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VPSL: Verifiable Privacy-Preserving Data Search
for Cloud-Assisted Internet of Things

Qiuyun Tong, Yinbin Miao, Ximeng Liu, Kim-Kwang Raymond Choo, Senior Member, IEEE, Robert
H. Deng, Fellow, IEEE, and Hongwei Li

Abstract—Cloud-assisted Internet of Things (IoT) is increas-
ingly prevalent used in various fields, such as the healthcare
system. While in such a scenario, sensitive data (e.g., personal
electronic medical records) can be easily revealed, which incurs
potential security challenges. Thus, Symmetric Searchable En-
cryption (SSE) has been extensively studied due to its capability
of supporting efficient search on encrypted data. However, most
SSE schemes require the data owner to share the complete
key with query users and take malicious cloud servers out of
consideration. Seeking to address these limitations, in this paper
we propose a Verifiable Privacy-preserving data Search scheme
with Limited key-disclosure (VPSL) for cloud-assisted Internet
of Things. VPSL first designs a trapdoor generation protocol for
obtaining a trapdoor with disclosing limited key information and
without revealing plaintext query points to others. Then, VPSL
provides an efficient result verification and search processing by
employing the Merkle hash tree structure and k-means clustering
technique, respectively. VPSL is secure against the level-2 attack.
Finally, an enhanced VPSL (called VPSL+) resisting the level-
3 attack is constructed by introducing the random splitting
technique. Empirical experiments demonstrate the accuracy and
efficiency of VPSL or VPSL+ using real-world datasets.

Index Terms—Cloud-assisted Internet of Things, Searchable
symmetric encryption, k-means clustering technique, Result ver-
ification.

I. INTRODUCTION

INTERNET of Things (IoT), formed by combining various
information sensing devices (i.e., sensor, smartphone, etc.)

with the Internet to realize information gather, management
and computation, has been wildly applied in a range of
scenarios such as smart grid, smart home, smart healthcare
system, and smart vehicle network [1], [2], [3], [4]. Due to a
great amount of IoT data (e.g., Electronic Medical Records
(EMRs), financial documents) produced and the limitation
of IoT devices (i.e., limited storage and computation capac-
ities, etc.), cloud-assisted IoT has been proposed to release
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storage and computation overheads and improve flexibility
and convenience. Although the attractive benefits brought
by cloud-assisted IoT, security and privacy risks are still
challenging concerns. Fine-grained access control over the
encrypted data [5] can achieve secure data sharing, but it
may incur the waste of storage and computation resources due
to returning all matched results. Thus, Searchable Encryption
(SE) [6], [7] has been extensively studied, which allows users
to search on ciphertexts. The scheme [8] proves it practicality
and feasibility.

A. Limitations

Traditional SE solutions focus on a broad range of search
functionalities such as single keyword search [6], [9], multi-
keyword boolean search [10], and multi-keyword ranked
search [11], [12], [13], [14], [15], [16]. To avoid returning
large number of irrelevant results or incurring poor search
experience, multi-keyword ranked search is generally more
popular. Unfortunately, there are still some limitations in
existing multi-keyword ranked search schemes based on secure
k Nearest Neighbor (kNN) technique [17]. Examples include
heavy search burden for tons of data, complete key disclosure
and false results– see Fig. 1, which limit their practical
applications.

Fig. 1: Example limitations in existing schemes.

The search complexity in [11], [12] grows linearly with
the size of document set. Existing solutions, such as those
presented in [13], [14], achieve sublinear search complexity
without damaging search accuracy. The schemes [15], [16]
support more efficient retrieval at the expense of some search
accuracy. However, these solutions require the data owner to
share the complete secret key with authorized query users,
which increases key leakage risk because interest-driven query
users may leak the secret key to adversaries (e.g., unauthorized
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query users) [18]. In addition, most above schemes except [15]
assume the clouds to be honest-but-curious, who honestly
follow the established protocol but are sufficiently curious to
try to infer some valuable information from the encrypted
data. In practice, this assumption seems to be insufficient
due to financial incentives, hacker attacks or hardware errors,
etc. [19], [20], [21], [22], [23], [24]. As a result, the clouds
may just execute partial search operations. Thus, we hope
to have a more trustworthy secure search system, where the
authentic search results are assured to be returned despite
the existence of malicious clouds. Accumulator structure,
homomorphic MAC and Merkle hash tree have been used to
prevent malicious clouds from returning false results. Accumu-
lator structure [19], [20] incurs unbearable computation over-
head due to exponential operation. Although homomorphic
MAC [21] achieves efficient verification, it leads to a heavy
index storage burden and high proof generation overhead. In
addition, it just supports private verification (i.e., specific query
users with the secret key or other information are allowed
to verify search results) [22], [23], which incurs additional
storage and computation costs, particularly impractical for
resource-constrained IoT devices/users (mobile devices, sensor
nodes, etc.). Merkle hash tree [15], [24] achieves efficient
public result verification by returning auxiliary information.

B. Our Contributions

In this paper, we first design a Verifiable Privacy-preserving
data Search scheme with Limited key disclosure (VPSL) for
cloud-assisted IoT, by using k-means clustering technique,
Asymmetric Scalar-Product-preserving Encryption technique
(ASPE) and Merkel hash tree to achieve efficient ciphertext
retrieval, limited key disclosure and efficient result verification
simultaneously, which resists the level-2 attack1. Then, to
provide stronger security, we construct an enhanced VPSL
(called VPSL+) by adding the random splitting technique
to index and trapdoor encryption, which resists the level-3
attack2. The main constructions of this paper are listed below:

• Efficient index tree structure. We use the k-means cluster-
ing technique iteratively to divide the data record set into
multiple clusters until there is no cluster whose size is
more than the threshold T , Then, we build an index tree
by taking the upper layer’s clusters as the parents of the
next layer’s and the data records in each lowest cluster
as this cluster’s children to improve search efficiency.

• Limited key disclosure. We design a trapdoor generation
protocol based on ASPE. By implementing this protocol
cooperatively at the cost of a round of communication,
the trapdoor can be generated without leaking complete
secret key or revealing plaintext query. VPSL or VPSL+
not only achieves key confidentiality to some extent, but
also reduces key management burden.

1Level-2 attack is also called the Known-Sample Attack (KSA). In this
attack model, the attacker observes the encrypted dataset and a set of plaintext
tuples in the plaintext dataset, but he/she does not know the corresponding
encrypted values of those tuples in the encrypted dataset.

2Level-3 attack is called the Known-Plaintext Attack (KPA). In this attack
model, the attacker not only knows the encrypted dataset, but also observes
a set of tuples and the corresponding encrypted values of those tuples.

• Efficient public result verification. We efficiently verify
the correctness of search results by using the Merkle hash
tree structure and digital signature to prevent malicious
clouds from forging or tempering search results. More-
over, VPSL or VPSL+ allows public result verification,
namely any trusted authority can verify the search results,
which improves the reliability of the cloud-assisted IoT.

• Secure against the level-3 attack. We improve the index
and query encryption by integrating the random splitting
technique into VPSL to enhance data confidentiality.
Thus, VPSL+ can securely resist the level-3 attack.

In Sections II and III, we review the existing literature
and relevant background knowledge. Section IV describes the
system model, threat model and design goals. In Section V, we
present the overview of VPSL or VPSL+ and corresponding
concrete constructions. Security and performance evaluations
of our proposed schemes are presented in Section VI and VII.
Finally, we conclude this paper and discuss its future work in
Section VIII.

II. RELATED WORK

To facilitate search on encrypted data and prevent malicious
clouds from misbehaving during the retrieval process, we will
mainly focus on the following topics such as multi-keyword
ranked search and result verification.

Multi-keyword ranked search. A large variety of SSE
schemes with different functionalities have been present-
ed [25], [26], [27], such as those providing multi-keyword
ranked search [11], [12], [13], [14], [15], [21]. These SSE
schemes achieved more efficient retrieval based on the se-
cure kNN technique [17] in comparison to Asymmetric SE
(ASE) schemes [10], [28]. But the search complexity of these
schemes [11], [12], [21] is linear with the size of dataset. To
achieve sublinear retrieval, Chen et al. [15] used the hierarchi-
cal clustering method to support more search semantics and
fast ciphertext retrieval over large-scale datasets at the expense
of some search accuracy. Xia et al. [14] constructed a special
keyword balanced binary tree as the index and performed
the greedy depth-first search on it to achieve multi-keyword
ranked search without accuracy loss, but it is less efficient
than [15]. However, these schemes are known to have potential
key leakage risks as query users can access all keys generated
by the data owner. Interest-driven query users may disclose the
secret key to adversaries such as unauthorized users, thereby
threatening the security of outsourced data. Seeking to mini-
mize the risk of secret key disclosure, the data owner in [18]
cooperated with each query user to generate corresponding
trapdoor without sharing complete secret key with query users.
Although this protocol is more efficient and feasible than
other secure computation protocols such as garbled-circuit
protocol [29], secret sharing [30] and homomorphic encryption
system [31], [18] cannot guarantee the correctness of search
results. Besides, its search complexity is linear with the size
of dataset and higher than that of [11], [12].

Result verification. As we all known, a large number of
privacy-preserving keyword researches have been presented
to ensure search result authenticity against malicious clouds
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(e.g., [15], [19], [20], [21], [22], [32], [33], [34]). Specifically,
schemes such as [21], [22] support private verification, where
only the verifier with specific information (e.g., secret key) can
check the correctness of search results. For example, Wan et
al. [21] integrated the homomorphic MAC into the commonly
used multi-keyword ranked search scheme [11] to support
verifiable multi-keyword search, which achieves private ver-
ification and causes heavy index storage burden and high
proof generation overhead. To realize public verification, Liu
et al. [19] dynamically verified the correctness of search results
using RSA accumulator at the expense of huge computation
overhead. Sun et al. [20] constructed an authenticated inverted
index tree based on the bilinear-map accumulator technique to
verify results’ correctness and completeness either privately by
query users or with the assistance of a public trusted authority,
but its verification cost grows linearly with the number of
queried keywords. Chen et al. [15] extended the Merkle
hash tree [35] to searchable index tree to achieve efficient
public result verification, where the search time is sublinear
growth with the size of dataset and the verification is more
efficient than accumulator structure. In addition, verifiable
dynamic symmetric searchable encryption has been achieved
by the schemes [32], [33], [34], but they either support single
keyword matching search, or enable result verification with
two round communications in the single-user setting. TABLE I
presents a comparative summary of previous works and our
proposed schemes.

TABLE I: A comparative summary of various works

Schemes F1 F2 F3 F4 F5

[11] Multiple % % % KPA
[13] Multiple ! % Public KPA
[14] Multiple ! % % KPA
[15] Multiple ! % Public KPA
[17] Multiple % % % KSA/KPA
[18] Multiple % ! % KSA
[19] Single ! % Public IND-CKA2
[20] Multiple % % Public/Private UC
[21] Multiple % % Private KPA
[22] Single % % Private CKA
[33] Single ! % Private —
[34] Single % % Public Forward security

VPSL Multiple ! ! Public KSA
VPSL+ Multiple ! ! Public KPA

— F1: Keyword-based search type; F2: Sublinear query; F3: Limited key
disclosure; F4: Result verification; F5: Resisted attack type.

— KSA: Known-sample attack; KPA: Known-plaintext attack; CKA: Cho-
sen keyword attack; IND-CKA2: Adaptive semantic security against
CKA; UC: Universally composable security.

III. PRELIMINARIES

In this section, we review some background knowledge in
our work, including ASPE [17] and Merkle hash tree [35].

A. ASPE

ASPE is a SSE technique used to encrypt two vectors and
compute their Euclidean distance. To securely compute the

Euclidean distance between the data vector p and query vector
q, ASPE first generates the secret key M, where M is an
invertible matrix utilized to encrypt these two vectors. Then,
ASPE extends p,q to p̂ = (p⊤,−0.5||p||2)⊤, q̂ = r(q⊤, 1)⊤,
where r > 0 is a random number. After that, ASPE encrypts
p̂, q̂ as p∗ = M⊤p̂,q∗ = M−1q̂ respectively, and computes
their inner product, which is equivalent to the Euclidean
distance of p and q. ASPE can attack the level-2 attack. To
provide stronger security, enhanced ASPE (i.e., secure kNN
technique) is provided, which uses two ASPEs with different
secret keys to encrypt data vectors or query vectors. The
specific algorithms of enhanced ASPE can be referred to [17].

B. Merkle Hash Tree
Merkle Hash Tree (MHT) is commonly used to verify

whether a set of messages are unaltered or undamaged. The
structure of MHT is often a binary tree built in a bottom-up
manner, where the leaf nodes store the digests of authentic
data and non-leaf nodes store the digests derived from their
children. Fig. 2 shows an example of the binary MHT,
where hi = H(fi)(i ∈ [1, 8]), h1,2 = H(h1|h2), h1−4 =
H(h1,2|h3,4), hr = H(h1−4|h5−8) and H(·) is a one-way
collision-resistance hash function such as SHA256. The ver-
ifier with root digest hr verifies the correctness of returned
results following two steps. First, the verifier recalculates root
value h′

r with the returned results and auxiliary information
defined as siblings’ digests of the nodes on the search path.
Then, the verifier compares h′

r with hr. For example, to
verify the messages {f1, f4, f7}, the prover returns them along
with the auxiliary information {h2, h3, h5,6, h8}. Then, the
verifier checks the correctness of {f1, f4, f7} by computing
and checking Eq. 1 holds or not. If Eq. 1 holds, it implies
that the returned results {f1, f4, f7} are not unaltered or
undamaged.

H((H(f1)|h2)|(h3|H(f4))|h5,6|(H(f7)|h8))
?
= hr. (1)

Fig. 2: An example of MHT.

IV. PROBLEM FORMULATION

In this section, we present the system model3, threat model
and design goals of our proposed schemes.

A. System Model
VPSL or VPSL+ considers a cloud-assisted hospital IoT

scenario, which mainly consists of three entities: Data Owner
3The system model of VPSL or VPSL+ may include an extra entity

(verifier) apart from the data owner, the query users and the cloud server.
Moreover, as the verifier can be any trusted authority, we omit it in Fig. 3.
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Fig. 3: System model of VPSL or VPSL+.

(DO), Query Users (QUs) and health Cloud Server (CS) as
shown in Fig. 3. Before outsourcing EMRs to CS, DO (e.g.,
a hospital collects diagnostic information from patients via
their IoT devices, and then records it in patients’ EMRs)
encrypts EMRs via a symmetric encryption algorithm (e.g.,
AES) and constructs an authenticated index tree to facilitate
result verification and efficient retrieval (Step 1⃝). If certain
QU (e.g., a doctor with smart terminals) intends to know
the risk factor of a certain disease (e.g., heart disease, breast
cancer) in a specific patient based on the outsourced EMRs
and the patient’s test result, he/she cooperates with DO to
perform a trapdoor generation protocol to obtain the trapdoor
without knowing complete secret key (Step 2⃝). Specifically,
QU first sends his/her query (i.e., test result) to DO who
then returns the secret key information generated by some
confidential arithmetic operations. With the help of the key
information, QU generates the trapdoor and sends it to CS.
After receiving the search request, CS performs a search on
the authenticated index tree, then finds top-k search results,
finally returns them with auxiliary information (Step 3⃝). Once
obtaining the search results, the verifier (any trusted authority
such as authorized QU) checks their correctness according to
the auxiliary information (Step 4⃝). The specific role of each
entity in VPSL or VPSL+ is introduced as follows:

• Data owner. DO is responsible for generating the secret
key required by the system, encrypting outsourced data
record set, constructing an authenticated index tree and
collaboratively executing the trapdoor generation protocol
with QUs.

• Query users. QUs cooperate with DO to generate trap-
doors, send them to CS, and verify the correctness of
search results before decrypting them.

• Health cloud server. CS, having powerful storage and
computation capabilities, stores huge amounts of data
from DO and provides ciphertext retrieval services for
authorized QUs. After receiving search requests, CS
searches the authenticated index tree, and returns the
search results attached with the auxiliary information for
verification.

B. Threat Model

Different from the frequently-used threat model in which
CS is assumed to be honest-but-curious, VPSL or VPSL+
considers a challenging one where CS is a malicious entity
who may return tempered or forged results due to financial

incentives, hacker attacks or hardware errors, etc. [19], [20],
[21], [22], [23], [24]. Also, we consider that some corrupted
QUs will collude with adversaries such as unauthorized QUs to
release the secret key. Besides, DO is considered as an honest-
but-curious entity who is curious about QUs’ query contents.
However, DO or QUs cannot collude with CS. It is remarkable
that VPSL or VPSL+ focuses on the data confidentiality and
correctness of search results, and takes no account of access
pattern and search pattern in our discussion.

C. Design Goals

To achieve verifiable, secure and efficient encrypted data
retrieval with limited key leakage under the above threat
model, VPSL or VPSL+ should achieve the following goals
regarding privacy preserving, efficiency and verifiability:
Privacy preserving. VPSL or VPSL+ should meet the privacy
requirements:

• Data confidentiality. The outsourced encrypted dataset in
VPSL or VPSL+ should be secure against the level-2
attack or level-3 attack, respectively; namely, the plaintext
dataset will not be revealed according to the leaked
information.

• Query confidentiality. VPSL or VPSL+ requires that
each plaintext query should not be leaked to DO or CS
throughout the encrypted data retrieval.

• Trapdoor unlinkability. To prevent CS from deducing
any useful information through analyzing the relationship
between trapdoors, VPSL or VPSL+ should ensure that
CS does not determine whether two different trapdoors
are driven from the same query point.

Efficiency. VPSL or VPSL+ should achieve sublinear search
time, and efficient result verification without imposing high
computation overhead on resources-limited QUs.
Verifiability. VPSL or VPSL+ should prevent the malicious
CS from returning false query results and thereby verifying
the correctness of search results.

V. PROPOSED VPSL

In this section, we first give a high-level description of
VPSL or VPSL+, then present concrete construction of VPSL
to achieve efficient encrypted data retrieval, limited key disclo-
sure and efficient result verification, finally construct VPSL+
concretely to provide stronger security at the expense of a little
computation and communication costs.

A. Overview of VPSL & VPSL+

VPSL. To solve the limitations, namely heavy search bur-
den, complete key leakage and false search results, DO first
uses the k-means clustering technique iteratively until no
cluster has more than T items, then builds a plaintext index
tree based on the clustering result to improve search efficiency.
Next, VPSL constructs a Trapdoor Generation Protocol (TGP)
based on the protocol in scheme [18] to encrypt a query point
with a round of communication between DO and QU. At the
expense of DO online and a small amount of communication
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cost, QUs’ query information can be protected from DO
and CS and trapdoor generation with limited key disclosure
can be achieved. Although, ASE schemes can also resolve
the threat of key disclosure, they cause heavy computation
burden comparing with TGP. Finally, VPSL authenticates the
encrypted index tree base on MHT to support efficient public
result correctness verification. Compared with accumulator
structure and homomorphic MAC technique, MHT used in
our proposed schemes is more efficient to support public
verification.

VPSL+. Although VPSL achieves efficient encrypted data
search, limited key disclosure and efficient result verification,
it is only secure against the level-2 attack [17]. Therefore,
we improve VPSL to resist the level-3 attack in VPSL+. To
address this issue, we integrate the random splitting technique
into the index and query encryption.

Fig. 4: Overview of VPSL or VPSL+.

The overview of VPSL or VPSL+, composed of four
algorithms except KeyGen, can be seen in Fig. 4. In Step 1⃝,
DO first transforms string information into numeric data (i.e.,
qualify dataset), then standardizes each attribute of the trans-
formed data (e.g., using z-score standardization) to prevent the
k-means clustering’s effect from being affected by different
dimensions and the large numerical difference between the
attributes. For example, p1 = (2, 1000), p2 = (4, 6000), p3 =
(3, 2000) are three data records with two attributes. Stan-
dardizing them via z-score standardization method, we obtain
p1 = (− 1√

2
,− 2√

41
), p2 = ( 1√

2
, 3√

41
), p3 = (0,− 1√

41
). After

that, the preprocessed data will be divided into several clusters
with size not exceeding threshold T by using the k-means
clustering technique iteratively. Finally, an encrypted index
tree is constructed with the help of ASPE, which will be
authenticated later based on MHT. In Step 2⃝, DO and QU
cooperate to implement TGP to encrypt plaintext query point
without sharing complete secret key with QU or revealing
plaintext query point to DO. In Step 3⃝, CS retrieves the
authenticated index tree from the root to find the best matching
cluster, then computes the relevance scores between the query
and data records contained in this cluster. If the size of this
cluster cannot satisfy QU’s requirement, CS will search its
sibling cluster with the highest relevance score among other
sibling clusters until meeting the requirement. In Step 4⃝, the
verifier such as an authorized QU verifies the correctness of
search results by using the returned auxiliary information. As
for the specific process in different algorithms in VPSL or
VPSL+, we will give a briefly definition as follows.

• KeyGen(1κ) → (K,K). In this stage, DO first generates
the secret key K = {α, r, s, M̂−1} in VPSL, or K =

{α, r, s,S, M̂−1, M̃−1} in VPSL+, and then derives the

secret key information K = {g, M̂∗, M̂◦} based on M̂

in VPSL or K = {ġ, g̈, M̂∗, M̃∗, M̂◦, M̃◦} based on
M̂, M̃ in VPSL+ to prepare for trapdoor generation in
TGP. Here, M̂, M̃ are two random invertible matrices.

• BuildTree(F,K) → Γ∗. After preprocessing the data
record set F , DO first constructs an encrypted index
tree Γ′ by using the k-means clustering technique and
secret key K, then authenticates it with MHT to obtain
the authenticated index tree Γ∗.

• TrapGen(q, t,K) → Tq. When ceratin QU issues the
query point q, DO and QU perform TGP cooperatively
with the help of a random vector t and the secret key
information K to obtain the trapdoor Tq without sharing
complete secret key with QU or revealing the plaintext
query point q to DO.

• Search(Γ∗,Tq, k) → (R, V O). When receiving the
query request {Tq, k}, CS performs a search on the
authenticated index tree Γ∗ to find the matching clusters
and select top-k similar encrypted data records from these
clusters as search results R, and returns them with the
auxiliary information V O for verifiability.

• Verify(V O,R) → True/False. To verify the correct-
ness of search results, the verifier recomputes the root
digest and compares it with the real. If the two digests
are equal, the verifier returns True and returns False
otherwise.

B. Construction of VPSL

The concrete construction of VPSL consists of five algo-
rithms described below.
KeyGen(1κ). Given the security parameter κ, DO first ran-
domly generates a positive number α, two (n+1)-dimensional
vectors r = (r1, · · · , rn+1), s = (s1, · · · , sn+1), and a
(2n + 2) × (2n + 2)-dimensional invertible matrix M̂ to
obtain the secret key K = {α, r, s, M̂−1}. Then, DO com-
putes (2n + 2)-dimensional vector g and two (2n + 2) × n-
dimensional matrices M̂∗, M̂◦ (see Eq. 2). Besides, DO gen-
erates a symmetric key sk to encrypt the data record set F to
obtain ciphertexts, i.e., {ci} = {Encsk(fi)}.

g = (· · · ,Mi,2n+1 + µMi,2n+2, · · · ),
M̂∗

i = (· · · , M̂i,2j − M̂i,2j−1, · · · ),
M̂◦

i = (· · · , M̂i,2j−1, · · · ),
i ∈ [1, 2n+ 2], j ∈ [1, n].

(2)

Here, n is the number of attributes in the dataset F . µ is
a random number. M̂i,j is the i-th row, j-th column of M̂.
M̂∗

i , M̂
◦
i are the i-row of M̂∗, M̂◦, respectively. The function

of tuple K = {g, M̂∗, M̂◦} is help to generate the trapdoor
with limited key leakage (detail in TrapGen).
BuildTree(F,K). Given the dataset F = {f1, · · · , fm} con-
taining m data records with n attributes, DO first qualifies
and standardizes F to obtain the preprocessed data P =
{p1, · · · ,pm}, where pi = (pi,1, · · · , pi,n) (i ∈ [1,m]) is a
n-dimensional vector, then builds an authenticated index tree
Γ∗ with four steps.
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Step 1: DO divides these data vectors {p1, · · · ,pm}
into several clusters {v1, · · · ,vu} by recursively using the
k-means clustering technique [16] until the number of data
records in each cluster is not more than the threshold T (see
Fig. 5a), where u is the number of non-leaf nodes at the bottom
of the index tree Γ and u ≪ m. Note that cluster vi(i ∈ [1, u])
is also a n-dimensional vector, so we set vi = (vi,1, · · · , vi,n).

Fig. 5: Example of k-means clustering process and plaintext
index tree construction with setting T = 3, N = 3, where
u = 11 and N denotes the tree’s width.

Step 2: Taking the upper layer’s clusters as the parents
of the next layer’s, DO builds a plaintext index tree Γ (see
Fig. 5b). Remarkably, all data vectors are stored in the leaf
node level. Data vectors from the same cluster will connect to
the same non-leaf node as their parent.
Step 3: DO encrypts the plaintext index tree Γ with the

secret key K to obtain the encrypted index tree Γ′. Specifically,
for each data vector pi = (pi,1, · · · , pi,n)(i ∈ [1,m]), DO
extends it to a (2n + 2)-dimensional vector p̂i = (r1 −
2αpi,1, s1, · · · , rn − 2αpi,n, sn, rn+1 + α

∑n
j=1 p

2
i,j , sn+1),

and encrypts p̂i as p∗
i = p̂iM̂

−1. Similar to the data vector
encryption, each cluster vector vi = (vi,1, · · · , vi,n) is also
extended and encrypted as v∗

i = v̂iM̂
−1, where v̂i = (r1 −

2αvi,1, s1, · · · , rn − 2αvi,n, sn, rn+1 + α
∑n

j=1 v
2
i,j , sn+1).

Algorithm 1 describes the construction of the encrypted index
tree Γ′ for the data vector set P , where root is the root node
of Γ′, Pi is a set formed by the data vectors in cluster vi and
mi is the size of the set Pi. Note that the initial state of root
is an empty node.
Step 4: DO authenticates Γ′ based on MHT to obtain the

authenticated index tree Γ∗, whose each internal node consists
of two components: encrypted cluster vector and digest, each
leaf node stores one more component: ciphertext generated by
encrypting corresponding data record, and root node stores one
more component: signature. For each leaf node Vi, the digest
is defined as di = H(idi|ci|p∗

i ), where idi and ci denote
the identity and ciphertext of the data record fi, respectively.
For each internal node Vρ, assuming that Vρ with encrypted
cluster vector v∗

ρ has l children whose digests are denoted as
d1, · · · , dl, then the digest of Vρ is dρ = H(v∗

ρ|H(d1| · · · |dl)).
For the root node Vr with T children, assuming that the digests
of its children are denoted as d1, · · · , dT , then the digest
of Vr is dr = H(v∗

r |H(d1| · · · |dT )). Finally, DO signs the
root digest dr to obtain the signature Sroot by using a digital

Algorithm 1: BuildEree(P, T,N, root)

1 {vi, Pi}i∈[1,N ] = k-means(P,N ); /∗ divide P into N
clusters and assume Pi = {p1, · · · ,pmi} ∗ /

2 for i = 1; i ≤ N ; i++ do
3 v∗

i = Encrypt(vi,K);
4 root.child[i] = v∗

i ;
5 if mi ≤ T then
6 for j = 1; j ≤ mi; j ++ do
7 p∗

j = Encrypt(pj ,K);
8 root.child[i].child[j] = p∗

j ;

9 else
10 BuildEtree(Pi, T,N, root.child[i]);

signature technique (e.g., RSA signature). Here, H(·) is a one-
way collision-resistance hash function (e.g., SHA256).
TrapGen(q, t,K). To generate a trapdoor Tq for the pre-
processed query point q = (q1, · · · , qn) with limited key
disclosure, QU and DO cooperate to perform TGP at the
expense of a round of communication cost. It is worthwhile
to note that the communications between QUs and DO rely
on a secure channel such as Secure Sockets Layer (SSL). The
specific TGP is described as follows:
Step 1: QU randomly selects a n-dimensional vector t =

(t1, · · · , tn), performs vector addition operation, i.e., q̂ = q+
t = (q1 + t1, · · · , qn + tn), and sends q̂ to DO. Note that the
function of t is to hide the real query point in order to protect
each QU’s query privacy from DO.
Step 2: DO randomly selects a positive number βq,

computes a (2n+2)-dimensional vector x = βq(g+q̂(M̂◦)⊤)

and a (2n+2)×n-dimensional matrix Y = βqM̂
∗, and sends

x,Y to QU.
Step 3: QU randomly selects a positive number γq. Then,

the trapdoor is

Tq = γq(x+ tY⊤) = βqγqM̂(q̄)⊤. (3)

where q̄ = (q1, t1, · · · , qn, tn, 1, µ).
Search(Γ∗,Tq, k). After gaining the search request {Tq, k},
CS retrieves the authenticated index tree Γ∗ from the root node
to find the cluster with highest similarity to the query q, note
that we use Euclidean distance as similarity measure metric.
Specifically, at each level, CS finds the entry node of the next
level, which has the highest relevance score (i.e., the smallest
Euclidean distance). Up to the leaf node, CS computes and
ranks the relevance scores of the data records contained in this
cluster. If the size of the best matching cluster cannot satisfy
QU’s requirement, CS will search its sibling cluster with the
second highest relevance score until the number of desired data
records is satisfied. Finally, CS returns top-k search results R
and the auxiliary information V O including all components
(except the digest) of each node on the search path and the
digests of its sibling nodes.

The relevance score between encrypted data vector p∗
i and

trapdoor Tq is computed in Eq. 4. Then, CS can achieve
relevance comparison between different data records according
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to p∗
i ·Tq −p∗

j ·Tq = αβqγq((||pi||2 − 2piq
⊤)− (||pj ||2 −

2pjq
⊤)) = αβqγq(D(pi,q)−D(pj ,q)), where D(·) donates

Euclidean distance function. If p∗
i · Tq > p∗

j · Tq, then
D(pi,q) > D(pj ,q) because of α, βq, γq > 0, which
indicates that the data vector pj is more similar with query
point q than the data vector pi. Note that the relevance scores
between cluster vectors and query point are calculated and
compared in similar way.

p∗
i ·Tq = p̂iM̂

−1 · βqγqM̂q̄⊤

= αβqγq(||pi||2 − 2piq
⊤) + βqγq

n∑
j=1

(rjqj

+ sjtj) + βqγq(µsn+1 + rn+1).

(4)

Fig. 6: Example of top-3 search with assuming n = 2.

Example. The above shows that encryption has no influence
on data records’ order ranked by their relevance scores.
Thus, we will perform a search on the plaintext index tree
with plaintext query in Fig. 6 to demonstrate the search
process. Given the search query q = (1, 1) and k = 3,
CS computes the relevance scores from the top of Γ. As
D(v3,1,q) =

√
2 < D(v3,2,q) =

√
17 < D(v3,3,q)

=
√
50, CS chooses V3,1 as entry node and computes

D(v2,1,q) = 1, D(v2,2,q) =
√
5, D(v2,3,q) = 2. S-

ince D(v2,1,q) < D(v2,3,q) < D(v2,2,q), CS calculates
D(p1,1,q), D(p1,2,q). As V2,1 is the lowest non-leaf node
and only has two children, which is less than k = 3, CS
also calculates D(p1,6,q), D(p1,7,q), D(p1,8,q). Assuming
D(p1,1,q) < D(p1,2,q) < D(p1,6,q) < D(p1,7,q) <
D(p1,8,q), CS returns R = {c1,1, c1,2, c1,6} as top-3 search
results and the auxiliary information is V O = {p∗

1,1,
p∗
1,2,p

∗
1,6,v

∗
2,1,v

∗
2,3,v

∗
3,1, d1,7, d1,8, d2,2, d3,2, d3,3}.

Verify(V O,R). To verify results’ correctness, the verifier first
uses R and V O to recalculate the root digest, then decrypts the
public root signature Sroot using the digital signature’ public
key to obtain the real root digest. Finally, the correctness of
search results is verified by comparing these two digests. In
our example, the verifier first recalculates the root digest d′4,1
in Eq. 5, then decrypts the root signature Sroot to obtain d4,1.
If d′4,1 equals to d4,1, then the search results are correct.

d′1,i = H(id1,i|c1,i|p∗
1,i), i = 1, 2, 6,

d′2,1 = H(v∗
2,1|H(d′1,1|d′1,2)),

d′2,3 = H(v∗
2,3|H(d′1,6|d1,7|d1,8)),

d′3,1 = H(v∗
3,1|H(d′2,1|d2,2|d′2,3)),

d′4,1 = H(d′3,1|d3,2|d3,3).

(5)

C. Construction of VPSL+
VPSL+ continues to use the constructed plaintext index

tree and result verification mechanism to achieve verifiable
efficient multi-keyword search. To resist the level-3 attack,
VPSL+ integrates the random splitting technique into index
tree and query encryption, but we cannot simply integrate
them. The reason is that the vector t = (t1, · · · , tn) is split into
two random vectors ta, tb when DO splits the query vector
q̂ = (q1 + t1, · · · , qn + tn), but QU (without knowing ta, tb)
can only use t and the knowledge returned by DO to generate
the trapdoor, which will incur the relevance computation
results including the item tιpi,ι when S[ι] = 0, where S is
a random bit vector used in the random splitting technique.
Thus, we need to improve the index or trapdoor extension
to eliminate these items. As the construction of VPSL+ is
based on that of VPSL, we just show the modified contents
in KeyGen, BuildTree, TrapGen, Search.
KeyGen(1κ). Given the security parameter κ, DO first invokes
VPSL.KeyGen to obtain {α, r, s, M̂, M̂−1, sk}, then gener-
ates a (n + 1)-dimensional bit vector S and a (2n + 2) ×
(2n+2)-dimensional invertible matrix M̃ to obtain the secret
key K = {α, r, s,S, M̂−1, M̃−1}. Finally, DO computes two
(2n + 2)-dimensional vectors ġ, g̈, and four (2n + 2) × n-
dimensional matrices M̂∗, M̃∗, M̂◦, M̃◦ (see Eq. 6). Here,
ε1, ε2, µ1, µ2 are different random numbers and ε1 + ε2 = 1
if S[n+ 1] = 0; otherwise ε1 = ε2 = 1. Note that the dataset
F in VPSL+ also encrypted via the symmetric key sk.

ġ = (· · · , ε1M̂i,2n+1 + µ1M̂i,2n+2, · · · ),
g̈ = (· · · , ε2M̃i,2n+1 + µ2M̃i,2n+2, · · · ),
M̂∗

i = (· · · , M̂i,2j − M̂i,2j−1, · · · ),
M̃∗

i = (· · · , M̃i,2j − M̃i,2j−1, · · · ),
M̂◦

i = (· · · , M̂i,2j−1, · · · ),
M̃◦

i = (· · · , M̃i,2j−1, · · · ),
i ∈ [1, 2n+ 2], j ∈ [1, n].

(6)

BuildTree(F,K). The differences of authenticated index tree
construction between VPSL and VPSL+ are reflected in Step
3: plaintext index tree encryption. Then index tree encryption
in VPSL+ is shown as follows:
Step 3’: For each data vector pi = (pi,1, · · · , pi,n)

(i ∈ [1,m]), DO first extends it to a (2n + 2)-dimensional
vector p̂i = (r1 − 2αpi,1, s1 − (1− S[1])× 2αpi,1, · · · , rn −
2αpi,n, sn − (1− S[n])× 2αpi,n, rn+1 + α

∑n
j=1 p

2
i,j , sn+1),

and encrypts p̂i as p∗
i = (p̂a

i M̂
−1, p̂b

iM̃
−1), where p̂i is split

into two vectors p̂a
i , p̂

b
i by using bit vector S via Eq. 7, 8. Simi-

lar to the data vector encryption, each cluster vector vi is also
extended and encrypted as v∗

i = (v̂a
i M̂

−1, v̂b
iM̃

−1), where
v̂a
i , v̂

b
i are obtained by splitting v̂i = (r1 − 2αvi,1, s1 − (1−

S[1])×2αvi,1, · · · , rn−2αvi,n, sn−(1−S[n])×2αvi,1, rn+1+
α
∑n

j=1 v
2
i,j , sn+1) via the same splitting configuration.{

p̂a
i [2ι− 1] = p̂b

i [2ι− 1] = p̂i[2ι− 1], if S[ι] = 0;

p̂a
i [2ι− 1] + p̂b

i [2ι− 1] = p̂i[2ι− 1], if S[ι] = 1;
(7)

p̂a
i [2ι] + p̂b

i [2ι] = p̂i[2ι], ι ∈ [1, n+ 1]. (8)
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TrapGen(q, t,K). At the expense of a round of communica-
tion cost, the improved TGP is performed as follows to obtain
the trapdoor Tq for the query point q = (q1, · · · , qn) with
limited key disclosure.
Step 1’: QU generates q̂ = q+t = (q1+t1, · · · , qn+tn)

with the same method in VPSL, then sends q̂ to DO.
Step 2’: DO first splits q̂ into two vectors q̂a, q̂b (see

Eq. 9), then randomly selects a positive number βq, next
computes two (2n + 2)-dimensional vectors ẋ = βq(ġ +

q̂a(M̂◦)⊤), ẍ = βq(g̈ + q̂b(M̃◦)⊤) and two (2n + 2) × n-
dimensional matrices Ẏ = βqM̂

∗, Ÿ = βqM̃
∗, finally sends

ẋ, Ẏ, ẍ, Ÿ to QU.{
q̂a[ι] + q̂b[ι] = q̂[ι], if S[ι] = 0;

q̂a[ι] = q̂b[ι] = q̂[ι], if S[ι] = 1.
(9)

Step 3’: QU selects a random positive number γq. Then,
the trapdoor is obtained by Eq. 10.

Tq = (Ta
q,T

b
q)

= (γq(ẋ+ tẎ⊤), γq(ẍ+ tŸ⊤))

= (βqγqM̂(q̄a)⊤, βqγqM̃(q̄b)⊤).

(10)

Here, q̄a = (q̂a[1]−t1, t1, · · · , q̂a[n]−tn, tn, ε1, µ1) and q̄b =
(q̂b[1]− t1, t1, · · · , q̂b[n]− tn, tn, ε2, µ2).
Search(Γ∗,Tq, k). The search process is very similar to that
in VPSL. The difference lies in the calculation of the relevance
score between the data vector (or cluster vector) and query
point. Eq. 11 shows the relevance score calculation in VPSL+,
where ∆ = san+1µ1+sbn+1µ2 and san+1, s

b
n+1 are two random

numbers with san+1+sbn+1 = sn+1. The correctness of VPSL+
is obvious because p∗

i · Tq − p∗
j · Tq = αβqγq(D(pi,q) −

D(pj ,q)) for i, j ∈ [1,m], i ̸= j, i.e., the similarity between
the query and data records can be compared according to the
analysis in Search of VPSL.

p∗
i ·Tq = p̂a

i M̂
−1 · βqγqM̂(q̄a)⊤ + p̂b

iM̃
−1 · βqγqM̃(q̄b)⊤

= αβqγq(||pi||2 − 2piq
⊤) + βqγq

n∑
j=1

(rjqj + sjtj)

−
∑

S[j]=0

tjrj + βqγq(rn+1 +∆).

(11)

VI. SECURITY ANALYSIS

In this section, we analyze the security of VPSL and VPSL+
according to the threat model and privacy requirements seen in
Section IV-B, IV-C. The data and query confidentiality as well
as trapdoor unlinkability of VPSL or VPSL+ can be proved
in the following theorems.

Theorem 1. VPSL is secure against the level-2 attack if M̂
is a random invertible matrix and keeps in private.

Proof: It is obvious that our encryption is more secure
than the simple encryption in ASPE [17], which has been
proved to resist the level-2 attack when M̂ is a random
invertible matrix and keeps in private. Thus, VPSL is also
secure against the level-2 attack.

Theorem 2. VPSL is not secure against the level-3 attack if
there are (2n+2) data vectors P ′ = {p1, · · · ,p2n+2} linearly
independent.

Proof: Assume that VPSL is attacked by a level-3 at-
tacker who possesses the knowledge ⟨Γ∗,P ′, I⟩, where P ′ =
{p1, · · · ,p2n+2} and I = {p∗

1, · · · , p∗
2n+2}. If the attacker

can recover all data vectors P from authenticated index
tree Γ∗, then VPSL is not secure against the level-3 attack.
According to the index encryption, we have p̂iM̂

−1 = p∗
i

for i ∈ [1, 2n + 2], where p̂i = (r1 − 2αpi,1, s1, · · · , rn −
2αpi,n, sn, rn+1 + α

∑n
j=1 p

2
i,j , sn+1) can be expressed as

u0 − 2αui and u0 = (r1, s1, · · · , rn+1, sn+1),ui =

(pi,1, 0, · · · , pi,n, 0,−1
2 ||pi||2, 0). Thus, p̂iM̂

−1 = p∗
i can be

rewritten as u0M̂
−1−2αuiM̂

−1 = p∗
i . Let p̄i be the (n+1)-

dimensional vector (pi,1, · · · , pi,n,−1
2 ||pi||2) and M̂o be the

(n+1)× (2n+2)-dimensional matrix including the odd rows
of M̂. We have u0M̂

−1 − 2αuiM̂
−1 = u0M̂

−1 − 2αp̄iM̂o

and Eq. 12 can be obtained by performing vector subtraction
on both sides of two equations. Let A be a (n + 1) × (n +
1)-dimensional matrix and B be a (n + 1) × (2n + 2)-
dimensional matrix such that A = (p̄2− p̄1, p̄4− p̄3, p̄2n+2−
p̄2n+1)

⊤, B = (p∗
2 − p∗

1,p
∗
4 − p∗

3, · · · ,p∗
2n+2 − p∗

2n+1)
⊤.

Eq. 12 can be expressed as 2αAM̂−1
o = B. Note that A

is invertible since p̄2 − p̄1, · · · , p̄2n+2 − p̄2n+1 are linearly
independent. Also, A is exposed to the attacker knowing
P ′. Thus, we can compute 2αM̂−1

o = A−1B, then obtain
2αuiM̂

−1 = 2αp̄iM̂
−1
o = p̄iA

−1B and u0M̂
−1 = p∗

i +
p̄iA

−1B when i ∈ [1, 2n+2]. For each unknown data vector
pj /∈ P ′, we have u0M̂

−1 − 2αujM̂
−1 = p∗

i + p̄iA
−1B −

2αp̄jM̂
−1
o = p∗

i + p̄iA
−1B − p̄jA

−1B = p∗
j . Thus, we can

obtain p̂j = (p∗
i − p∗

j )B
−1A + p̄i, as p∗

i ,p
∗
j , B

−1A, p̄i are
exposed to the attacker. In this way, the level-3 attacker can
recover all data vectors in P , i.e., VPSL is not secure against
the level-3 attack.

2α(p̄2 − p̄1)M̂
−1
o = p∗

2 − p∗
1;

2α(p̄4 − p̄3)M̂
−1
o = p∗

4 − p∗
3;

...
2α(p̄2n+2 − p̄2n+1)M̂

−1
o = p∗

2n+2 − p∗
2n+1;

(12)

Theorem 3. VPSL+ is secure against the level-3 attack if the
secret key K = {α, r, s,S, M̂−1, M̃−1} keeps in private.

Proof: Assume that the knowledge of a level-3 attacker
is ⟨Γ∗,P ′, I⟩. For each data vector pi ∈ P ′, r, s,S are
the random vectors and the attacker does not know them,
he/she has to take pa

i ,p
b
i as two random (2n+2)-dimensional

vectors. Thus, the attacker cannot solve the plaintext data
vectors based on the proof analysis in Theorem 2. Besides,
for the linear equations constructed from all encrypted data
vectors {p∗

i = (pa
i M̂

−1,pb
iM̃

−1)}i∈[1,m], there are most
2(2n + 2)2 unknowns in M̂, M̃ and 2(2n + 2)m unknowns
in pa

i ,p
b
i (i ∈ [1,m]). Although 2(2n + 2)m equations are

given, the attacker cannot solve the matrices M̂, M̃ as there
are totally 2(2n+2)2+2(2n+2)m unknowns. Thus, VPSL+
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can resist the level-3 attack to guarantee index confidentiality.

Theorem 4. VPSL or VPSL+ ensures that plaintext query
point cannot be leaked to DO or CS throughout encrypted
data retrieval if DO cannot obtain t and CS cannot obtain
βq, γq, M̂ or βq, γq, M̂, M̃.

Proof: In the process of executing TGP, DO in VPSL
or VPSL+ obtains q̂ = q + t = (q1 + t1, · · · , qn + tn).
Since vector t is generated randomly and different for d-
ifferent queries, DO in VPSL or VPSL+ cannot know the
plaintext query. Besides, due to the communications between
DO and QUs on a secure channel, CS in VPSL or VPSL+
can only legally learn the trapdoor Tq = βqγqM̂(q̄)⊤ or
Tq = (βqγqM̂(q̄a)⊤, βqγqM̃(q̄b)⊤). For VPSL, there are
(2n+ 2)2 unknowns in M̂ and (2n+ 1) unknowns in q̄ and
βq, γq are unknowns. Although CS is given (2n+2) equations,
he/she cannot deduce any sensitive information as there are
(2n + 2)2 + 2n + 3 unknowns in total. For VPSL+, there
are 3(n+1) unknowns in q̄a, q̄b and 2(2n+2)2 unknowns in
M̂, M̃, thus CS cannot deduce plaintext query point or recover
M̂, M̃, as there are only 2(2n+2) equations, namely the query
confidentiality can be ensured.

Theorem 5. VPSL or VPSL+ achieves the trapdoor unlinka-
bility for the same query point.

Proof: For the trapdoor Tq = βqγqM̂(q̄)⊤ in VPSL,
the randomness is introduced by the random numbers µ ∈
R, βq, γq ∈ R+ and random vector t = (t1, · · · , tn). Then,
the probability of two trapdoors Tq1,Tq2 from the same query
point q is PrVPSL[Tq1 = Tq2] = 1/|R|n+3, which is close to
zero. For the trapdoor Tq = (βqγqM̂(q̄a)⊤, βqγqM̃(q̄b)⊤)
in VPSL+, the randomness originates not only from the
choice of random numbers µ1, µ2, ε1, ε2 ∈ R, βq, γq ∈ R+

and random vector t, but also from the random split in
query vector encryption. q̂[j] is split into two random values
(q̂a[j], q̂b[j]) for each dimension j satisfying S[j] = 0. As-
sume that q̂1, q̂2 are the same query vectors and the probability
Pr[(q̂a

1 [j], q̂
b
1[j]) = (q̂a

2 [j], q̂
b
2[j])] is γ for each dimension j

satisfying S[j] = 0, then the probability of obtaining the same
trapdoors is Pr[Tq1 = Tq2] = 1/|R|n+6 ∗ γϵ, where ϵ is
the number of 0s in the splitting vector S. As q̄a

1 [j], q̄
a
2 [j]

are two random elements, the value γ is far less than 1
2 , thus

PrVPSL+[Tq1 = Tq2] < PrVPSL[Tq1 = Tq2] goes to zero
faster. Therefore, the probability that CS obtains the same
trapdoors for a query point in VPSL or VPSL+ is negligible.

Additionally, the correctness of search results is guaranteed
by the unforgeability of MHT and the digital signature. As the
root digest of MHT is signed by the secure digital signature
technique such as RSA, it cannot be tampered with. Thus,
the threat mainly comes from the existence of hash collision
somewhere in the authenticated index tree, such that the root
digest remains the same and a leaf digest is different. Since
the hash function H(·) used in MHT is a one-way collision-
resistance hash function, the probability that malicious CS
forges a ciphertext or encrypted data vector such that its digest

is equal to the corresponding leaf digest is negligible. Also,
the change of any tree node digest stored in CS will change
its root digest. Thus, it is impossible for the situation that the
root digest remains the same and a leaf digest is different. That
is to say, the search results are correct if H(·) is a one-way
collision-resistance hash function.

VII. PERFORMANCE ANALYSIS

In this section, we analyze the performance of our proposed
schemes theoretically and experimentally by comparing them
with the privacy-preserving secure kNN computation scheme
(SkNN [18]) which is the basis of our proposed schemes. For
the theoretical analysis, we mainly concentrate on commu-
nication and computation overheads. After that, we perform
experiments with real-world datasets to test search accuracy
and efficiency of VPSL or VPSL+. The notations used in the
theoretical analysis are described in TABLE II.

TABLE II: Notation definitions for performance analysis

Notations Descriptions
m size of dataset F
m′ number of non-leaf node in Γ∗

n number of attributes in dataset F
l l = m+ n+ 1
N width of authenticated index tree Γ∗

d length of expended data vector, d = 2n+ 2
c average storage cost of an encrypted data record
λ number of bits occupied by a floating number
η number of nodes encountered during search, η ≪ m
D storage cost of the digests for all nodes in Γ∗

TPRF time taken to compute a pseudo-random function
TSPL time taken to randomly split a n-dimensional vector
T∗

ADD time taken to add two d-dimensional vectors
T′

ADD time taken to add two n-dimensional vectors
T∗

DOT time spending on dot product of two d-dimensional vectors
T′

DOT time spending on dot product of two n-dimensional vectors
G1,G2 storage cost of V O in VPSL and VPSL+, respectively

P time taken to authenticate index tree, P = (m+m′)TPRF

A. Theoretical Analysis

The communication and computation overheads of SkNN,
VPSL and VPSL+ are shown in TABLE III.

Communication overhead. In SkNN, the communication
overheads of CS, DO, QU are mainly introduced by returning
top-k search results, uploading encrypted data records and
sending x,Y to QU, sending the trapdoor to CS and q̂ to
DO, respectively. In VPSL, DO also needs to upload encrypted
cluster vectors (i.e., m′dλ) and the digests of all nodes in Γ∗

(i.e., D = 128(m+m′) bit if we use SHA1 to generate the di-
gests); CS also needs to return auxiliary information V O (i.e.,
G1). In addition, due to the random splitting technique, each
encrypted data vector (or trapdoor) in VPSL+ consists of two
d-dimensional vectors. Thus, the communication overheads of
DO, QU and CS in VPSL+ are 2(l +m′)dλ+ D, (2d+ n)λ
and kc+G2 respectively, where G2 = G1+(k+Lp)d and Lp

denotes the length of the search path. From the TABLE III, we
find that some communication resources need to be sacrificed
for achieving efficient ciphertext search, result verification and
greater security.
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TABLE III: Theoretical communication and computation: A comparative summary

Schemes Communication Computation

CS DO QU BulidTree TrapGen Search Verify
SkNN kc ldλ (d+ n)λ mdT∗

DOT 2(T∗
ADD + T′

ADD) + 2dT′
DOT mT∗

DOT N/A
VPSL kc+ G1 (l+m′)dλ+ D (d+ n)λ (m+m′)dT∗

DOT + P 2(T∗
ADD + T′

ADD) + 2dT′
DOT ηT∗

DOT (2Lp + k)TPRF
VPSL+ kc+ G2 2(l +m′)dλ+ D (2d+ n)λ 2(m+m′)dT∗

DOT + P 4T∗
ADD + T′

ADD + 4dT′
DOT + TSPL 2ηT∗

DOT (2Lp + k)TPRF

Computation overhead. For expression simplicity, we set
T∗

ADD as the time spending on dot product of two d-
dimensional vectors, thus the multiplication time of a d-
dimensional vector and a d × d-dimensional matrix can be
viewed as d T∗

ADD. Taking no consideration for the time
spending on k-means clustering and signature generation, the
computation overhead of VPSL in BulidTree is composed of
encrypting the index tree (i.e., (m + m′)dT∗

DOT) and authen-
ticating the index tree (i.e., P = (m +m′)TPRF). As VPSL+
splits each data vector (or cluster vector) into two vectors,
the computation overhead of VPSL+ is 2(m+m′)dT∗

DOT + P
by ignoring the vector split time, which is more than that
of VPSL. In addition, both of them are greater than that of
SkNN which only needs to encrypt data vectors. In Trap-
Gen, SkNN and VPSL nearly have the same computation
overhead because of executing the similar trapdoor generation
protocol. For higher security, VPSL+ splits the query point
(i.e., TSPL), performs vector addition operation (i.e., T′

ADD),
computes ẋ, Ẏ, ẍ, Ÿ (i.e, 2T∗

ADD + 2dT′
DOT) and generates

the trapdoor Tq = (Ta
q,T

b
q) (i.e., 2T∗

ADD + 2dT′
DOT). Thus,

the computation overhead of VPSL+ is almost twice that of
SkNN and VPSL. Despite much time taken in BulidTree, the
computation overheads of VPSL and VPSL+ in Search are
much less than that of SkNN due to η ≪ m. Besides, in
Verify, VPSL or VPSL+ takes (2Lp + k)TPRF to finish result
verification, which is mainly related to the number of search
results and the length of search path.

B. Experimental Tests

We conduct experiments on a 64-bit Window Server with
two 3.60GHz Intel(R) Core(TM) i7-9700K CPU by using
Python programming language with sklearn library. The test
datasets of search accuracy stem from the Breast Cancer Wis-
consin (Diagnostic) Data Set4 (called BCW) and the Human
Activity Recognition Using Smartphones Data Set4 (called
HARS). BCW contains 569 data records with 31 attributes
(ignoring the ID number attribute). HARS contains 10409
data records with 561 attributes. The test datasets of efficiency
stem from HARS and Epileptic Seizure Recognition Data Set4

(called ESR) which contains 11500 data records with 178
attributes. In addition, we use SHA1 to generate each node’s
digest.

Search Accuracy. To evaluate the search accuracy of top-
k search results, we use the most common measure Pk =
k′/k [11], where k′ is the number of real top-k query results
returned by CS. According to the relevance comparison of
VPSL or VPSL+, the search accuracy is not affected by the
added random numbers or encryption, but affected by k-means

4https://archive.ics.uci.edu/ml/datasets

clustering. The reason is that search results come from the
best matching cluster, but the data records in real top-k may
not in this cluster. To demonstrate this, we randomly select
550 and 10000 instances out BCW and HARS respectively to
complete their k-means clustering, then use 19 instances to
test their average search accuracy.
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Fig. 7: Search accuracy of VPSL or VPSL+ on BCW.
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Fig. 8: Search accuracy of VPSL or VPSL+ on HARS.

By varying the values of k ∈ [10, 50], threshold T ∈
[20, 100] and width N ∈ [2, 10], we plot the search accuracy
of VPSL (or VPSL+) on BCW and HARS in Figs. 7, 8,
respectively. We find that the threshold T and width N
affect the search accuracy, which is about 80% when T =
20, N = 2, k = 10 for BCW and about 82% when T =
20, N = 10, k = 10 for HARS. Then, we compare the search
accuracy of VPSL (or VPSL+) and SkNN on BCW when
T = 20, N = 6 and on HARS when T = 20, N = 10 shown
in TABLE IV, V. SkNN not using the k-means clustering
technique computes and compares the relevance scores of
query and data records with the same method as VPSL; thus it
can obtain search results without accuracy loss. In VPSL (or
VPSL+), the larger k incurs greater accuracy loss. Therefore,
we should select proper T,N, k so that the accuracy loss
caused by clustering is acceptable. If there is no such T,N, k,
we search each subtree of the root node instead of searching
from the root node to retrieve some data records in the real
top-k at the expense of some computation cost. Let VPSL∗
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(d) m = 2000 on HARS
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(e) n = 400, k = 50 on HARS
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(f) n = 400, k = 50 on ESR
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Fig. 9: Practical performance analysis of our proposed schemes.

(or VPSL∗+) be VPSL (or VPSL+) with this retrieval way.
The search accuracy of VPSL∗ (or VPSL∗+) in TABLE IV, V
shows that this retrieval way is feasible to improve accuracy.

TABLE IV: Search accuracy on BCW when N = 6, T = 20

k 10 20 30 40 50
SkNN 100 100 100 100 100

VPSL/VPSL+ 84.74 79.21 73.33 67.89 62.26
VPSL∗/VPSL∗+ 97.37 96.84 95.96 95.92 95.37

TABLE V: Search accuracy on HARS when N = 10, T = 20

k 10 20 30 40 50
SkNN 100 100 100 100 100

VPSL/VPSL+ 84.00 76.75 68.17 58.13 49.5
VPSL∗/VPSL∗+ 88.00 84.75 80.67 78.50 74.40

Efficiency. We set N = 6, T = 100 to test the index
construction time, trapdoor generation time, search time and
result verification time. We test the index construction time,
trapdoor generation time on one dataset (i.e., HARS). We
conduct 20 random queries to test the average search time
on HARS and ESR to show the impact of different datasets
on query efficiency. We test the result verification efficien-
cy by comparing the Merkle hash verification with another

verification mechanism (i.e., RSA accumulator), which has
been wildly used to achieve result verification on the privacy-
preserving keyword search. The implementation details of
RSA accumulator are shown as follows:

RSA accumulator. We randomly generate two 128-bit primes
p, q so that p = 2p′ + 1, q = 2q′ + 1 and p′, q′ are also two
primes. Besides, the generator g of the cyclic group G is 2. To
construct a RSA accumulator for index set I = {I1, · · · , Im},
we first compute H(i, Ii) = H(i|xi,1| · · · |xi,2n+2) to convert
each index Ii = (xi,1, · · · , xi,2n+2) into {0, 1}∗, where H(·)
is SHA1 and ′′|′′ represents concatenation operation, then gen-
erate an accumulator AI =

∏m
i=1 g

P(H(i,Ii)) mod N, where
N = pq and P(H(i, Ii)) is a randomly chosen prime generated
by H(i, Ii). For the top-k search results R = {I1′ , · · · , Ik′},
CS generates a proof Pf = g

∏
i/∈topk P(H(i,Ii)) mod N, and

sends it together with the search results R to DU. Here,
topk = {1′, · · · , k′}. Subsequently, the verification is carried
out by checking AI

?
= (Pf )

∏k
i′=1

P(H(i′,Ii′ )) mod N.

Index construction time. The authenticated index tree con-
struction of VPSL or VPSL+ consists of k-means clustering,
index encryption and authentication, which is influenced by the
threshold T , width N , number of data records m and number
of attributes n. TABLE VI shows that the BuildTree time
of VPSL and VPSL+ reduces slightly with the growth of T .
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Figs. 9a, 9b show that the index construction time of SkNN5,
VPSL and VPSL+ grows with m and n. Besides, the index
construction overhead of VPSL+ is twice that of VPSL, and
both of them are much higher than that of SkNN. Fortunately,
the index construction is a one-time operation for static data.

TABLE VI: Time cost of BuildTree by varying threshold and
width on HARS (seconds)

VPSL VPSL+
T Time (s) N Time (s) T Time (s) N Time (s)

100 4.17 6 4.15 100 8.31 6 7.99
300 3.79 12 4.22 300 7.58 12 8.57
500 3.68 18 4.41 500 7.50 18 9.48
700 3.34 24 4.47 700 6.99 24 9.84
900 3.28 30 4.46 900 6.99 30 9.29

Trapdoor generation time. Since SkNN and VPSL have
the same computation and communication costs in Trap-
Gen, which are both related to the number of attributes n
seen in TABLE III, we just analyze the computation and
communication costs of trapdoor generation for VPSL and
VPSL+ by varying n. Figs. 9c, 9d show that the computation
and communication costs of VPSL and VPSL+ super-linearly
increase with the number of attributes and VPSL+ takes almost
twice computation and communication costs to generate a
trapdoor by comparing with VPSL, which is consistent with
the theoretical analysis. In addition, the communication cost is
acceptable for fewer attributes. When the number of attributes
n = 1000, the communication costs of VPSL and VPSL+ are
about 15 MB and 30 MB, respectively.

Search time. Figs. 9e, 9f, 9g, 9h, 9i, 9j show that no matter
in HARS or ESR, the search time of SkNN is much more than
that of VPSL, VPSL+, VPSL∗ and VPSL∗+, and more data
records will lead to a greater difference in their search time.
VPSL always takes the shortest search time and the search
time of VPSL+ is slightly longer than that of VPSL. But
anyway, VPSL+ is still very efficient and more suitable for
real-time applications. The search time of VPSL∗ (or VPSL∗+)
is about six times that of VPSL (or VPSL+), but compared
with SkNN, it is acceptable especially for massive datasets. In
addition, Figs. 9e, 9f demonstrate that the tree structure makes
the search time of VPSL, VPSL+, VPSL∗ and VPSL∗+ not
sensitive to the number of data records m. Figs. 9i, 9j show
that the search time of VPSL∗+ increases with the values of
k faster than that of SkNN; thus we should choose k as small
as possible.

Result verification time. Figs. 9k, 9l express the result
verification time of VPSL and VPSL+ based on MHT and
RSA accumulator [19] (RSAacc, for short) in different values
of k when m = 2000, n = 400. We notice that the RSAacc (or
MHT) result verification time of our schemes almost linearly
grows with k. The Merkle verification time is much less than
the RSAacc verification time. That is why we choose MHT
structure rather than RSA accumulator to achieve verifiability.
Besides, VPSL+ takes more computation cost to verification
than VPSL, since for each node on the search path, VSPL+

5The index construction of SkNN consists of index encryption.

needs to hash two (2n + 2)-dimensional sub-indexes, while
VPSL only needs to hash one (2n+ 2)-dimensional index.

VIII. CONCLUSION

In this paper, we first proposed VPSL for cloud-assisted
Internet of Things. In VPSL, we constructed an authenticated
index tree based on the k-means clustering technique, Merkle
hash tree and ASPE to achieve efficient ciphertext retrieval and
efficient result verification, respectively. In addition, a trap-
door generation protocol was designed to obtain the trapdoor
with limited key disclosure and without revealing plaintext
query points to CS or DO. Then, VPSL+ was proposed by
introducing the random splitting technique to resist the level-
3 attack. Performance evaluation using real-world datasets
demonstrated the actual performance of VPSL or VPSL+ in
terms of search accuracy and efficiency. In future work, we
aim to offer a dynamic update function.
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