
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2008

COMP-REF: A technique to guide the delegation of responsibilities COMP-REF: A technique to guide the delegation of responsibilities

to components in software systems to components in software systems

Subhajit DATTA
Singapore Management University, subhajitd@smu.edu.sg

Robert van Engelen
Florida State University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
DATTA, Subhajit and van Engelen, Robert. COMP-REF: A technique to guide the delegation of
responsibilities to components in software systems. (2008). Fundamental approaches to software
engineering: 11th International Conference, FASE 2008: Budapest, Hungary, March 29-April 6:
Proceedings. 4961, 332-346.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6006

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6006&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

COMP-REF: A Technique to Guide the
Delegation of Responsibilities to Components in

Software Systems

Subhajit Datta and Robert van Engelen

Department of Computer Science and School of Computational Science
Florida State University, Tallahassee, FL 32306, USA

sd05@fsu.edu, rvaneng@fsu.edu

Abstract. In software systems, components collaborate to collectively
fulfill requirements. A key concern of software design is the delegation
of responsibilities to components such that user needs are most expedi-
ently met. This paper presents the COMP-REF technique based on a
set of metrics and Linear Programming (LP) to guide the allocation of
responsibilities of a system’s components. We define the metrics Aptitude
Index, Requirement Set, and Concordance Index to extract some design
characteristics and use these metrics in an optimization algorithm. Re-
sults from experimental validation of the COMP-REF technique across a
range of software systems are reported. We also discuss future directions
of work in extending the scope of technique.

1 Introduction

Larman has called the ability to assign responsibilities as a “desert-island skill”
[22], highlighting its criticality in the software development process. Indeed, de-
ciding which component does what remains an important challenge for the soft-
ware designer. Ideally, each component should perform a specialized task and
cooperate with other components to deliver the system’s overall functionality.
But very often responsibilities are delegated to components in an ad-hoc man-
ner, resulting in components that try to do almost everything by themselves or
those that depend extensively on other components for carrying out their pri-
mary tasks. During initial design, it is not unusual to spawn a new component
for every new bit of functionality that comes to light. As design matures, many
of these components are best combined to form a compact set of components,
whose each member is strongly focused on its task and interacts closely with
other components to deliver the overall system functionality. The intrinsically
iterative nature of software design offers opportunities for such re-organization
of components.

However, this kind of design refinement usually depends on intuition, ex-
perience, and nameless “gut-feelings” of designers. In this paper we introduce
the COMP-REF technique to guide such refinement of components using a set
of metrics and a Linear Programming based optimization algorithm. Upon its

J. Fiadeiro and P. Inverardi (Eds.): FASE 2008, LNCS 4961, pp. 332–346, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

COMP-REF: A Technique to Guide the Delegation of Responsibilities 333

application, the technique recommends merging of certain components, whose
current roles in the system warrant their responsibilities be delegated to other
components, and they be de-scoped. Recognizing the deeply reflective nature of
software design, COMP-REF seeks to complement a designer’s judgment by ab-
stracting some basic objectives of component interaction and elucidating some
of the design choices.

Before going into the details of our approach it will be helpful to clarify the
meaning of certain terms in the context of this paper.

– A requirement is described as “... a design feature, property, or behavior of
a system” by Booch, Rumbaugh, and Jacobson [5]. These authors call the
statement of a system’s requirements the assertion of a contract on what
the system is expected to do. How the system does that is essentially the
designer’s call.

– A component carries out specific responsibilities and interacts with other
components through its interfaces to collectively deliver the system’s func-
tionality (of course, within acceptable non-functional parameters).

– A collaboration is described in the Unified Modeling Language Reference
Manual, Second Edition as a “... society of cooperating objects assembled
to carry out some purpose” [26]. Components collaborate via messages to
fulfill their tasks.

– “Merging” of a particular component will be taken to mean distributing
its responsibilities to other components in the system and removing the
component from the set of components fulfilling a given set of requirements.
So after merging, a set of components will be reduced in number, but will
be fulfilling the same set of requirements as before.

– In this paper “compact” in the context of a set of components will be taken
to mean “designed to be small in size ...”. 1

We also assume COMP-REF technique is applicable in an iterative devel-
opment scenario. This is a reasonable assumption, since even if the iterative
and incremental model is not officially being followed, it is widely accepted that
software design is an iterative activity.

In the next sections, we present a model for the software development space
as a basis for the COMP-REF technique, introduce the ideas of aptitude and
concordance, formally define our set of metrics, discuss the background and in-
tuition behind the COMP-REF technique and present its steps. We then report
results of experimental validation of the technique, highlight some related work
and conclude with a discussion of open issues and directions of future work.

2 A Model for the Software Development Space

In order to examine the dynamics of software systems through a set of metrics,
a model is needed to abstract the essential elements of interest.
1 http://dictionary.reference.com/browse/compact

334 S. Datta and R. van Engelen

The development space consists of the set requirements Req = {R1, ..., Rx} of
the system, which are fulfilled by the set of components Comp = {C1, ..., Cy}.

We take fulfillment to be the satisfaction of any user defined criteria to judge
whether a requirement has been implemented. Fulfillment involves delivering
the functionality represented by a requirement. A set of mapping exists between
requirements and components, we will call this relationships. At one end of a
relationship is a requirement, at the other ends are all the components needed
to fulfill it. Requirements also mesh with one another – some requirements are
linked to other requirements, as all of them belong to the same system, and
collectively specify the overall scope of the system’s functionality. The links
between requirements are referred to as connections. From the designer’s point
of view, of most interest is the interplay of components. To fulfill requirements,
components need to collaborate in some optimal ways, this is referred to as the
interaction of components.

Thus one aspect of the design problem may be viewed as: given a set of
connected requirements, how to devise a set of interacting components, such that
the requirements and components are able to forge relationships that deliver the
system’s functionality within given constraints?

Based on this model, the COMP-REF technique uses metrics to examine the
interaction of components and suggest how responsibilities can be re-aligned.
Before the metrics are formally defined, we introduce the notions of aptitude
and concordance in the next section.

3 The Ideas of Aptitude and Concordance

Every software component exists to perform specific tasks, which may be called
its responsibilities. The canons of good software design recommend that each
component be entrusted with one primary responsibility. In practicality, compo-
nents may end up being given more than one task, but it is important to try and
ensure they have one primary responsibility. Whether components have one or
more responsibilities, they can not perform their tasks entirely by themselves,
without any interaction with other components. This is specially true for the
so-called business objects – components containing the business logic of an appli-
cation. The extent to which a component has to interact with other components
to fulfill its core functionality is an important consideration. If a component’s
responsibilities are strongly focused on a particular line of functionality, its in-
teractions with other components can be expected to be less disparate. Let us
take aptitude to denote the quality of a component that reflects how coherent its
responsibilities are. Intuitively, the Aptitude Index measures the extent to which
a component (one among a set fulfilling a system’s requirements) is coherent in
terms of the various tasks it is expected to perform.

As reflected upon earlier, the essence of software design lies in the collabora-
tion of components to collectively deliver a system’s functionality within given
constraints. While it is important to consider the responsibility of individual

COMP-REF: A Technique to Guide the Delegation of Responsibilities 335

components, it is also imperative that inter-component interaction be clearly
understood. Software components need to work together in a spirit of harmony
if they have to fulfill requirements through the best utilization of resources.
Let us take concordance to denote such cooperation amongst components. How
do we recognize such cooperation? It is manifested in the ways components
share the different tasks associated with fulfilling a requirement. Some of the
symptoms of less than desirable cooperation are replication of functionality –
different components doing the same task for different contexts, components not
honoring their interfaces (with other components) in the tasks they perform, one
component trying to do everything by itself etc. The idea of concordance is an
antithesis to all such undesirable characteristics – it is the quality which delegates
the functionality of a system across its set of components in a way such that it
is evenly distributed, and each task goes to the component most well positioned
to carry it out. Intuitively, the metric Concordance Index measures the extent
to which a component is concordant in relation to its peer components in the
system.

How do these ideas relate to cohesion and coupling? Cohesion is variously
defined as “... software property that binds together the various statements and
other smaller modules comprising the module” [16] and “... attribute of a soft-
ware unit or module that refers to the relatedness of module components” [4].
(In the latter quote, “component” has been used in the sense of part of a whole,
rather than a unit of software as is its usual meaning in this paper.) Thus co-
hesion is predominantly an intra-component idea – pointing to some feature of
a module that closely relates its constituents to one another. But as discussed
above, concordance carries the notion of concord or harmony, signifying the spirit
of successful collaboration amongst components towards collective fulfillment of
a system’s requirements. Concordance is an inter-component idea; the concor-
dance of a component can only be seen in the light of its interaction with other
components.

Coupling has been defined as “... a measure of the interdependence between
two software modules. It is an intermodule property” [16]. Thus coupling does not
take into account the reasons for the so called “interdependence” – that modules
(or components) need to cooperate with one another as they must together fulfill
a set of connected requirements. In the same vein as concordance, aptitude is
also an intra-component idea, which reflects on a component’s need to rely on
other components to fulfill its primary responsibility/responsibilities.

Cohesion and coupling are legacy ideas from the time when software systems
were predominantly monolithic. In the age of distributed systems, successful
software is built by carefully regulating the interaction of components, each of
which are entrusted with clearly defined responsibilities. The perspectives of
aptitude, and concordance – explored intuitively in this section, with metrics
based on them formally defined in the next section – complement cohesion and
coupling in helping recognize, isolate, and guide design choices that will lead to
the development of usable, reliable, and evolvable software systems.

336 S. Datta and R. van Engelen

4 Defining the Metrics

Considering a set of requirements Req = {R1, ..., Rx} and a set of components
Comp = {C1, ..., Cy} fulfilling it, we define the metrics in the following sub-
sections:

4.1 Aptitude Index

The Aptitude Index seeks to measure how coherent a component is in terms of
its responsibilities.

To each component Cm of Comp, we attach the following properties [12]. A
property is a set of zero, one or more components.

– Core - α(m)
– Non-core - β(m)
– Adjunct - γ(m)

α(m) represents the set of component(s) required to fulfill the primary respon-
sibility of the component Cm. As already noted, sound design principles suggest
the component itself should be in charge of its main function. Thus, most often
α(m) = {Cm}.

β(m) represents the set of component(s) required to fulfill the secondary re-
sponsibilities of the component Cm. Such tasks may include utilities for accessing
a database, date or currency calculations, logging, exception handling etc.

γ(m) represents the component(s) that guide any conditional behavior of the
component Cm. For example, for a component which calculates interest rates for
bank customers with the proviso that rates may vary according to a customer
type (“gold”, “silver” etc.), an Adjunct would be the set of components that help
determine a customer’s type.

Definition 1. The Aptitude Index AI(m) for a component Cm is a relative
measure of how much Cm depends on the interaction with other components for
delivering its core functionality. It is the ratio of the number of components in
α(m) to the sum of the number of components in α(m), β(m), and γ(m)

AI(m) =
|α(m)|

|α(m)| + |β(m)| + |γ(m)| (1)

4.2 Requirement Set

Definition 2. The Requirement Set RS(m) for a component Cm is the set of
requirements that need Cm for their fulfillment.

RS(m) = {Rp, Rq, ...} (2)

where Cm participates in the fulfillment of Rp, Rq etc.
Evidently, for all Cm, RS(m) ⊆ Req.

COMP-REF: A Technique to Guide the Delegation of Responsibilities 337

4.3 Concordance Index

Definition 3. The Concordance Index CI(m) for a component Cm is a relative
measure of the level of concordance between the requirements being fulfilled by
Cm and those being fulfilled by other components of the same system.

For a set of components Comp = {C1,C2,...,Cn,...,Cy−1,Cy} let,
W = RS(1) ∪ RS(2) ∪ ... ∪ RS(y − 1) ∪ RS(y)

For a component Cm (1 ≤ m ≤ y), let us define,
X(m) = (RS(1) ∩ RS(m)) ∪ ... ∪ ((RS(m − 1) ∩ RS(m)) ∪
((RS(m) ∩ (RS(m + 1)) ∪ ... ∪ ((RS(m) ∩ (RS(y))

Thus X(m) denotes the set of requirements that are not only being fulfilled
by Cm but also by some other component(s).

Expressed as a ratio, the Concordance Index CI(m) for component Cm is:

CI(m) =
|X(m)|

|W | (3)

5 COMP-REF: A Technique to Refine the Organization
of Components

COMP-REF is a technique to guide design decisions towards allocating respon-
sibilities to a system’s components. As in human enterprises, for a successful col-
laboration, software components are expected to carry out their tasks in a spirit
of cooperation such that each component has clearly defined and specialized re-
sponsibilities, which it can deliver with reasonably limited amount of support
from other components. Aptitude Index measures how self sufficient a compo-
nent is in carrying out its responsibilities, and Concordance Index is a measure
of the degree of its cooperation with other components in the fulfillment of the
system’s requirements. Evidently, it is desired that cooperation across compo-
nents would be as high as possible, within the constraint that each requirement
will be fulfilled by a limited number of components. This observation is used to
formulate an objective function and a set of linear constraints whose solution
gives a measure of how much each component is contributing to maximizing the
concordance across the entire set of components. If a component is found to have
low contribution (low value of the an variable corresponding to the component
in the LP solution as explained below), and it is not significantly self-sufficient
in carrying out its primary responsibility (low Aptitude Index value) the com-
ponent is a candidate for being de-scoped and its tasks (which it was hardly
executing on its own) distributed to other components. This results in a more
compact set of components fulfilling the given requirements.

The goal of the COMP-REF technique is identified as maximizing the Concor-
dance Index across all components, for a given set of requirements, in a particular
iteration of development, within the constraints of not increasing the number of
components currently participating in the fulfillment of each requirement.

A new variable an (an ∈ [0, 1]) is introduced corresponding to each component
Cn, 1 ≤ n ≤ N , where N = the total number of components in the system. The

338 S. Datta and R. van Engelen

values of an are arrived at from the LP solution. Intuitively, an for a component
Cn can be taken to indicate the extent to which Cn contributes to maximizing
the Concordance Index across all components. As we shall see later, the an values
will help us decide which components to merge.

The LP formulation can be represented as:

Maximize
y∑

n=1

CI(n)an

Subject to: ∀Rm ∈ Req,
y∑

n=1

an ≤ pm/N , an such that Cn ∈ CS(m). pm =

|CS(m)|. (As defined in [13], the Component Set CS(m) for a requirement Rm

is the set of components required to fulfill Rm.)
So, for a system with x requirements and y components, the objective function

will have y terms and there will be x linear constraints.
The COMP-REF technique is summarized as: Given a set of requirements

Req = {R1, ..., Rx} and a set of components Comp = {C1, ..., Cy} fulfilling it in
iteration Iz of development,

– STEP 0: Review Req and Comp for new or modified requirements and/or
components compared to previous iteration.

– STEP 1: Calculate the Aptitude Index for each component.
– STEP 2: Calculate the Requirement Set for each component.
– STEP 3: Calculate the Concordance Index for each component.
– STEP 4: Formulate the objective function and the set of linear constraints.
– STEP 5: Solve the LP formulation for the values of an

– STEP 6: For each component Cn, check:
• Condition 6.1: an has a low value compared to that of other components?

(If yes, implies Cn is not contributing significantly to maximizing the
concordance across the components.)

• Condition 6.2: AI(n) has a low value compared to that of other compo-
nents? (If yes, implies Cn has to rely heavily on other components for
delivering its core functionality.)

– STEP 7: If both conditions 6.1 and 6.2 hold TRUE, GOTO STEP 8, else
GOTO STEP 10

– STEP 8: For Cn, check:
• Condition 8.1: Upon merging Cn with other components, in the resulting

set C̃omp of q components (say), CI(q) �= 0 for all q? (If yes, implies
resulting set of q components has more than one component).

– STEP 9: If condition 8.1 is TRUE, Cn is a candidate for being merged; after
merging components Cn GOTO STEP 0, starting with Req and C̃omp, else
GOTO STEP 10.

– STEP 10: Wait for the next iteration.

6 Experimental Validation

In this section we present results from our experimental validation of the COMP-
REF technique.

COMP-REF: A Technique to Guide the Delegation of Responsibilities 339

6.1 Validation Strategy

We have applied the COMP-REF technique on the following variety of scenarios
to better understand its utility and limitations.

– A “text-book” example – The Osbert Oglesby Case Study is presented
in Schach’s software engineering textbook [27] as a software development
project across life cycle phases and workflows. Using the Java and database
components given as part of the design, we use the COMP-REF technique
to suggest a reorganization of components and examine its implication on
the design thinking outlined in the study.

– The Financial Aid Application (FAA) project – Florida State Univer-
sity’s University Computing Services2 is in charge of meeting the university’s
computing and networking goals. As a development project in 2006, existing
paper based Financial Aid Application (FAA) was migrated to an online
system. The development team took the previously used paper forms as
the initial reference and built a system using JavaServer Pages (JSP), Java
classes, and a back-end database to allow students to apply for financial aid
over the Web. The COMP-REF technique is applied to suggest the merging
of some of the components and its effect discussed on the overall design.

– Morphbank: A Web-based Bioinformatics Application – Morphbank3

serves the biological research community as an open web repository of im-
ages. “It is currently being used to document specimens in natural history
collections, to voucher DNA sequence data, and to share research results in
disciplines such as taxonomy, morphometrics, comparative anatomy, and phy-
logenetics”. The Morphbank system uses open standards and free software
to store images and associated data and is accessible to any biologist inter-
ested in storing and sharing digital information of organisms. The COMP-
REF technique investigates whether the overall design can be streamlined by a
re-allocation of responsibilities across components and retiring some of them.

– FileZilla: An open source project – “FileZilla is a fast FTP and SFTP
client for Windows with a lot of features. FileZilla Server is a reliable FTP
server.”4 We use COMP-REF to examine FileZilla’s allocation of component
responsibilities.

– The SCIT Workshop – Symbiosis Center for Information Technology
(SCIT)5 is a leading academic institution in India, imparting technology and
management education at the graduate level. Twenty five first-year students
of the two year Master of Business Administration – Software Development
and Management (MBA-SDM) graduate program participated in an work-
shop conducted by us. All the students had undergraduate degrees in science
or engineering, and about half of them had prior industrial experience in soft-
ware development. The students were divided into two groups with an even

2 http://www.ucs.fsu.edu/
3 http://www.morphbank.net
4 http://sourceforge.net/projects/filezilla/
5 http:///www.scit.edu

340 S. Datta and R. van Engelen

distribution of experience and exposure to software development ideas. Each
group was in turn divided into two teams, customer and developer. The ob-
jective of the workshop was to explore how differently the same software
system will be designed, with and without the use of the COMP-REF tech-
nique. Accordingly, each group was given the high level requirements of a
contrived software project of building a Web application for a bank, where
its customers can access different banking services. Within each group, the
developer team interacted with the customer team to come up with a de-
sign in terms of interacting components that best met the requirements.
The COMP-REF technique was applied in guiding the design choices of one
group, which we will call Group A, while the other group, Group B, had no
such facility. The workshop provided valuable insights into how COMP-REF
can complement (and at times constrain) the intuition behind software de-
sign. We wish to thank Ms.Shaila Kagal, Director, SCIT for her help and
support in conducting the study.

6.2 Presentation and Interpretation of the Results

Due to space constraints, we can not present each of the above validation scenarios
in detail. Instead, we illustrate the application of COMP-REF in the FAA project
in detail. The summary of all the validation scenarios are presented in Table 1.

Table 2 gives brief description of the requirements for the first iteration of the
FAA project.

The RS(m) column of Table 3 shows the Requirement Set for each component.
Evidently, W = {R1, R2, R3, R4, R5} and |W | = 5. The AI(m) and CI(m)
columns of Table 3 give the Aptitude Index and the Concordance Index values
respectively for each component.

From the design artifacts, we noted that R1 needs components C1, C5, C11 (p1
= 3), R2 needs C2, C6, C7, C8, C9, C11 (p2 = 6), R3 needs C3, C6, C7, C8, C9, C11
(p3 = 6), R4 needs C3, C6, C7, C8, C9, C11 (p4 = 6), and R5 needs C4, C6, C7,
C10, C11 (p5 = 5) for their respective fulfillment. Evidently, in this case N = 11.

Based on the above, the objective function and the set of linear constraints
was formulated as:
Maximize
0.2a1 +0.2a2 +0.4a3 +0.2a4 +0.2a5 +0.8a6 +0.8a7 +0.4a8 +0.4a9 +0.2a10 +a11
Subject to

a1 + a5 + a11 ≤ 0.27
a2 + a6 + a7 + a8 + a9 + a11 ≤ 0.55
a3 + a6 + a7 + a8 + a9 + a11 ≤ 0.55
a3 + a6 + a7 + a8 + a9 + a11 ≤ 0.55
a4 + a6 + a7 + a10 + a11 ≤ 0.45

Using the automated solver, GIPALS (General Interior-Point Linear Algo-
rithm Solver)6, the above LP formulation was solved (values in the an column
of Table 3).
6 http://www.optimalon.com/

COMP-REF: A Technique to Guide the Delegation of Responsibilities 341

Table 1. Experimental Validation: A Snapshot

System Scope and Technology Parameters Findings
Osbert
Oglesby
Case Study

A detailed case study across soft-
ware development life cycle work-
flows and phases presented in [27],
using Java and database compo-
nents.

Three requirements,
eighteen compo-
nents.

COMP-REF suggested 27%
of the components can be
merged with other compo-
nents.

FAA project Migration of paper based stu-
dent aid application system to a
Web based system, using Java and
database components.

Five requirements,
eleven components.

COMP-REF suggested 18%
of the components can be
merged with other compo-
nents. Detailed calculation
and interpretation given in
Section 6.2 of this paper.

Morphbank A Web-based collaborative biolog-
ical research tool using PHP and
database components. We studied
the Browse functional area.

Seven requirements,
eighty-one compo-
nents.

The results of applying
COMP-REF were incon-
clusive. Almost all the
components executing com-
mon tasks across functional
areas (around 75% of the
total number of compo-
nents) are suggested to be
potential candidates for
merging.

FileZilla A fast and reliable cross-platform
FTP, FTPS and SFTP client using
C/C++.

As this is a software
product vis-a-vis a
project, there are no
user defined require-
ments; three major
lines of functionality
and around one
thirty eight com-
ponents (ignoring
header files).

While applying COMP-
REF, difficulties were faced
in correlating requirements
with components. Assuming
very coarse-grained require-
ments, COM-REF did not
find valid justification for
merging a notable percent
of components.

SCIT work-
shop

Two separate groups designed a
contrived software system of a
Web based banking application us-
ing Java and database components.
One group (Group A) was allowed
the use of the COMP-REF tech-
nique, while the other group (Group
B) was not. Group A and Group B
were oblivious of one another’s de-
sign choices.

Three requirements;
Group A had eight
components, Group
B had twelve.

Group A’s components 33%
fewer than Group B’s, they
also had cleaner interfaces
and smaller number of inter-
component method calls.
It appears COMP-REF
helped Group A deliver
the same functionality
through a more compact
set of component by being
able to use COMP-REF
in intermediate stages of
design.

Let us examine how the COMP-REF technique can guide design decisions.
Based on the an values in Table 3, evidently components C5, C7, C8, C9, C10
have the least contribution to maximizing the objective function. So the tasks
performed by these components may be delegated to other components. How-
ever, as mandated by COMP-REF, another factor needs be taken into account

342 S. Datta and R. van Engelen

Table 2. Requirements for FAA: iteration I1

Req ID Brief Description
R1 Display financial aid information to users.
R2 Allow users to enter enrollment period and record the information after validation.
R3 Allow users to enter FSU sessions and record the information after validation.
R4 Allow users to enter expected summer resources and record the information after validation.
R5 Display summary of the user’s enrollment status.

Table 3. FAA case study: Metrics values and LP solution for iteration I1

Cm Component name RS(n) α(n) β(n) γ(n) AI(n) |X(n)| CI(n) an

C1 summary.jsp R1 C1 C5, C11 - 0.33 1 0.2 0.25
C2 summer instructions.jsp R2 C2 C8, C9, C6,C11 C7 0.17 1 0.2 0.4
C3 summer app.jsp R3, R4 C3 C8, C9, C6,C11 C7 0.17 2 0.4 0.4
C4 alerts summary.jsp R5 C4 C10,C6,C11 C7 0.2 1 0.2 0.3
C5 RetrieveSummerData.java R1 C5 C8, C11 - 0.33 1 0.2 0
C6 SummerApplication.java R2, R3, R4, R5 C6 C8, C9 C3 0.25 4 0.8 0.13
C7 SummerApplicationUtils.java R2, R3, R4, R5 C7 - - 1 4 0.8 0
C8 ValidateSummerApplication.java R2, R3, R4 C8 - - 1 2 0.4 0
C9 SaveSummerApplication.java R2, R3, R4 C9 C10, C11 C3 0.25 2 0.4 0
C10 RetrieveSummerApplication R5 C10 - C7 0.5 1 0.2 0
C11 StuSummerApp R1, R2, R3, R4, R5 C11 - - 1 5 1 0.02

0

0 .0 5

0 .1

0 .15

0 .2

0 .2 5

0 .3

0 .3 5

0 .4

0 .4 5

a _ 1 a _ 2 a _ 3 a _ 4 a _ 5 a _ 6 a _ 7 a _ 8 a _ 9 a _ 10 a _ 11

Fig. 1. an values from LP solution(top) and AI(n) vs. Cn (bottom)

COMP-REF: A Technique to Guide the Delegation of Responsibilities 343

before deciding on the candidates for merging. How self-sufficient are the com-
ponents that are sought to be merged? We next turn to AI(n) values for the
components in Table 3. We notice, AI(5) = 0.33, AI(7) = 1, AI(8) = 1, AI(9)
= 0.25, and AI(10) = 0.5. Thus C7, C8 and C10 have the highest Aptitude Index
values. These are components delivering functionalities of general utility, user
input validation and database access logic respectively – facilities used across
the application. Thus it is expedient to keep them localized. But C5 and C9,
as their relatively low values of AI(n) suggest, need to interact significantly
with other components to carry out their task. And given their negligible con-
tribution to maximizing concordance; a helpful design choice would be to merge
them with other components. A smaller set of high concordance components
is preferred over a larger set of low concordance ones, as the former has lesser
inter-component interaction, thereby leading to better resilience to modification
of particular components due to requirement changes. Figure 1 summarizes these
discussions, suggesting reorganization of the two components through merging.

Thus one cycle of application of the COMP-REF technique suggests the re-
duction of the number of components from eleven to nine (18%) in fulfilling the
set of requirements for the first iteration of the FAA project.

7 Related Work

Although it is common to use the terms measure, measurement and metrics in
place of one another, some authors have underscored subtle distinctions [25],
[2], [17]. For our discussion, we have taken metrics to mean “a set of specific
measurements taken on a particular item or process” [3]. Metrics for analysis in-
clude the closely reviewed function point based approaches [1] and the Bang met-
ric [15]. Card and Glass [6] have proposed software design complexity in terms
of structural complexity, data complexity and system complexity. [23] identifies
some important uses of complexity metrics. Fenton underscores the challenges
of trying to formulate general software complexity measures [17]. Chidamber
and Kemerer present a widely referenced set of object oriented software metrics
in [7], [8]. Harrison, Counsell and Nithi have evaluated a group of metrics for
calibrating object-oriented design [19].

Freeman’s paper, Automating Software Design, is one of the earliest exposi-
tions of the ideas and issues relating to design automation [18]. Karimi et al.
[21] report their experiences with the implementation of an automated software
design assistant tool. Ciupke presents a tool based technique for analyzing legacy
code to detect design problems [9]. O’Keeffe et al. [24] present an approach to-
wards automatically improving Java design. Jackson’s group are working on the
Alloy Analyzer tool that employs “automated reasoning techniques that treat a
software design problem as a giant puzzle to be solved” [20].

This current paper extends our ongoing research in understanding the ef-
fects of changing requirements on software systems, the role of metrics as design
heuristics, and how the development life cycle can tune itself to the challenges

344 S. Datta and R. van Engelen

of enterprise software development [13],[12], [11], [10], [14]. Particularly, [13]
explores the relationship between requirements and components from another
perspective.

8 Open Issues and Future Work

From the summary of the experimental results in Table 1, it is apparent COMP-
REF is able to give conclusive recommendations in some of the validation sce-
narios. Let us reflect on the scenarios its suggestions are inconclusive. In the
case of Morphbank, the system does not follow a clear separation of function-
ality in delegating responsibilities to its components. For FileZilla, it is difficult
to extract clearly defined requirements and correlate them with corresponding
components. This is not unusual for a software product, vis-a-vis a software
development project, where a system is built to fulfill user given requirements.
From the validation results so far, COMP-REF appears to work best for systems
that have a clear set of requirements, follows the n-tier architecture paradigm
and use object orientation to ensure a clear separation of concerns. We expect to
scrutinize this conclusion further through ongoing case studies. The scalability
of the technique also needs to be tested on very large scale systems and across
many iterations of development.

COMP-REF suggests the merging of components. The in-built safeguards
within the technique (STEP 8) ensures it will not lead to a single component
monolithic system. The underlying assumption behind COMP-REF is that fewer
components delivering the same functionality is better than a larger number of
components, on grounds of more streamlined inter-component interaction, re-
duced communication overheads between members of the team developing the
software, and better localization of the effects of inevitable changes in require-
ments [13]. In some cases there may be a need to split components instead of
merging them. We plan to extend the technique to cover this aspect in future
work. We are also working on developing an automated tool using the Eclipse
platform 7 that will parse design artifacts (such as Unified Modeling Language
diagrams), apply COMP-REF and present a set of recommendations. This tool
integrates COMP-REF with our earlier work on a mechanism to track the effects
of changing requirements on software systems [13]. Initial results from applying
the tool are very promising.

9 Conclusions

In this paper we presented COMP-REF as a promising technique to guide the or-
ganization of components in software systems. COMP-REF is meant to comple-
ment, and certainly not replace, the intuitive and subjective aspects of software
design. Results from applying the technique on a variety of systems were pre-
sented. Experimental data suggests COMP-REF works best for object-oriented
7 http://www.eclipse.org/

COMP-REF: A Technique to Guide the Delegation of Responsibilities 345

systems using n-tiered architecture that fulfill user requirements. We plan to
refine the technique through further validation and extend it into a fully auto-
mated framework for guiding analysis and design of software systems.

References

1. Albrecht, A.: Measuring Application Development Productivity. In: Proc. Joint
SHARE/GUIDE/IBM Application Development Symposium, October 1979, pp.
83–92 (1979)

2. Baker, A.L., Bieman, J.M., Fenton, N., Gustafson, D.A., Melton, A., Whitty, R.:
A philosophy for software measurement. J. Syst. Softw. 12(3), 277–281 (1990)

3. Berard, E.V.: Metrics for object-oriented software engineering (1995),
http://www.ipipan.gda.pl/∼marek/objects/TOA/moose.html

4. Bieman, J.M., Ott, L.M.: Measuring functional cohesion. IEEE Trans. Softw.
Eng. 20(8), 644–657 (1994)

5. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide, 2nd edn. Addison-Wesley, Reading (2005)

6. Card, D.N., Glass, R.L.: Measuring Software Design Quality. Prentice-Hall, Engle-
wood Cliffs (1990)

7. Chidamber, S.R., Kemerer, C.F.: Towards a metrics suite for object oriented de-
sign. In: OOPSLA 1991: Conference proceedings on Object-oriented programming
systems, languages, and applications, pp. 197–211. ACM Press, New York (1991)

8. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

9. Ciupke, O.: Automatic detection of design problems in object-oriented reengineer-
ing. In: TOOLS 1999: Proceedings of the Technology of Object-Oriented Languages
and Systems, Washington, DC, USA, p. 18. IEEE Computer Society Press, Los
Alamitos (1999)

10. Datta, S.: Integrating the furps+ model with use cases - a metrics driven approach.
In: Supplementary Proceedings of the 16th IEEE International Symposium on
Software Reliability Engineering (ISSRE2005), Chicago, IL, November 7–11, 2005,
pp. 4–51–4–52 (2005)

11. Datta, S.: Agility measurement index: a metric for the crossroads of software devel-
opment methodologies. In: ACM-SE 44: Proceedings of the 44th annual southeast
regional conference, pp. 271–273. ACM Press, New York (2006)

12. Datta, S.: Crosscutting score: an indicator metric for aspect orientation. In: ACM-
SE 44: Proceedings of the 44th annual southeast regional conference, pp. 204–208.
ACM Press, New York (2006)

13. Datta, S., van Engelen, R.: Effects of changing requirements: a tracking mechanism
for the analysis workflow. In: SAC 2006, pp. 1739–1744. ACM Press, New York
(2006)

14. Datta, S., van Engelen, R., Gaitros, D., Jammigumpula, N.: Experiences with
tracking the effects of changing requirements on morphbank: a web-based bioin-
formatics application. In: ACM-SE 45: Proceedings of the 45th annual southeast
regional conference, pp. 413–418. ACM Press, New York (2007)

15. DeMarco, T.: Controlling Software Projects. Yourdon Press (1982)
16. Dhama, H.: Quantitative models of cohesion and coupling in software. In: Selected

papers of the sixth annual Oregon workshop on Software metrics, pp. 65–74. Else-
vier Science Inc., New York (1995)

http://www.ipipan.gda.pl/~marek/objects/TOA/moose.html

346 S. Datta and R. van Engelen

17. Fenton, N.: Software measurement: A necessary scientific basis. IEEE Trans. Softw.
Eng. 20(3), 199–206 (1994)

18. Freeman, P.: Automating software design. In: DAC 1973: Proceedings of the 10th
workshop on Design automation, Piscataway, NJ, USA, pp. 62–67. IEEE Computer
Society Press, Los Alamitos (1973)

19. Harrison, R., Counsell, S.J., Nithi, R.V.: An evaluation of the mood set of object-
oriented software metrics. IEEE Trans. Softw. Eng. 24(6), 491–496 (1998)

20. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press,
Cambridge (2006)

21. Karimi, J., Konsynski, B.R.: An automated software design assistant. IEEE Trans.
Softw. Eng. 14(2), 194–210 (1988)

22. Larman, C.: Applying UML and Patterns. Prentice Hall, Englewood Cliffs (1997)
23. McCabe, T.: A software complexity measure. IEEE Trans. Softw. Eng. SE-2, 308–

320 (1976)
24. O’Keeffe, M., Cinneide, M.M.O.: A stochastic approach to automated design im-

provement. In: PPPJ 2003: Proceedings of the 2nd international conference on
Principles and practice of programming in Java, pp. 59–62. Computer Science
Press, Inc., New York (2003)

25. Pressman, R.S.: Software Engineering: A Practitioners Approach. McGraw-Hill,
New York (2000)

26. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual, 2nd edn. Addison-Wesley, Reading (2005)

27. Schach, S.: Object-oriented and Classical Software Development, 6th edn.,
McGraw-Hill International Edition (2005)

	COMP-REF: A technique to guide the delegation of responsibilities to components in software systems
	Citation

	COMP-REF: A Technique to Guide the Delegation of Responsibilities to Components in Software Systems
	Introduction
	A Model for the Software Development Space
	The Ideas of $Aptitude$ and Concordance
	Defining the Metrics
	Aptitude Index
	Requirement Set
	Concordance Index

	COMP-REF: A Technique to Refine the Organization of Components
	Experimental Validation
	Validation Strategy
	Presentation and Interpretation of the Results

	Related Work
	Open Issues and Future Work
	Conclusions

