
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2014

An ecological model for digital platforms maintenance and An ecological model for digital platforms maintenance and

evolution evolution

Paolo ROCCHI
Guido Carli University

Paolo SPAGNOLETTI
Guido Carli University

Subhajit DATTA
Singapore Management University, subhajitd@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, Management Information Systems

Commons, and the Software Engineering Commons

Citation Citation
ROCCHI, Paolo; SPAGNOLETTI, Paolo; and DATTA, Subhajit. An ecological model for digital platforms
maintenance and evolution. (2014). Organizational Innovation and Change: Managing Information and
Technology. 13, 263-280.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6007

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6007&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1

An Ecological Model for Digital Platforms Maintenance and Evolution

Paolo Rocchi, Paolo Spagnoletti and Subhajit Datta

P. Rocchi & P. Spagnoletti, CeRSI-LUISS Guido Carli University, Rome, Italy

P. Spagnoletti, e-mail: pspagnoletti@luiss.it

P. Rocchi, IBM, Rome, Italy e-mail: procchi@luiss.it

S. Datta, Singapore University of Technology and Design, Singapore, Singapore e-mail:

subhajit_datta@sutd.edu.sg

Published in Organizational Innovation and Change, 2016, pp. 263-280, Lecture Notes in Information

Systems and Organisation 13, DOI: 10.1007/978-3-319-22921-8_21

Abstract:

The maintenance of software products has been studied extensively in both software engineering and

management information systems. Such studies are mainly focused on the activities that take place prior to

starting the maintenance phase. Their contribution is either related to the improvement of software quality

or to validating contingency models for reducing maintenance efforts. The continuous maintenance

philosophy suggests to shift the attention within the maintenance phase for better coping with the

evolutionary trajectories of digital platforms. In this paper, we examine the maintenance process of a

digital platform from the perspective of the software vendor. Based on our empirical observations, we

derive an interesting statistical relationship that has strong theoretical and practical implications in the

study of software defects.

Keywords: Software maintenance, Wakeby, Digital platform, Complex systems

This paper has been awarded the “Special Award Sandro D’Atri” at the XI Conference of the Italian

Chapter of AIS held in Genova (IT) on November 21st–22nd 2014.

1 Introduction

The dynamics of organizational emergence together with the evolutionary trajectories of digital

infrastructures are challenging the traditional practices for managing innovation and blurring the

boundaries between strategic, structural and technological choices [1]. This is particularly true when

digital platforms are in place for supporting interactions across multiple sets of actors and, among them, of

software developers that contribute to platform evolution [2]. This has been the case for instance of the

Internet [3, 4] but also of applications, platforms and information infrastructures owned by private

companies that strategically exploit the generativity of digital technologies [5–7].

Many companies (i.e. SAP, Google, Facebook, Apple, etc.) have implemented “third-party developer”

strategies and encouraged their business partners, customers or independent developers to come on board

their computer platforms [8]. This is also the case of those subjects who develop a software product (i.e.

digital platform) and make it available to the community of users together with its source code, application

development interfaces (API), software development kits (SDK) and technical documentation. Such new

forms of online collaboration increase the speed of improvement and evolution of software products and

challenge existing methods for software design and maintenance.

2

The aim of this paper is to investigate digital platform evolution processes in order to identify new

methods for guiding the emergence of complex socio-technical systems. Instead of considering software

maintenance as a recovery activity whose costs must be reduced adopting sophisticated methods and

techniques, we propose a shift towards a continuous maintenance philosophy. An exploratory case study

on the evolution of four versions of a large-scale middleware product, shows that patterns of bugs and

fixes fit into an ecological model.

The paper is organized as follows: in the next section we present a literature review on digital platform

evolution. Then we discuss the case study data collection and analysis. In the following section we

highlight our observations and results, followed by the derivation of a statistical relationship based on our

results. We conclude with a discussion and a summary of the results.

2 Related Works

In order to better position our contribution in the existing literature it is worth to illustrate how digital

platforms and their maintenance processes have been studied so far. First of all we clarify the distinction

between evolutionary and static software systems. Second, we introduce digital platforms as a particularly

relevant form of evolutionary software systems. Third, we summarize how development and maintenance

processes and methods have been studied in the software engineering and management information

systems literature [9, 10].

Static software systems, are intended as computer programs whose acceptability on completion only

depends on satisfying, in the mathematical sense, of formal specifications. On the other hand evolutionary

systems, must undergo continual evolution to remain satisfactory and operate or address a problem or

activity in the real world [11]. Therefore, to remain satisfactory, these programs must be continually

changed and updated. The acceptability of evolutionary software systems depends on the results delivered

to users and other stakeholders. They must be continually enhanced, adapted and fixed if they are to

remain effective within an evolving application environment. Thus, the evolution of such systems is a

complex phenomenon being characterized by multi-level, multi-loop, and multi-agent feedbacks.

In this paper we focus on digital platforms, a particular type of evolutionary software systems. In general,

a platform is defined as a building block, providing an essential function to a technological system, which

acts as a foundation upon which complementary products, technologies, or services can be developed [2,

12–14]. Therefore, digital platforms differ from other software systems in that their design context is not

fixed a priori. They have a heterogeneous and growing user base and allow a constant generification of

new IT capabilities [3, 15, 16]. In more practical terms, digital platforms allow extensive recombination

and reuse of software programs, subroutines, services, features, and content. This generativity is achieved

through the deployment of APIs, documentation, debuggers, source code examples, and integrated

development environments [8, 17, 18].

For managing these platforms, the traditional values and goals of information systems development

practices are challenged and the notion of continuous change emerges as a new paradigm [19]. This

implies that continuous analysis, negotiated requirements, and a large portfolio of continuous maintenance

activities must replace lengthy analysis and design, user satisfaction, abstract requirements, complete and

unambiguous specifications, and projects in the management of emergent organizations. An attempt to

implement these principles is represented by agile requirement engineering practices that have gained an

increasing attention in the last decade [20–23]. These methods heavily rely on feedbacks collected from

the users during the development phase and their purpose is to improve software quality. However agile

methods are still focused on minimizing the maintenance efforts during the operational lifecycle of a

software system and hence they do not fully embrace the philosophy of continuous maintenance.

Previous studies on software maintenance processes have looked at the phenomenon from different

perspectives [24]. For instance, some authors have analyzed the maintenance processes of an ERP

3

software package from the perspective of the customers organizations [25] and have compared them with

existing standards (IEEE/EIA 12207.0 maintenance-process standard) [26]. Other studies have focused on

the dynamics of community maintenance contributions enabled by the Internet and the volunteer

workforce [27]. We adopt the perspective of the software vendor for contributing to a better understanding

of how to guide the emergence of digital platforms in complex settings.

3 Research Strategy

An exploratory case study is conducted for investigating the evolution of a digital platform from the

perspective of the software vendor. The research design is based on a single case with four embedded

units of analysis [28]. The single case provides the typical context of a software vendor in charge of the

continuous maintenance process of a software product during its operational lifecycle. Large scale

empirical studies of maintenance data present several challenges. In fact, defect data are not often

diligently recorded, and are seldom published for proprietary systems. Moreover, since the software

vendor is a leading multinational company the single case allows us to conduct a revelatory case from a

privileged observation point.

The four embedded units of analysis are represented by four different releases of the same software

product, a middleware application that is deployed worldwide among more than 5000 large customer

organizations. The middleware product (XYZ) provides services for monitoring the performance of IT

resources, including disks, CPU, and applications. The XYZ helps to automatically detect bottlenecks, and

potential resource problems, and act on them proactively.

The XYZ is particularly relevant with respect to our purposes for two main reasons. First, being an

infrastructure level software it operates at an intermediate layer between multiple digital devices

configurations and multiple applications depending on the IT infrastructure of each customer

organizations. This makes the system subject to a huge variety of external input. Second, XYZ can be

considered as a software platform in that it provides an environment for the design of new resource

models and gives customers the possibility to develop their own monitoring agents.

3.1 Data Sources and Analysis Methods

Empirical data were collected through direct contact with the head of the maintenance team that gently

provided us with archival data on software bugs and fixes, information on the maintenance process,

technical documentation, and commercial information. A dataset with more than 2,200 defect reports over

a four year period represents the main source of data on which the following analysis is based.

Our study investigates changes to the four releases (or versions) of XYZ: B.1; B.2; B.2.1, B.2.2. Release

B.1 derives from a product developed by a company acquired by our focal software vendor, which was

delivered without further changes. Later the focal software vendor made significant economical

investments and release B.2 derives from an effort to optimize and improve XYZ; B.2.2 represents a

second major enhancement, based partially on customer feedback.

Users of XYZ who find unexpected behavior such as adverse incidents and bugs, write requests for

change (RFC) thus the acronym RFC will be used interchangeably with “defect” or “error” in this paper.

An RFC does not demand functional changes; users raise another type of request, which we shall call

“suggestions (SUG)”, in order to vary or add a function. A single SUG proposes new or modified

functionalities.

Defects and suggestions are recorded in a special database. The data is captured and grouped according to

releases. Each release is maintained as an independent entity; thus some failures can repeat and others are

unique to a release.

4

Age and severity are the attributes of RFCs adopted in our statistical analysis. The severity of a RFC

denotes the impact of the corresponding error, which can be in one of the following categories:

• Severity 1: Critical Impact—A software component which is critical for business does not operate; or an

absolutely necessary interface has failed; or an operator is unable to use XYZ resulting in a critical impact

on operations. This condition requires an immediate solution.

• Severity 2: Significant Impact—A software component is severely restricted in its use, causing

significant business impact. This indicates that XYZ is usable but is strongly limited.

• Severity 3: Moderate Impact—A non-critical software component is malfunctioning, causing moderate

business impact. This indicates the program is usable with less significant features.

• Severity 4: Minimal Impact—A non-critical software component is malfunctioning, causing minimal

impact, or a non-technical request is made.

Age provides the concise and precise account of the efforts expended to implement a change. ‘Age’ is

usually called ‘time to repair (TTR)’ in current literature and is surveyed in a variety of technical fields.

The historical data from four different releases of a XYZ are used to illustrate how each release has

evolved over time. Furthermore use time series analysis techniques for identifying patterns in these data.

Time series models assume that events are correlated over time and the impact of other factors is

progressively captured in historical archives.

4 Observations and Results

In the following subsections, we highlight our observations and results from studying the XYZ data across

four releases.

4.1 Characteristics of Releases

The managers of XYZ allowed submission of suggestions for a specific period of time between

10/12/2007 and 01/06/2009; during this time users recorded 143 SUGs. The majority of proposals (around

94 %) was submitted during the year 2008 and contributed to the enhanced version B.2.2 as noted earlier.

Most of SUG (=127) have been closed during the time window of submitting recommendations, in this

way the suggestions contributed to improve and to add new functions to releases B.2.1 and B.2.2.

Table 1 presents the start dates of the maintenance process for each release, which is taken to be the date

of the first defect being raised. The final date is taken to be 30th September 2011, when data collection for

this paper was closed. The parameter A in Table 1 indicates the temporal range starting with the first

opened RFC and the 30th of September; the parameter B is the distance between the first and the last

opened RFC. Thus our study on various releases covers different periods of time: the examination of

release B.1 exceeds 4 years while the study of B.2.2 covers about 2 years and half. We decided to close

our survey on the 30th of September and in this day the last RFC of B.2.2 was opened due to occasional

reason that’s why A and B coincide. Obviously, in the interests of consistency, we considered the number

of RFC submitted over the first 730 days (=2 years) after each version has been released (Table 2);

moreover we report the number of defects which required more than 1 year for resolution, the number of

severity-1 defects and the percentage of these defects that have been closed after 30 days. All the releases

have some RFCs with zero age (that is, the number of days spent to fix a RFC). This may indicate one of

the following situations:

• A false problem was reported;

• The problem was trivial and immediately closed;

• The problem had already been addressed at the time the RFC was raised.

5

We notice that release B.1 has the highest number of submitted defects in the first couple of years, the

highest number of defects with age exceeding 1 year and the highest number of severity-1 defects (Table

2).

Table 3 illustrate the increase in the size of XYZ—executable version—after each upgrade. Generally

speaking, the size of a release in megabytes can be taken to mirror the complexity of the release’s

functionality. Releases B.2 and B.2.2 are much larger than their predecessors.

We note that B.2, B.2.1 and B.2.2 have the lowest number of defects (Table 2). These measures indicate

the higher quality of the last releases respect to B.1, and match with the brief history of XYZ outlined in

Sect. 2. Actually B.2, B.2.1 and B.2.2 were driven by more organized and focused development efforts,

instead B.1 was adopted in a cursory manner. In the present context, one reasonably concludes that this

can be a reflection of unsatisfactory development resulting in increased maintenance efforts.

4.2 Structure and Roles in the Maintenance Team

Defects are managed by a complex structure that basically includes four teams as follows:

• First Level Team—This group analyzes the issues and addresses the problems related to user errors or

basic configurations when possible, otherwise involves the Second Level Team. The responses of this

level are fast but do not go deep into problems.

• Second Level Team—It works with customers face to face to resolve RFCs. Level 2 provides the

customer with a solution. If, and only if, customer is satisfied with the solution, Level 2 can close the

procedure of fixing.

• Third Level Team—This level is responsible for resolving severe errors, creating fixes and making them

available to users. This team assists customers in the diagnosis of reported problems that may be product

defects and for making changes to released products in response to a RFC. This process governs the

support of the product releases from assistance request by Level 2; it recognizes a valid problem through

code changes, testing and then delivering of a fix for the detected error.

• Development Team—This level is responsible for new features that will be included in next product

releases. In some cases provides help to Level 3 for hot customers issues or to evaluate possible

enhancements request. The overall organization of teams is summed up in Fig. 1. It is possible to identify

two areas in the chain of operations. The ‘front-end’ includes the support teams (Level 1 and Level 2) that

have direct contacts with the client; the ‘back-end’, with the teams working on the problem resolution

does not have a direct interaction with users.

The author of a RFC is required to describe the malfunctioning he or she experienced and to summarize

the symptoms according to the list in Table 4. However over 80 % of records mention the common

symptom ‘program defect’. Users appear to provide the most generic description of the problem. The

frequency of symptom #19 becomes lower when defects are serious. Users make a certain effort to

scrutinize severity-1 failures. However the non-trivial percentage of symptom #19 (77.3 %) points out that

this effort is not so great. So the lack of precision in describing the problem by the users has less to do

with the effort required, and more influenced by users’ attitude towards reporting less than critical errors.

6

4.3 Statistical Analysis

We have selected four distributions of age by severity and calculated nine statistical parameters of each

distribution (Table 5). The kurtosis says that the severity-2 ages and the severity-4 ages have distributions

with a lower, wider peak around the mean; on the other hand severity-1 and severity-3 ages show rather

leptokurtic shapes. The age mean—named mean time to repair (MTTR) in current literature—diminishes

through the groups 2, 3 and 4. Also the 50th percentile, which is the median, decreases from severity 2 to

3. Note that the mean and the median have been computed over the entire populations and not over a

sample; their trends indicate that the effort to handle a change reduces as the severity of the defect lessens.

The age mirrors the progressively reduced complexity of defects from 2 to 4, but the severity-1 problems

have the lowest age mean, the lowest median and even the lowest standard deviation. This surprising

result can be explained in the following manner.

An expert usually handles a RFC with severity 2, 3 or 4 but service level agreements warrant that a

severity-1 problem must be resolved within 1 month (30 days). Thus the management needs to allocate

more skilled personnel to close the most severe errors within this deadline. As we learnt, two, three or

more experts work around this kind of errors and the age-mean is the lowest in the leftmost column of

Table 4. However 80 % of age in group-1 largely exceeds 30 days (Table 2), which means the teams

which handle severity-1 problems usually miss their deadlines. 4.4 Mean Time Between Events In

general, it may be said that defect-fixing should make a sequence of independent processes; instead

repairs—correlated in a way—reveal systematic flaws in the change management. We verified whether

the age distributions of RFCs fit with the statistical Gamma model, typical of the Poisson processes.

Gamma is a multiple-parameters family of continuous probability distributions.

As change managers established special procedures to handle each RFC according to its severity, we

segregated the age into four homogeneous sets. We used the Kolmogorov-Smirnov test to evaluate the

fitness of data with the Gamma distribution and this test was done at a 95 % level of confidence. Table 6

displays the parameters explaining the goodness-of-fit tests, in particular the table includes the goodness-

of-fit statistic values (D), and the probability values (P). We note how the ages of severity 2 and 3

perfectly fit with Gamma (see Fig. 6 in Appendices) instead the higher distance D in the first and fourth

row show how these processes comply with the Poisson model at lower degree of conformity. At far right

Table 6 exhibits the most suitable values α, β and k for each group of data. The Gamma (k, α, β)

distribution models the time required for an event to occur, given that the events occur randomly in a

Poisson process with a mean time between events of β.

7

4.5 Defects Distribution

It is generally observed that users normally detect several defects soon after the product is released, and

with time the number of opened RFCs comes down. We posited that studying the distribution of defects

over time could reveal some pattern and regularity. The discussion in this section outlines our quest for a

statistical law of defect-emergence.

We examined the temporal series of defects discovered for B.1, B.2, B.2.1 and B.2.2 releases to find the

best description of these series. We performed the Kolmogorov–Smirnov test and observed that the four

series of data fit with the Wakeby (WAK) distribution when the Kolmogorov–Smirnov test is accepted at

the 99 % significance level. Table 7 shows the fitness parameters of the tests: D (= statistic), P (=

probability-value) and R (= rank). At right side Table 7 exhibits the most suitable values of the Wakeby

distributions. As R equals to 1 the Wakeby model represents the best fit respect to the other 39

distributions although the temporal series exhibit very different profiles. Figures from 2, 3, 4 and 5 plot the

probability density functions regarding releases from B.1 to B.2.2. Each PDF plots the dates when the

defects occurred during the range B (see Table 1). The dates have been grouped in order to execute the

Kolmogorov–Smirnov test and at the far right of Table 7 one can find the size of the bars plotted in Figs.

2, 3, 4 and 5. This size is expressed in days.

5 Discussion

The analysis of the defects’ time series conducted on the four versions of the middleware product offers

insights that have implications for both research and practice. The first result is a confirmation of the

contingent relationship between software development methods and software maintenance efforts. In fact

version B.1 was implemented by a different development team with different methods and this has

determined an higher number and higher severity of defects. This evidence confirms the perception that

level of engagement in the software development process determines the error-proneness of the software

produced. Further investi gation in this direction can lead to a deeper understanding of the contingent

factors and their effects. As a practical implication of this finding, software companies can better identify

the effective configurations of software development methods with respect to the architectural complexity

and degree of openness of the digital artifact to be developed.

As a second result, we observed that eighty percent of severity-1 RFCs requires over 30 days for fixing the

errors. This result supports the view that severe errors cannot be resolved in less than a minimum time.

This is a reflection on the fact that communication overheads often negatively impact the time required for

completing software tasks. The time necessary to repair severe defects cannot be compressed and thus

preventive strategies often work better. Proactive maintenance is frequently less expensive as it directs

actions to rectify a failure’s potential root cause, rather than waiting for the manifestation of errors and

then addressing them. Such proactive approach implements the continuous maintenance philosophy

advocated when digital platforms are seen as embedded into emerging organizational contexts [19, 29].

8

9

As a third result, this study revealed that software defect time series best fit the Wakeby distribution. We

found this distribution to match partial as well as entire time series data from all the releases with high

confidence levels. Such regularity deserves a particular attention since it opens new perspectives of further

empirical and theoretical studies. At a practical level, the Wakeby distribution can help in supporting

proactive maintenance activities by forecasting software defects. From a theoretical perspective, it may be

useful to outline some of the basic properties of the Wakeby distribution.

The Wakeby model is one of the more recent statistical distributions. It was defined by Harold Thomas

and introduced by Houghton in 1978 [30]. The WAK function is largely adopted to study hydrology and

in particular in the area of flood frequency analysis. Thomas defined the Wakeby distribution to account

for the ‘separation effect’. In order to account for this effect a distribution is needed with thick right-hand

tail and left-hand tail. This makes the middle part of the distribution function steeper than traditional

skewed curves. In addition WAK separates the calculation of the tails through β and δ that are shape

parameter of the left end-tail and of the right-end tail respectively. We remind that ξ and α are location

parameters; γ is a non-localized shape parameter.

It may be highlighted that WAK has five parameters, more than most of the common systems of

distributions. This allows for a wider variety of shapes and the distribution is well suited to simulation of

intricate physical phenomena. Furthermore, the Wakeby distribution exhibits more stability under small

perturbations when compared to the Beta distribution and other more common distributions. Thus Wakeby

distribution is highly general; it can describe complex events; it is robust against outliers, and it has a

closed functional form for deter mining quantiles. To the best of our knowledge this is the first

application of the Wakeby distribution in empirical software engineering. A deeper investigation on the

meaning of these parameters in the two fields can provide further insights on the dynamics of digital

platform evolution. This can lead to identify possible parallels between the complex socio-technical

phenomenon of digital platform evolution and the behaviour of some physical, biological or social

complex system.

6 Conclusion

This research contributes to the design of new managerial practices for coping with the evolution of digital

platforms. These practices, grounded in the continuous maintenance paradigm, can be informed by new

explanatory and predictive theories derived from the analysis of empirical data. Further empirical studies

on these lines are necessary for strengthening the external validity of our results. For instance the same

statistical analysis can be repeated on defects data taken from public sources (i.e. open source projects) or

other proprietary software packages.

10

Appendices

See Tables 1, 2, 3, 4, 5, 6, and 7, Fig. 6.

11

12

13

References

1. Resca, A., Za, S., Spagnoletti, P.: Digital platforms as sources for organizational and strategic

transformation: a case study of the Midblue project. J. Theor. Appl. e-Commerce Res. 8, 71– 84 (2013)

2. Spagnoletti, P., Resca, A., Lee, G.: A design theory for digital platforms supporting online

communities: a multiple case study. J. Inf. Technol. 1–17 (2015)

3. Hanseth, O., Lyytinen, K.: Design theory for dynamic complexity in information infrastructures: the

case of building internet. J. Inf. Technol. 25, 1–19 (2010)

4. Marsden, C.T.: Net Neutrality: Towards a Co-regulatory Solution. Bloomsbury Academic, London

(2013)

5. Zittrain, J.: The generative internet. Harv. Law Rev. 119, 1975–2040 (2006)

6. Rossignoli, C., Zardini, A., Benetollo, P.: The process of digitalisation in radiology as a lever for

organisational change: the case of the Academic Integrated Hospital of Verona. DSS 2.0-Supporting

Decision Making With New Technologies, p. 261 (2014)

7. Vom Brocke, J., Braccini, A.M., Sonnenberg, C., Spagnoletti, P.: Living IT infrastructures— an

ontology-based approach to aligning IT infrastructure capacity and business needs. Int. J. Account. Inf.

Syst. 15, 246–274 (2014)

8. Boudreau, K.J.: Let a thousand flowers bloom? An early look at large numbers of software app

developers and patterns of innovation. Organ. Sci. 23, 1409–1427 (2011)

9. Vom Brocke, J., Simons, A., Sonnemberg, C., Agostini, P.L., Zardini, A.: Value assessment of

enterprise content management systems: a process-oriented approach. In: D’Atri, A., Saccà, D. (eds.)

Information Systems: People, Organizations, Institutions, and Technologies, pp. 131– 138. Physica-

Verlag, Heidelberg (2010)

10. Magni, M., Provera, B., Proserpio, L.: Individual attitude toward improvisation in information systems

development. Behav. Inf. Technol. 29, 245–255 (2010)

11. Lehman, M.M., Ramil, J.F.: Rules and tools for software evolution planning and management. Ann.

Softw. Eng. 11, 15–44 (2001)

12. Gawer, A.: Platforms, Markets and Innovation. Edward Elgar Publishing, Cheltenham (2009)

13. Sorrentino, M., Virili, F.: Web services and value generation in the public sector. Electron. Gov. 489–

495 (2004)

14. Spagnoletti, P., Resca, A.: A design theory for IT supporting online communities. In: Proceedings of

the 45th Hawaii International Conference on System Sciences, pp. 4082–4091 (2012)

15. Williams, R., Pollock, N.: Software and Organisations—The Biography of the Enterprise-Wide

System or How SAP Conquered the World. Routledge, London (2008)

16. Vitari, C., Piccoli, G., Mola, L., Rossignoli, C.: Antecedents of IT dynamic capabilities in the context

of the digital data genesis. In: ECIS 2012: The 20th European Conference on Information Systems (2012)

17. Spagnoletti, P., Federici, T.: Exploring the interplay between FLOSS adoption and organizational

innovation. Commun. Assoc. Inf. Syst. 29, 279–298 (2011)

18. Yoo, Y., Boland, R.J., Lyytinen, K., Majchrzak, A.: Organizing for innovation in the digitized world.

Organ. Sci. 23, 1398–1408 (2012)

19. Truex, D., Baskerville, R., Klein, H.: Growing systems in emergent organizations. Commun. ACM 42,

117–123 (1999)

14

20. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and challenges: an

empirical study. Inf. Syst. J. 20, 449–480 (2007)

21. Lee, G., Xia, W.: Toward agile: an integrated analysis of quantitative and qualitative field data on

software development agility. MIS Q. 34, 87–114 (2010)

22. Pino, F.J., Ruiz, F., Garcia, F., Piattini, M.: A software maintenance methodology for small

organizations : Agile MANTEMA. J. Softw. Maint. Evol. Res. Pract. 24, 851–876 (2012)

23. Subramanyam, R., Ramasubbu, N., Krishnan, M.: In search of efficient flexibility: effects of software

component granularity on development effort, defects, and customization effort. Inf. Syst. Res. 23, 787–

803 (2012)

24. Hirt, S.G., Swanson, E.B.: Emergent maintenance of ERP: new roles and relationships. J. Softw.

Maint. Evol. Res. Pract. 13, 373–387 (2001)

25. Caporarello, L., Viachka, A.: Individual readiness for change in the context of enterprise resource

planning system implementation. In: Proceedings of the 6th Conference of the Italian Chapter for the

Association for Information Systems, pp. 89–96 (2010)

26. Ng, C., Gable, G.: Maintaining ERP packaged software: a revelatory case study. J. Inf. Technol. 25,

65–90 (2009)

27. Moon, J.Y., Sproull, L.S.: The role of feedback in managing the internet-based volunteer work force.

Inf. Syst. Res. 19, 494–515 (2008)

28. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Thousand Oaks (2009)

29. Pennarola, F., Caporarello, L.: Enhanced class replay: will this turn into better learning? In: Wankel,

C., Blessinger, P. (eds.) Increasing Student Engagement and Retention Using Classroom Technologies:

Classroom Response Systems and Mediated Discourse Technologies, pp. 143–162. Emerald Group

Publishing Limited, Bradford (2013)

30. Houghton, J.C.: Birth of a parent: the Wakeby distribution for modeling flood flows. Water Resour.

Res. 14, 1105–1109 (1978)

	An ecological model for digital platforms maintenance and evolution
	Citation

	tmp.1624498792.pdf.5NOEo

