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Compressive Representation for Device-Free
Activity Recognition with Passive RFID Signal

Strength
Lina Yao, Member, IEEE , Quan Z. Sheng, Member, IEEE , Xue Li, Tao Gu Senior Member, IEEE , Mingkui

Tan, Member, IEEE , Xianzhi Wang, Member, IEEE , Sen Wang, and Wenjie Ruan

Abstract—Understanding and recognizing human activities is a fundamental research topic for a wide range of important applications
such as fall detection and remote health monitoring and intervention. Despite active research in human activity recognition over the
past years, existing approaches based on computer vision or wearable sensor technologies present several significant issues such as
privacy (e.g., using video camera to monitor the elderly at home) and practicality (e.g., not possible for an older person with dementia
to remember wearing devices). In this paper, we present a low-cost, unobtrusive and robust system that supports independent living of
older people. The system interprets what a person is doing by deciphering signal fluctuations using radio-frequency identification
(RFID) technology and machine learning algorithms. To deal with noisy, streaming, and unstable RFID signals, we develop a
compressive sensing, dictionary-based approach that can learn a set of compact and informative dictionaries of activities using an
unsupervised subspace decomposition. In particular, we devise a number of approaches to explore the properties of sparse
coefficients of the learned dictionaries for fully utilizing the embodied discriminative information on the activity recognition task. Our
approach achieves efficient and robust activity recognition via a more compact and robust representation of activities. Extensive
experiments conducted in a real-life residential environment demonstrate that our proposed system offers a good overall performance
and shows the promising practical potential to underpin the applications for the independent living of the elderly.

Index Terms—Activity recognition, RFID, compressive sensing, subspace decomposition, feature selection

F

1 INTRODUCTION

The population is aging worldwide due to increasing life ex-
pectancy and low birth rate. With the recent developments in cheap
sensor and networking technologies, we have seen a wide range of
activity recognition applications for remote health monitoring and
intervention and behavior analysis. These applications enhance
the quality of people’s lives, afford a greater sense of security,
and facilitate their independent living [1], [2], [3], [4], [5]. For
example, by monitoring a person with dementia, it is possible
to track how completely and consistently the daily routines are
performed, and determine when assistance is needed.

Activity recognition is a core aspect of ubiquitous computing
as many application scenarios require an intelligent environment
to infer what a person is doing or attempting to do. Essential
to realizing these applications is activity recognition, which is
emerging as an important research area in recent years. In general,
activity recognition techniques have mainly focused on the direct
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observation of people and their behaviors with cameras or wear-
able sensors (e.g., accelerometer, gyro). To date, many efforts have
been made to learn human activities by mining from a broad range
of signal sources, such as videos and images [6], radio frequency
of wearable or wireless sensors [7], [8], Wi-Fi [9], and even object
vibration fluctuations [10].

Recognizing activity from wearable sensors has become a pop-
ular research topic in the past few years. This approach typically
requires human subjects to wear a number of sensors [11], [12] or
RFID tags [13]. Hence, it has two main shortcomings. It may be
impractical to require people wearing sensor devices all the time,
and the other obstacle is that those sensor devices typically need
regular maintenance (e.g., battery replacement). As a result, sensor
based activity recognition is not always practical, particularly in
monitoring elderly people with cognitive disabilities.

Recently, device-free activity recognition has drawn much
attention since it does not require subjects to wear any devices.
Instead, sensor devices are placed in the environments, and radio
signal fluctuations induced by subject’s movements can then be
collected and analyzed to recognize activities [14], [15], [16],
[17]. Radio Signal Strength indicator (RSSI) and Channel State
Information (CSI) are explored to correlate signal fluctuations to
each of the activities. These systems typically require a dense
deployment of sensor devices which may incur high cost in both
deployment and maintenance. With the advancement of RFID
technology, we have seen more and more RFID tags and devices
deployment in indoor settings. Recent work [18], [19] suggest
exploiting RFID signal for device-free activity recognition. These
work typically have stringent requirements on tag placement such
as density and distance between tags. For example, a recent study
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(a) Proposed lightweight setup (b) Workflow of the proposed method

Fig. 1. (a) The proposed lightweight setup: a person performs different activities between the wall deployed with an RFID array and an RFID antenna.
(b) The activities can be recognized by analyzing the corresponding signal strength fluctuation, Received Signal Strength Indicator (RSSI).

by Wagner et al. [20] shows that an optimal tag placement is
needed to alleviate inaccuracy caused by the variability of RSSI.
Such optimal tag placement requirement may incur considerable
deployment cost, hindering the ease of RFID deployment for
practical applications. In addition, existing works use passive
tags mixing with active tags, in which active tags need more
expenditure in real deployment. They use more advanced signal
measurement of RFID like CSI [21], [22], however, not many
RFID manufacturers can provide such hardware-level support.
Obtaining RSSI is still the easiest way to exploit RFID signal
since it can be easily obtained from off-the-shelf RFID devices,
which result in more cost-effective solutions. However, RSSI
signal suffers from high uncertainties due to the nature of signal
fluctuation in real-world conditions such as distraction, diffusion
and degradation, and being noise-sensitive. Hence, it is particu-
larly challenging when dealing with fine-grained activities [18].

To overcome signal uncertainty, we exploit sparse representa-
tion over RSSI, and study how to learn signal strength fluctuation
to improve system robustness and effectiveness. Sparse coding
is a common technique to model data vectors as sparse linear
combinations (i.e., sparse representation) of basis elements, and
has been widely used in image processing and computer vision
applications [23], [24], [25]. Prior work on classification using
sparse representation has mainly dealt with images. There are few
work on sparse representation for activity recognition by exploring
signal strength fluctuation due to its high uncertainty in terms of
physical and deployment in real world. We propose a dictionary
learning approach to uncover the structural information between
RSSI signals of different activities by learning the compact and
discriminative dictionaries per activity. In particular, we model
each predefined human activity by learning discriminative dictio-
naries and its corresponding sparse coefficients using features ex-
tracted and selected from raw RSSI streams. The obtained sparse
coefficients are systematically examined as enhanced features to
better discern different activities. To enhance the robustness, we
further design a Canonical Correlation Analysis [26] (CCA)-based
greedy feature selection approach to decipher the most informative
features from noisy RSSI raw signals.

In this paper, we develop an RFID-based, device-free activity
recognition system by leveraging off-the-shelf, pure passive RFID
tags and exploiting easy-to-obtain RSSI signal. Figure 1 illustrates
the system setup and gives a high-level overview. Passive RFID
tags are deployed in an environment (e.g., on the wall in a room)
forming a tag array. We design our system in a way that it is insen-
sitive to tag placement such as distance between tags (Section 4.6),

lowering the bar for system deployment and making it a more
practical solution. We conduct extensive real-world experiments
by comparing our system to the state-of-the-arts, and discovering
the system bottleneck. The results demonstrate that our system
achieves robust performance (∼70% accuracy for 12 daily ac-
tivities in person-independent validation strategy and ∼95% in
person-dependent validation strategy). Previous studies [20] show
that tag density has a great impact on system performance. We
conduct empirical studies on tag arrangement such as distance
between tags. The results show that our system allows arbitrary
tag arrangement within a specified distance without significant
negative effect on system performance (Section 4.6), alleviating
nontrivial tag configuration in real deployment. In general, our
system offers several advantages such as easy to deploy, mainte-
nance free, low cost, and lightweight in computational cost. The
main contributions of our work are summarized below:

• We develop a compressive sensing dictionary-based learn-
ing approach to uncover structural information among
RFID signals of different activities. Compared to existing
approaches, our approach achieves more compact repre-
sentation of activities while preserving richer information
and uncovering invariant patterns, thereby underpinning
an efficient and robust activity recognition system. We
show that, even using noisy and uncertain RSSI signals,
our algorithm still achieves good performance in terms of
both person-independent and person-dependent activities.

• We propose a lightweight but effective feature selection
method to assist the extraction of more discriminative
signal patterns from noisy RFID streams. We particularly
exploit an unsupervised and filter-based feature selection
approach based on CCA, which not only retains the natural
assignment of feature components, but also uncovers the
interdependency between feature components.

• We validate and evaluate our system through prototype
applications and conduct extensive experiments in both
office and home settings. Our experimental results demon-
strate the effectiveness and efficiency of the proposed
techniques.

The remainder of the paper is organized as follows. We present
the motivating applications and formulate our research problems
in Section 2. The proposed approach and technical details are
described in Section 3. In Section 4, we report the experimental
results. We overview the related work in Section 5 and wrap up
the paper in Section 6.
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2 BACKGROUND

In this section, we first present several representative applications
that can be benefited from our device-free activity recognition
system, and then discuss two important observations, which hold
key groundings for the proposed recognition algorithms.

2.1 Motivating Applications

Fall Detection. With the great progress of medical technologies,
many countries are facing the issue of aging society where there
will be a lower proportion of people providing necessary levels of
care to a large portion of elderly people. Meanwhile, the problem
of huge nursing cost has a big impact to aged care. The demand for
home surveillance systems is rising, and such systems help elderly
people stay at their own homes longer and safer, which reduces the
necessity for caregivers to oversee individuals (especially seniors).

In particular, falls are the leading cause of fatal injuries for
people aged 65 and above [27]. By monitoring the activities of
an elderly, we could detect the likely falls (e.g., getting out of
bed, going to bathroom), and issue an alert timely. Obviously, it
is impractical to require the older people to carry devices all the
time.

Ambulatory Monitoring. Posture recognition and monitoring are
critical in the medical care, e.g., ambulatory monitoring, because
physiological responses, such as changes in heart rate or blood
pressure, may result from changes in body position and physical
activities [28]. Continuous monitoring and automatic detection
of subtle behavioral changes are valuable for physicians and
caregivers to estimate the physical well-being of a person.

Sleep Monitoring. Sleep posture recognition is crucial for elderly
people as sleep disorders can be associated with some particular
diseases, e.g., restless leg syndrome and diabetes [29]. Device-free
activity monitoring is an improvement and good supplementary
over camera-based monitoring, which suffers from privacy issues
and poor performance at low-light conditions.

2.2 Observations and Problem Formulation

To gain better understandings of the groundings about this pro-
posed work, we present two observations from the RFID RSSI
data we collected: i) RSSI signal variations are hard to fit in
a straightforward way; and ii) there exist invariant underlying
patterns of RSSI signal variations which can be explored to design
a learning algorithm for identifying different activities.

Observation 1. It is well known that RSSI is quite compli-
cated in real environments due to signal reflection, diffraction,
and scattering, especially for the passive RFID tags. It is often
severely affected by the propagation environment, the tagged
object properties, or human movements in the signal coverage
area. Moreover, the signal strength of a passive RFID tag is
uncertain and non-linear [18], [30]. As shown in Figure 2 (a),
the RSSI variations cannot be easily fitted using generic linear
and polynomial regressions since the fitting residuals are quite
large. It is therefore impossible to directly use raw RSSI signal in
activity recognition.

Observation 2. Although RSSI reflects more on the uncertainty
and non-linear distributed patterns, we can still observe some
interesting characteristics of RSSI. More specifically, we discover
that the variations of signal strength reflect different patterns,
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Fig. 2. (a) Signal strength fluctuation of the activity walking and its
corresponding linear/quadratic/cubic/polynomial fittings and residuals,
(b) the signal distribution pattern of activities walking (top) and kicking
left leg (bottom)

which can be exploited to distinguish different activities. Figure 2
(b) shows the distinctive fluctuation patterns of signal strength
collected from activities walking and kicking left leg, respectively.
From the figure, it is clear that the distribution and accumulative
probability of RSSI of these two activities are different and
distinguishable.

From above observations, RSSIs of passive RFID tags embody
certain patterns for different activities, which can be exploited for
effective activity recognition. We therefore formulate our problem
as follows.

Let S ⊂ Rt (t is the number of tags) be the domain of
observable signal strength fluctuation (RSSI indicator in this work)
s, and L ∈ {1, ...,K} ⊂ R be the domain of output activity label
l (K is the number of activities). Suppose we have n RSSI and
activity label pairs {(si, li)|si ∈ S, li ∈ L, i = 1, ..., n}. The
training dataset can be expressed as:

S = [s1, ..., sn] ∈ Rt×n

l = [l1, ..., ln]T ∈ Rn
(1)

Our goal is to learn a predictor F : S → L using the training
dataset, to assign the most appropriate activity label for a given
query sample.

3 THE PROPOSED SYSTEM

The overall architecture of our proposed system is shown in
Figure 3. The whole process consists of three main stages:
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Fig. 3. The architecture of our proposed activity recognition system

• Processing the noisy raw signal streaming data from var-
ious RFID tag inputs into individual segments, and then
extracting low-level statistical features from each segment
and the salient subset of features are selected (Section 3.1),

• Learning a compact and discriminative dictionary for each
activity using the selected features (Section 3.2), and

• Given a new streaming signal, the activity recognition
problem is equivalent to finding the dictionary from the
learned activity dictionaries that best approximates the
testing sample (Section 3.3).

We will describe the technical details of these stages and the
algorithms in the rest of this section.

3.1 Feature Representation
The first major task is to divide the continuous sequence of RSSI
data stream into a set of individual segments, where each segment
corresponds to a specific concept or an activity (e.g., one segment
corresponds to Sitting, and another segment corresponds to Stand-
ing etc). Segmentation helps the classifier better understand the
underlying activity, by illustrating the temporal dependency, and
to compress the streaming data as well.

We incorporate the temporal information during the segmenta-
tion process of feature transformation. We divide the raw stream-
ing signal data into segments where each segment is generated by
a sliding window based method. So all relevant information can
be extracted as features from each single segment.

The continuous S will be divided into a set of individual
segments with equal size S = {S1, ...,Sn}. We set segment
size to 6 in this work. It is well understood that high quality
and discriminative features are essential to improve the classifi-
cation accuracy of any pattern recognition system. After dividing
the streaming segments, the information is then transformed by
designing 7 types of lightweight statistical feature vectors from
each segment, and they are listed in Table 1.

TABLE 1
Statistical features and brief descriptions

No. Feature Description
1 Min Minimal value of Si
2 Max Maximal value of Si
3 Mean Average value of Si
4 Variance The square of standard deviation of Si
5 Root Mean Square The quadratic mean value of Si
6 Standard Deviation Measure of the spreadness of Si
7 Median The median Si

The extraction process in our approach yields a total of m
feature vectors O = {o1, ...,oi}, where o ∈ Rm, withm = 7×t
where t is the number of tags. However, some features might

confuse, rather than help, the classifier to discriminate activities.
Also, due to the “curse of dimensionality”, the performance may
degrade sharply as more features are used when there is not
enough training data to reliably learn all the parameters of the
activity models. In general, to achieve the best classification
performance, the dimensionality of the feature vector should be
as small as possible, namely keeping only the most salient and
complementary features.

Figure 4 shows the correlations between features in a 2D
space. Figure 4 (a) shows that although the Mean feature can
roughly characterize the walking activity from the other four
activities, the two features (Max and Mean) cannot well separate
the five activities. In Figure 4 (b), the Variance feature can help to
identify activities high arm waving (horizontal) and bending over,
but these two activities cannot be characterized well along the Min
feature due to intersections and the overlapping. In such cases, the
Min feature is irrelevant or redundant, and does not provide useful
information to improve the classification accuracy. In addition,
keeping the dimensionality small could reduce the computational
cost such that the recognition algorithms can be implemented and
performed on lightweight devices such as mobile phones. Besides,
smaller and discriminative feature sets can decrease the latency of
recognition system, which is a main concern in activity recognition
applications.

To systematically assess the usefulness and identify the most
important features for discriminating different activities, feature
selection techniques are needed. In particular, we propose a filter-
based unsupervised feature selection method. Compared to the ex-
isting feature selection approaches, which treat each component of
features independently, we study the correlations between features
using Canonical Correlation Analysis (CCA) [26]. We compute
the canonical correlation for each pair of features and generate
feature subsets using a greedy algorithm based on computed
pairwise canonical correlations.

CCA Ranking. The initial rankings for each pair of features, where
two feature vectors are given, and a projection is computed such
that they are maximally correlated in the dimensionality-reduced
space. We first apply CCA to all pairs of the extracted features.
The result is a similarity matrix of canonical correlations. For
each pair of feature vectors {oi, oj} that can be linearly mapped
into: oi → wT

oioi and oj → wT
ojoj , where woi ∈ Rm and

woj ∈ Rm, their correlation coefficient ρij can be obtained by
maximizing the following equation:

ρij =
wT

oioio
T
j woj√

wT
oioio

T
i woi

√
wT

ojojo
T
j woj

(2)
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Fig. 4. Illustrative examples of feature correlations in 2D space

After applying to all pairs of features, we can generate an initial
ranking for all feature pairs. A higher rank is assigned to those
weakly correlated and thus complementary feature pairs. Strongly
correlated and thus redundant feature pairs get lower ranks. The
initial ranking facilitates the selection of descriptive and comple-
mentary features.

Forward Searching. We apply a simple greedy method to find a
feature subset based on their pairwise rankings, which traverses
the full search space provided by the initial ranking of canonical
correlation coefficients of the feature pairs. Forward selection
refers to a search that begins at the empty set of features and
the features are progressively incorporated into larger and larger
subsets. Then, we use the classification performance to evaluate
the new feature combinations, and the searching process will be
terminated when either the predefined dimensionality of features
is reached or all features are already considered.

3.2 Activity Dictionary Learning
A well learned dictionary by fitting overcomplete basis with a
collection of training samples can generate more compact and
informative representation of given data, thus it helps to achieve
better recognition performance. We propose a sparse representa-
tion based approach to recognize human activity by investigating
RSSI fluctuations. We learn one single dictionary for each activity,
which is formed by a set of basis vectors learned by solving a
sparse optimization problem. Each basis vector can effectively
capture part of the key structural information of the training data
from each activity.

There are several advantages in learning activity dictionaries.
Firstly, the dictionary for each activity is learned from a collection
of training samples via solving a `1-norm optimization prob-
lem [31]. Secondly, the dictionary learning and training process
of each activity is independent from other activities, which makes
an activity recognition system flexible and scalable, as no change
is needed on the existing activity dictionaries when a new activity
is added. Finally, each dictionary can be trained and learned by
using only very small number of training samples, which can
effectively relax the heavy workload on labeling and annotating
training data in activity recognition, as required by the most
existing approaches.

Assuming there are K types of activities, we construct K
dictionaries (one dictionary for each activity). After that, a new
signal is evaluated using the K dictionaries to find the most
appropriate activity label. We present the details of the proposed
algorithm in the following.

Let Ok = {ok1 ,ok2 , ...,oki } be the training sample from ac-
tivity class Ck. To learn and encode the information of the testing
samples belonging to a particular activity class, we first construct
an overcomplete dictionary Dk for each class Ck. Recall the set

Algorithm 1 Activity-Specific Dictionary Learning
Input: Training sample matrix O = {o1, ..., oN}, dictionary size d
Output: Dictionary D and sparse coefficients X

Initialize: Dictionary matrix D(0) ∈ Rm×K with `2 column normalization and
J = 1

1: while (!=stopping criteria) do
2: Use orthogonal matching pursuit to compute the sparse coefficients xi for each

training sample oi by solving the optimization problem.

min
D,xi

||oi −Dxi||22, s.t. ||xi||0 ≤ τo (3)

3: Update dj , the j-th column of DJ−1

4: for j = 1 : N do
5: Find a group of vectors:

ξj ← {i : 1 ≤ i ≤ N,xi(j) 6== 0} (4)

6: Compute the overall representation error matrix Ej by:

Ej ← [o|, ..., |oN ]−
∑
i6=j

dix
i
τ (5)

7: Extract the i-th column in Ej where i ∈ ξj to form ERj
8: Apply SVD to obtain ERj = U∆V, and di is updated with the first column

of U. The non-zero elements in xiτ are updated with the first column of
V ×∆(1, 1)

9: end for
10: J = J + 1
11: end while

of training samples from kth activity as Ok = {ok1 ,ok2 , ...,okN},
where oki ∈ Rm, m is the feature dimensions. We intend to learn
a dictionary matrix Dk ∈ Rm×K (which equals to K(K > m)
vectors {dk1 , ...,dkK}), over which Ok has a sparse representation
Xk = {xk1 , ...,xkN}. In this case, the original training matrix
Ok can be represented as a linear combination of no more than
τk0 (τk0 << K) dictionary vectors. The optimization problem can
be formalized as:

min
D,X
||O−DX||22, s.t. ||xi||0 ≤ τo (6)

We adopt the K-SVD algorithm [32] to solve this problem, which
performs two steps iteratively until converged. The first stage is
the sparse coding stage, where D is kept fixed and the coefficient
matrix X is computed by orthogonal matching pursuit algorithm.
In the second stage, the dictionary D is updated sequentially by
allowing the relevant coefficients to be unique to K-SVD, which
results in a faster convergence. The dictionary learning algorithm
is detailed in Algorithm 1. The complexity is proportional to
N(d2K + 2mK).

3.3 Exploiting Dictionary Coefficients
One advantage of having class-specific dictionaries is that each
class is modeled independently from the others, and hence the
painful repetition of the training process can be avoided when a
new type of activity is added into the system.

After learning K individual activity-specific dictionaries, any
new incoming test RFID signal can be represented in terms of
its dictionary basis from the learned dictionaries. To calculate
the sparse coefficients of an input RFID sample w.r.t. a given
dictionary, we use orthogonal matching pursuit [33] to project the
testing RFID sample on the subspace spanned by the dictionary
basis, in which strong correlates with the signal or its residual are
selected and used to calculate the coefficients.

Given multiple activity-specific dictionaries and coefficients
obtained in Algorithm 1, a series of different methods can be
leveraged to classify a new test signal over these dictionary basis.
We propose several strategies of exploiting the learned sparse
coefficients, which are detailed as follows:
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• Reconstruction error (RE). The reconstruction error for the
kth activity (k ∈ [1,K]) can be calculated as:

ek = ||o∗ −DkXk||2 (7)

Then the activity label of o∗ can be assigned using:

lo∗ = l(arg min
k
ek) (8)

• Maximal coefficient (MC). The activity label is associated
with the training samples having the largest absolute value
of coefficients of Xk:

lo∗ = l(arg max
k

dik) (9)

• Maximal mean of coefficients (MMC). The activity label
is the top label with the maximal sum of coefficients of
Xk divided by dimension of o∗ m:

lo∗ = l(arg max(
∑
i

dik/m) (10)

• Maximal sum of coefficients (MSC). The activity label is
the top label with the maximal sum of absolute value of
coefficients of Xk:

lo∗ = l(arg max(
∑
i

|d|ik)) (11)

• Concatenate coefficients (ConSVM). We stack the learned
coefficients with original features to form a new feature
vector, and then feed the enhanced features into SVM for
classification.

Our proposed activity classification is summarized in Algo-
rithm 2.

Algorithm 2 Overall Algorithm for Activity Classification
Input: Sensor samples S = S1, ...,SK , where K is the number of activity classes;

Querying signal samples S∗ = {s∗1 , ..., s
∗
I}

Output: Activity label l∗ = {l∗1 , l
∗
i , ..., l

∗
I} of S∗

1: Extracting Nk feature vectors of signal samples from each activity class Ck using
the proposed feature representation 3.1

2: Constructing K activity-specific dictionaries D = {D1, ...,DK}
3: while i! = I do
4: Transform S∗ to features O∗ (Section 3.1)
5: Computing sparse representation x∗i of s∗i using K dictionaries D (Section 3.2)
6: Outputting activity label by exploiting coefficients Dk (Section 3.3).
7: end while

4 EXPERIMENTS

In this section, we first briefly introduce the experimental settings
including hardware setup, tag placement, and data acquisition.
We then report our extensive experiment studies on the proposed
approach. Our experiments are intended to address the following
questions: i) how does our proposed approach compare with other
state-of-art methods? ii) what are the optimal settings of our
proposed method? iii) how does proposed feature selection affect
the activity recognition performance? Section 4.2 to Section 4.4
devnote to these three questions correspondingly. We also brief
analyze the recognition delay of our proposed approach in Sec-
tion 4.5 and investigate the sensitivity of our approach to indoor
environments in Section 4.6.

(a)

(b)

Fig. 5. Experimental setup (a) bedroom setup (b) whole house setup

4.1 Experimental Settings

Hardware Setup. We used one Alien 9900+ RFID reader, one
circular antenna and Squig inlay passive RFID tags in our experi-
ments. Passive tags were placed on the wall with certain distance.
The antenna is ∼ 1.3m high from the ground, arranged in an
angle of ∼ 70◦ to ensure it can catch all the tags’ signals. The
subjects stood between the wall and the antenna (∼ 1.5m to 1.8m)
and performed different predefined activities. A sequence of RSSI
signals were collected at a sampling rate of 0.5 second. The overall
set up is shown in Figure 5.

It may be a concern that RFID-based activity recognition
systems may pose a potential risk to people’s health. Commercial
RFID readers and tags operate at electromagnetic frequencies in
the low-energy range, effectively eliminating the risk of interaction
with human cells. Furthermore, a passive tag itself has no baseline
electromagnetic activity and only produces a signal in response to
the interrogation from an RFID reader. The tags themselves even
have been approved for implantation in humans and have shown
no negative health effects [34].

Sampling Rate. Passive RFID tags tend to be noisy. For example,
one of the challenges in existing RFID systems is false negative
readings, caused by missed detections (i.e., a tag in the antenna’s
reading range may not be detected). Meanwhile, RSSI data is
sensitive to environments, e.g., some disturbance from an envi-
ronment can cause RSSI fluctuations. Appropriate sampling rates
can reduce the aforementioned problems. However, too small
sampling rates make our method more sensitive to the noise
of RFID readings, while too big sampling rates blur the inter-
class activity boundaries. In our implementation, we collected the
continuous RSSI data streams every ≈ 0.5 second.

Data Collection. The data acquisition process involves six subjects
(five males and one female), and the set of 23 fine-grained,
orientation-sensitive activities (including 6 postures and 17 ac-
tions, as shown in Figure 11). These activities are the most
common ones in people’s daily lives. Identifying orientation of
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postures can be valuable when combined with the layout of the
place in practice. For instance, if we know that a table is on
the left side of an elderly person, based on the layout, when the
orientation of a fall is detected, it is possible to estimate how severe
the fall would be (e.g., she may hit the table if she is falling to
her left). In our experimental study, each subject performed each
activity for 120 seconds and all 23 different activities performed
sequentially by one subject were regarded as one set of activity
data. We make the dataset publicly available1 for reproducing our
results and support other researchers in the area.
Validation Strategy. We validate our approach using two strategies:
person-dependent and person-independent. The former uses the
partial samples of each subject for testing and the remaining
samples of the same participant are used for training. The final
result is the averaged value of all subjects. This is reasonable since
elderly people often live alone. The latter applies the one subject
out strategy, where we use the data from five subjects as training
examples to train our algorithm and build activity recognition
models. The data from the left-out subject is used for testing. This
process iterates for every subject. The final result is the averaged
value across all the subjects.
Performance Metrics. Instead of using the overall classification
accuracy, we evaluate our proposed approaches using F1 score,
which is a harmonic mean of precision and recall scores:

F1 =
2× Precision×Recall
Precision+Recall

(12)

4.2 Overall Comparison
In this section, we report our experiments that focus on two
aspects: i) the performance comparison of a set of sparse rep-
resentation dictionary-based methods, and ii) the performance
comparison of our proposed method with other five widely used
generic classifiers in sensor-based activity recognition.
Dictionary-based approaches comparison. We first compared the
series of proposed dictionary-based recognition methods with
varying number of selected features (Section 3.3) to discern
the best strategy out of them before conducting comparable
experiments with other methods. Figures 6 (a) and (b) show
the results. From the figure, we can see that the reconstruction
error based method produces the worst performance in both
person-dependent and person-independent scenarios, with only
less than 60% in accuracy. The other four methods demonstrate
the similar performance, all of which can obtain nearly 96%
F1-score under person-dependent and over 60% F1-score under
person-independent strategy. We selected MC as the best strategy
as it performs the best and shows stable recognition among all
proposed dictionary based approaches compared to MCC and
MSE, and its light computational cost compared to ConSVM,
which requires a full spectrum of stacked coefficients as extra
features. We used MC in the following experiments.
Comparison with state-of-the-arts. To evaluate the performance of
activity recognition, we further compared MC with a few state-of-
the-art methods widely used in the activity recognition community
such as Multinomial Logistic Regression with `1 (MLGL1), SVM
with linear kernel (LSVM), k nearest neighbor (kNN), random
forest (RF), and Naive Bayes (NB). We selected these methods
since they have already been successfully applied for sensor-based
activity recognition applications in the recent literature.

1. http://linayao.com/data/rssi-activity.zip

• Multinomial Logistic Regression with `1 (MLGL1) is
a modification of linear regression that is able to pre-
dict dependent variables based on the logistic function.
Multinomial (or multivariate) computations are solved
by the decomposition into a series of binary variables.
In this work, we integrated the `1 regularization into
linear classifier in the objective term. Given our multi-
class posture recognition problem, we combined the `1
regularization with multinomial logistic regression, which
models the conditional probability Pw(lj = ∓1|o). The
prime problem with `1 regularization can be calculated by
optimizing the log likelihood:

lk = arg min
w

K∑
k=1

||wk||1 −
n∑
i=1

K∑
k=1

likw
T
k oi

+
n∑
i=1

log
( K∑
k=1

exp(wT
k oi)

) (13)

• k-Nearest Neighbor (kNN) is a common classifier for a
variety of classification problems. It predicts the class of
a sample by a majority voting of the class labels of the K
nearest training instances. We set k = 3.

• Linear Support Vector Machine (LSVM) aims at finding
the best separation of binary-labeled instances by deter-
mining a hyperplane which maximizes the margin between
support vectors of different classes. We set C = 1.

• Random Forest (RF) builds a forest of decision trees that
have the same distribution but independent output classes.
It is based on a random selection of features for each tree
and construction of a combination of the individual tree
outputs. We set the number of trees as 1, 000.

• Naive Bayes (NB) classifier finds the most posterior prob-
ability Pr(lk|o∗) for a given testing RSSI sample o∗ as
its predicted activity label l(o∗).

lk = arg max
lk

Pr(lk)
∏D
j Pr(o

∗
j |lk)∑k

j Pr(lk)
∏D
j Pr(o

∗
j |lk)

= arg max
lk

Pr(lk)
D∏
j

Pr(o∗j |lk)

(14)

where prior probability Pr(lj) is proportional to the size
of training samples in each posture class, which is obtained
via dividing number of samples belonging to posture lj by

total number of training samples, i.e., Pr(lj) =
|olj |
|O|

. K

is the number of posture classes. Conditional probability
on each dimensional RSSI Pr(o∗j |lk) ∼ N(µj , σ

2
j ) can

be obtained from the training dataset.

We can clearly draw the following observations from the
results shown in Figures 6 (c) and (d):

• The performance of all the methods are gradually im-
proved when more features are selected, and the improve-
ment are not obviously when a certain number of features
are selected. Specially, the performance may decrease with
larger size of the feature size.

• Our dictionary-based method MC consistently outper-
forms all the state-of-the-arts. LSVM shows the compa-
rable performance with MC under person-dependent vali-
dation, but MC’s recognition accuracy is more competitive
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Fig. 6. (a) Dictionary-based methods comparison under person dependent validation (b) Dictionary-based methods comparison under person
independent validation (c) Comparison with other methods under person dependent validation (d) Comparison with other methods under person
independent validation (the legend of (d) is same as (c))

compared with LSVM. This result shows the better ability
of our proposed method in dealing with the intra-class
variability across different persons.

Taking a closer look at the accuracy for each activity in
terms of person-dependent and person-independent validations
from Figure 7, we can see that the results under person dependent
validation shows robust outcomes, where almost all the activities
can be correctly identified. For the person-independent validation,
our method can distinguish sitting, sitting to standing and arm
weaving with reasonable good performance, also can recognize
falling with over 60% accuracy across different persons. But it
fails to identify some lower body activities (e.g., kicking) and also
confuses walking with sitting to standing due to failure to capture
the activity signatures of different persons. The possible reasons
might lie in that i) from the methodology perspective, intra-class
variability is still a big challenge for activity recognition commu-
nity, and more informative and discriminative patterns discerning
different persons should be developed from the RSSI fluctuations,
and ii) from the hardware setting perspective, according to our
preliminary research on tag placement related to tag density,
single-line tag placement is capable of capturing signal variations,
but it may fail to detect fine-grained body movements, such as
sitting leaning right or left. Furthermore, it is also hard to capture
the signal variations caused by subjects with different heights.

To achieve better accuracy and higher sensitivity, we tried to
increase single-line tag placement to multiple lines, eventually
forming an array. Different lines correspond to different parts
of human body. For instance, the upper line of tags would be
expected to reflect the variations from upper human body like
waving arms or shaking head; the middle line of tags would be
more sensitive to movements of torso; and the bottom line of tags
are supposed to have more response to lower body movements
such as falling. In this way, we may perform more robust activity
recognition with the collected full spectrum of RSSI variations.
More technical details can refer to our previous work in [30].

4.3 Parameter Tuning

Impact of Selected Feature Size k. The top k features control
how many of the top effective features are used to feed into
the classification algorithm. We varied the value of k from 4 to
84 (full feature set) with 5 stepsize under some fixed dictionary
size d. The results are shown in Figures 8 (a) and (c). For all
the feature selection tests, we kept the dictionary size fixed.
The result shows that in most cases feature selection improves
classification performance in comparison with the full feature
set. We also can observe that the increasing number of features

selected, the performance increases as well until k reaches around
64 in both person-dependent and person-independent validations,
at that point our classification algorithm performs the best. After
that, the performance shows some slight degradation, especially
for the person-independent scenario.

Impact of Dictionary Size d. The activity dictionary is an over-
complete set of vectors and the number of vectors indicates the
size of the dictionary. Similar to the experiment of studying the
impact of k, we varied the dictionary size d from 4 to 59 with a
set of fixed feature size k. The results are reported in Figures 8
(b) and (d). From the figure we can see that the classification
performance reaches the highest at a certain point (e.g., d = 9 for
Figure 8 (b)). After that, the performance stays stable and even
slightly decreases when d gets larger.

Impact of Training Size. The third important factor of affecting the
activity recognition performance is how much training data should
be involved in our proposed method. We conducted the evaluation
with fixed k = 69 and d = 9 by varying the training ratio of the
whole dataset from 0.1 to 0.2 with stepsize 0.2 for the person-
dependent scenario. The results are shown in Figure 9 (a). We can
observe that only using 10% samples for the training, our proposed
method reaches over 80% accuracy, and it reaches over 90%
with only 20% data as the training data. The performance keeps
improving along with more training samples. In our experiments,
we set 0.2 as our default training percentage. Figure 9 (b) shows
the result under the person-independent scenario, where we used
p (p = 1, 2, 3, 4, 5) person data for training and 1 person’s data
for testing. The performance keeps increasing from over 50% with
1 person’s data as the training data, and stabilizes over 66% when
we used 3 persons’ data as training data. The improvement is not
quite significant after that, thus we set it as our default setting
under person-independent validation.

4.4 Comparison on Feature Selection

In this experiment, we evaluated our proposed CCA based feature
selection method with three widely adopted feature selection
methods in terms of efficiency (e.g., running time) and effective-
ness (e.g., precision/recall/F1). Specially, we compared the pro-
posed CCA-based forward selection with fisher score, sequential
forward with relief-f score and forward selection with F-statistics
score based methods.

• Fisher Score. It is for quantifying the score of ith feature
oi:

Si =

∑K
k=1 nk(ōik − ōi)

T (ōik − ōi)∑K
k=1 nkvik

(15)
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Fig. 7. (a) Confusion matrix under person dependent validation (b) Confusion matrix under person independent validation
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Fig. 8. Experiments on parameter tuning: (a) impact of different feature size k with a set of fixed dictionary size d under person dependent validation,
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Fig. 9. (a) Impact of training ratio under the person dependent validation (b) Impact of number of persons as training data under the person
independent validation (c) robustness evaluation, and (d) running time comparison

where nk is the number of samples in the kth activity
class, ōik and vik are the mean and the variance of the ith

feature, and ōi is the mean of the ith feature.
• Sequential Forward with Relief-F Score (SFRF). This

technique estimates the relevance of features according to
how well their values distinguish between the data points
of the same and different activity classes that are close
to each other. It computes a weight for each feature to
quantify its merit. Its weight is updated for the signal
samples presented in each activity class, according to the
evaluation function:

Si = Si +
∑

j∈L,j 6=l(oi)

P (lj)

1− P (lj)
|oi − nearmissji (oi)|

− |oi − nearhiti(oi)|
(16)

where nearmissj(oi) and nearhiti(oi) denote the near-
est RSSI samples to oi from the same and different activity
classes, respectively.

• Forward Selection with F-Statistics Score (SFSS). This
method measures the discrimination of multiple sets of
real numbers, which can be calculated using:

Si =

∑l
j=1(ōji − ōi)

2∑l
j=1

1

nj − 1

∑nj
k=1(ojk,i − ōji )

2

(17)

where nj is the number of samples in the jth activity
class, ōi denotes the mean value of tag i in the training
dataset, and ōji is the mean value of the ith tag in the jth

activity class. The numerator indicates the discrimination
between positive and negative sets, and the denominator
indicates the one within each of the two sets. The larger



1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2706282, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, APR 2017 10

the F-score is, the more likely this feature is discriminative
in the activity recognition.

A robust feature selection method should generate consistent
feature selections for a given task and a given set of features
independently from the input data. In order to investigate the
robustness of the proposed feature selection method, we employed
feature selection on all six subjects, and expected the evaluated
feature selection methods to generate similar feature types and
subsets. For all rank-based methods, we generated complete fea-
ture rankings from 1 to 7 features for CCA based feature selection
and from 1 to all 84 feature components for F-statistics, Relief-F,
Fisher. Rankings were generated for 10 cross validation runs. The
robustness of feature selections was computed by the intersection
of the generated rankings as follows:

I(i) =
∩mj=1F

p
j (i)

i
(18)

where F p is the set of corresponding features in the generated
ranking list, F p(i) = {f(1), ..., f(i)}, i ≤ n, and n is the total
number of features.

Figure 9 (c) shows the portion of shared features for all
compared feature selection methods and all the target dimensions.
We can clearly observe that the robustness of CCA based method
is significantly higher compared with other generic selection meth-
ods. Besides, based on our previous study, our method reaches the
best performance when the size of feature subset is around 69, at
which point the ratio of shared features are also the highest.

We then compared the running time of the feature selection
process since recognition delay is a critical concern for activity
recognition applications. The running time can be split into the
feature ranking time and the feature set evaluation time according
to the nature of the algorithms. Our rank-based feature selections
perform an initial ranking for the whole feature set and therefore
have constant running time independent of the actual amount of
features to be selected. Figure 9 (d) plots the running time of three
classic feature selection based methods over the whole dataset.
We observe that our proposed CCA-based feature selection has
competitive performance in comparison to the other two feature
selection based methods even though the fisher score method uses
the least time.

4.5 System Latency Analysis
Fast detection of activities is critical, particularly for applications
such as aged care. For example, we should send an alert to notify
care givers as quickly as possible to offer medical assistance for
the elderly people when a fall occurs.

Our system has about 4 ∼ 4.5 seconds recognition latency,
which results from two main factors, namely i) data collection and
ii) feature selection. The latency caused by feature selection can
be referred to our previous experiment in Section 4.4, particularly
Figure 9 (d). The latency from data collection comes from two
aspects. First, our system evaluates subject’s postures every 0.5
second by using the RSSI stream of the latest two seconds. Second,
the RSSI collector is programmed with a timer to poll RSSI with
a predefined order of transmission, taking around one second to
complete a new measurement with no workarounds.

4.6 Sensitivity to Indoor Environments
Activity recognition from the RSSI changes remains a challenging
task in complex indoor environments due to the diffraction and
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Fig. 10. Performance comparison of different tag density (distance be-
tween tags): (a) person-dependent, (b) person-independent; (c) perfor-
mance comparison on furniture changes; (d) performance comparison
on human-tag distance.

reflection effects from furniture, layout and subject’s differences
on performing activities. In this section, we report some empirical
results of several experiments regarding practical issues of our
proposed system. These experimental studies aimed at

• Evaluating the effect of the distances between RFID tags
on the system performance (Section 4.6.1);

• Examining the performance of the proposed system on
object changes (e.g., moving a chair) (Section 4.6.2);

• Studying the effect of the distances between subject and
tag array on the system performance (Section 4.6.3); and

• Investigating how well the system deals with orientation-
sensitive activities (e.g., sitting leaning back or sitting
leaning forward) (Section 4.6.4).

4.6.1 Sensitivity of Tag Density
We claim one of advantages of our proposed system is to relax
the deployment from time-consuming and complex tag placement
problem due to the robust feature selection and compact dictio-
naries. As long as the tags and the reader can form a signal field,
the tags can be arbitrarily arranged without significant negative
effect on the system performance. To show this declaration,
we systematically studied the sensitivity of RFID tag density.
Specifically, we varied the distance between two tags from 0.3m
to 1m and ran our system. In general, smaller distances between
tags cause some high correlations and redundancy. Whilst, too
sparse tag arrangements cannot capture useful and complete RSSI
patterns. Interestingly, the results of our system (shown in Figure
10) shows the insensitivity to the varying tag density, of which the
results are more stable for person-dependent setting compared to
the person-independent setting. This advantage makes our system
more practical and attractive in real deployment.

4.6.2 Sensitivity to Room Furniture Changes
To evaluate the sensitivity of the proposed system to room fur-
niture change, we conducted an experiment where subjects per-
formed activities with and without a chair. In our experiment, we
evaluated four activities: Standing, Walking, Falling, and Bending
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Over. Figure 10 (c) shows the results. From the figure we can
observe that the recognition performance slightly drops, without
any significant change. The results indicate that the furniture
changes affect on the recognition accuracy, but not in a significant
way. The degree of the effects might be dependent on the material,
size and location of the object. More sophisticated investigations
on this will be part of our future work.

4.6.3 Sensitivity to Human-Tag Distance
We varied the distance between the subject and the tags from
20cm to 100cm with 20cm intervals due the spatial constraints of
the testing area, and recorded the system recognition performance.
From the result in Figure 10 (d), we can clearly see that the
performance generally remains stable in our experiment. The
reason might lie in the fact that we used the industry level
high-performing RFID reader that covers bigger area. The small
changes in the centimeter level do not bring significant influence.

4.6.4 Sensitivity to Activity Orientations
We also explored the potential of identifying the orientation-
sensitive activities (shown in Figure 11). From the experimental
results (see Figure 12), we can see that the most errors happen
when identifying the activities with a similar intra-class gap
(e.g., falling left and falling right). From the results, we can
see that our method can accurately recognize most of orientation
sensitive activities in a cluttered indoor environment under person-
dependent validation.

5 RELATED WORK

The goal of activity recognition is to detect human physical
activities from the data collected via various sensors [6], [35].
There are generally two main ways for activity recognition: i)
to instrument people, where sensors and RFID tags are attached
to human bodies, and ii) to instrument the environment, where
sensors are deployed inside an environment.

5.1 Activity Recognition by Instrumenting People

Wearable sensors such as accelerometers and gyros are commonly
used for recognizing activities [36]. For example, Kern et al. [37]
design a network of three-axis accelerometers distributed over a
user’s body. The user’s activities can then be inferred by learning
the data provided by these accelerometers about the orientation
and movement of the corresponding body parts. However, such
approaches have obvious disadvantages including discomfort of
wires attached to the body as well as the irritability that comes
from wearing sensors for a long duration. For example, Krishnan
et al. [38] propose an activity inference approach based on motion
sensors installed in a home environment to avoid such problems.

Recently, researchers are exploring smart phones equipped
with accelerometers and gyroscopes to recognize activities and
gesture patterns. For example, Brezmes et al. [39] have imple-
mented a real-time classification system for some basic human
movements using a conventional mobile phone equipped with an
accelerometer. The results show that the capacity of conventional
mobile phones in executing in real-time all the necessary pattern
recognition algorithms to classify the corresponding human move-
ments. Kwapisz et al. [40] describe a different implementation that
uses phone-based accelerometers to perform activity recognition.
The authors use labeled accelerometer data from twenty-nine

users for daily activities such as walking, jogging, climbing stairs,
sitting, and standing, and induce a predictive model for activity
recognition. To improve the robustness of activity recognition
using mobile sensors, Henpraserttae et al. [41] address two major
issues in using a tri-axial accelerometer-embedded mobile phone
for continuous activity monitoring, i.e., the difference in orienta-
tions and locations of the device. Their algorithms are suitable for
accurate activity recognition using a mobile phone regardless of
device orientation and location. An extensive survey on sensor-
based activity recognition can be found in [42].

Apart from sensors, RFID has been increasingly explored in
the area of human activity recognition. Some research efforts pro-
pose to realize human activity recognition by combining passive
RFID tags with traditional sensors (e.g., accelerometers). Daily ac-
tivities can be inferred from the traces of object usage via various
classification algorithms such as Hidden Markov Model, boosting
and Bayesian networks [13], [43]. Other efforts dedicate to exploit
“pure” RFID techniques for activity recognition. For example,
Wang et al. [44] use RFID radio patterns to extract both spatial and
temporal features, which are in turn used to characterize various
activities. However, such solutions require people to carry RFID
tags or even readers (e.g., wearing a bracelet).

5.2 Activity Recognition by Instrumenting Environment
Recently, there have emerged research efforts focusing on explor-
ing device-free activity recognition. Such approaches require one
or more radio transmitters, but people are free from carrying any
receiver or transmitter. Most device-free approaches concentrate
on analyzing and learning distribution of radio signal strength
(RSSI) or radio links. The main idea is to exploit the phenomenon
that RSSI changes significantly when an object is passing by.
For instance, Liu et al. [45] introduce a novel application that
uses RF tag arrays for activity monitoring to provide an econom-
ically attractive solution to the traditional image analysis-based
approaches. Youssef et al. [14] propose to pinpoint people’s loca-
tions by analyzing the moving average and variance of wireless
signal strength. Zhang et al. [18] develop a sensing approach
using an RFID tag array. Different from previous schemes, this
work is more cost-effective because it uses passive tag arrays
together with a few active RFID tags. Another advantage is that
it proposes several algorithms to reduce noise in the readings of
passive RFID tags and achieves better accuracy. Zhu et al. [46]
further develop a novel approach for RFID reader localization
using passive RFID tags. However, most of these efforts focus
on localization and tracking. There are not much work on study
device-free activity recognition. Sigg et al. [17] propose a device-
free activity recognition system based on a sensor array. Compared
to this work, we develop a robust dictionary-based algorithm for
identifying larger set of daily activities, which extensively exploits
the handy and low-cost radio signals of passive RFID devices.

5.3 Sparse Representation
The theory of sparse representation aims at finding efficient and
compact representations for signals in signal processing [31],
which is primarily suitable for problems like denoising, com-
pression, inpainting. Sparse representation in general refers to the
process of choosing a good subset of dictionary elements along
with the corresponding coefficients to represent a signal.

Sparse representation has been widely used in video track-
ing, e.g., the monitored object is modeled as a sparse linear
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Fig. 11. Our proposed algorithm can detect and classify 23 postures and actions with an average accuracy of over 96%
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Fig. 12. The confusion matrix of our proposed approach for orientation-sensitive activity recognition

combination of a series of templates [47], [48]. The employed
dictionary plays an important role in sparse representation or
sparse coding based image reconstruction and classification, while
learning dictionaries from the training data has led to state-of-the-
art results in image classification tasks. It has several successful
applications, such as face detection and image classification [23],
[24], [25]. For example, [25] directly took the training samples
of all classes as the dictionary to represent the query face image,
and classified it by evaluating which class leads to the minimal
reconstruction error of it.

To the best of our knowledge, our work is the very first
of few on investigating the dictionary-based sparse representa-
tion in human activity recognition by learning signal strength
stream. Compared to our previous work in [30], [49], we fur-
ther develop the dictionary-based sparse learning algorithm for

constructing activity dictionary, and explore multiple strategies of
using the learned sparse coefficients of dictionaries under person-
independent scenario. Moreover, we have conducted extensive and
thorough evaluations in terms of person-independent along with
person-dependent scenarios.

6 CONCLUSION

We have presented in this paper the technical details of a device-
free, unobtrusive human activity recognition system that holds the
potential to support independent living of older people, which
is a critical research and development area given the significant
challenges presented by the ageing population in most countries
nowadays. We particularly investigate a dictionary-based approach
for sparse representation of noisy and unstable radio frequency
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identification (RFID) streaming signals. Our approach achieves a
more compact representation of activities while preserves richer
information, thereby supporting efficient and robust recognition
of human activities. The ideas proposed in this paper are generic
and applicable in many other applications. In particular, we adopt
the orthogonal matching pursuit to solve the sparse optimization
problem. We have implemented our system to validate the pro-
posed techniques and some demonstration video clips are available
from the first author’s homepage2. We have conducted extensive
experiments using real datasets collected in both office and home
settings, and the experimental results demonstrate effectiveness,
efficiency, and robustness of our proposed approach. We have
also investigated the way of extracting robust features from raw
signal strength stream by designing a simple but highly rank-based
feature selection method. Our dataset is publicly available to other
researchers in the community3.

Our future work will concentrate on validating and further
developing this system in more complex and dynamic environ-
ments, e.g., what if the locations of furniture change and what
if there are different ways when performing activities. The work
presented in this paper is the first step to recognize high-level,
complex human activities. While we only focus on atomic postures
in this paper, there are widely recognized three types of human
activities: i) actions, which consist of multiple postures for a single
person with temporal dimension, e.g., “walking”; ii) interactions,
which are activities that involve two or more persons, e.g., shaking
hands with others; and iii) group activities, which are activities
performed by conceptual groups of people, e.g., having a meeting
with a group of people. Identifying and recognizing more complex
human activities is one main goal of our future work, e.g., inferring
concurrent activities, eating and watching TV.
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