∆W . We consider two sets
of political dummy variables including presidential affiliation (panel A) and House majority (panel B). The
dummy variable equals to one if the president is affiliated with Republican (House majority is Republican),
and zero otherwise. Partisan conflict measure is from Azzimonti (2018), we take the average of the index
within one quarter as the quarterly partisan conflict measure. Reported are the regression slope, t-value,
and R2. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively. The sample period
is 1997Q1–2017Q4.

Panel A: Presidential affiliation Panel B: House majority
ETF flows Bond Stock Bond Stock

Partisan conflict*dummy 0.20∗ 0.24∗∗ −0.22 −0.28∗∗ 0.21∗∗∗ 0.11∗∗ −0.77∗∗ −0.93∗∗∗

(1.67) (2.13) (−0.91) (−2.11) (5.14) (2.05) (−2.24) (−4.41)
Partisan conflict −0.22∗ −0.17∗∗∗ 0.34 0.26∗∗∗ −0.26∗∗∗−0.14∗∗ 1.01∗∗ 1.04∗∗∗

(−1.71) (−2.59) (1.14) (3.01) (−6.16) (−2.40) (2.46) (4.70)
Dummy −0.03 −0.08 −0.03 −0.31∗∗ 0.10∗∗∗ 0.17∗∗∗−0.37∗∗∗−0.45∗∗∗

(−0.70) (−1.51) (−0.44) (−2.01) (2.87) (2.54) (−2.58) (−3.58)
P/E10 −0.12 0.32 −0.06 0.38

(−1.38) (1.04) (−0.76) (1.12)
12-month MKT return −0.09∗∗∗ −0.28∗∗ 0.04 −0.04

(−3.15) (−2.25) (0.58) (−0.26)
V IX2 −0.01 0.43∗∗ 0.07 0.36∗∗

(−0.29) (2.19) (1.08) (2.01)
T-bill 0.18∗ −0.63 0.13 −0.60

(1.67) (−1.29) (1.08) (−1.19)
Real GDP growth −0.01 −0.55 −0.11∗ −0.57

(−0.32) (−1.58) (−1.83) (−1.63)
Credit spread 0.05 −1.58∗∗∗ 0.10 −1.31∗∗

(0.92) (−2.58) (1.33) (−2.23)
Constant 0.01 0.02 −0.01 0.01 0.01 0.01 −0.02 0.01

(0.12) (0.15) (−0.28) (0.11) (0.14) (0.09) (−0.41) (0.15)
R2 42.29 49.26 35.01 52.98 40.43 47.37 37.05 54.11
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Appendix

The newspapers used in constructing the Azzimonti (2018) partisan conflict index are as follows.

News source Start date News source Start date

The Arizona Republic Jan-1999 The New York Times Jun-1980
The Arkansas Democrat Gazette Oct-1994 Newsday Jul-1985
The Atlanta Journal Constitution Jan-1986 The News-Gazette Mar-2000
The Baltimore Sun Sept-1990 The Oklahoman Nov-1981
Boston Herald Jul-1991 Omaha World-Herald Aug-1983
Buffalo News Feb-1992 The Orange County Register Nov-1986
Charlotte Observer Jan-1994 The Oregonian Jul-1989
Chicago Sun-Times Jul-1985 Orlando Sentinel Oct-1987
Chicago Tribune Jan-1985 The Philadelphia Inquirer Oct-1994
The Christian Science Monitor Sept-1988 Pittsburgh Post-Gazette Jul-1990
The Cincinnati Enquirer Jan-2002 The Plain Dealer Mar-1989
The Columbus Dispatch Dec-1991 The Sacramento Bee Jan-2003
The Boston Globe Jan-1987 San Antonio Express-News Feb-1994
The Courier Journal Jan-2002 The San Francisco Chronicle Apr-2012
The Dallas Morning News Aug-1984 San Jose Mercury News Jan-1994
The Denver Post Aug-1988 The Seattle Times Dec-2008
Detroit Free Press Jan-1994 South Florida Sun-Sentinel Jan-1990
The Detroit News Jan-2002 St. Louis Post-Dispatch Jan-1992
The Fort Worth Star-Telegram Jun-2001 St. Paul Pioneer Press Jan-1994
The Hartford Courant May-1991 The Star-Ledger Jan-1991
Houston Chronicle Apr-2012 Star-Tribune Jan-1986
Indianapolis Star Jan-2002 Tampa Bay Times Nov-1986
Investor’s Business Daily Jan-2002 Tampa Tribune Jul-2011
The Kansas City Star Jan-1991 The Times-Picayune Apr-1992
Los Angeles Times Jan-1985 USA Today Apr-1987
The Miami Herald Oct-1994 U-T San Diego Jan-2000
The Milwaukee Journal Sentinel Jan-2000 The Wall Street Journal Jun-1979
New York Daily News Dec-1992 The Washington Post Jan-1984
New York Post Sept-1997 Washington Post.com Oct-2007

The set of words in the Factiva query follow:

Political disagreement: standstill, stalemate, gridlock, disagreement, fail to compromise, polarization,

polarized, dysfunctional, ideological difference(s), deadlock, budget battle/fight, filibuster, standoff, veto,

vetoes, vetoing, delay/oppose bill.

Government: White House, senate, senator, Capitol, Congress, congressman(woman), party, partisan,

Republican, GOP, Democrat, political, politician, legislator, lawmaker, “the President”, Appropriation

Committee, Finance Committee, Ways and Means Committee, federal government.
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