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SDAC: A Slow-Aging Solution for Android
Malware Detection Using Semantic Distance

Based API Clustering
Jiayun Xu, Yingjiu Li, Robert H. Deng, and Ke Xu, Singapore Management University

Abstract—A novel slow-aging solution named SDAC is proposed to address the model aging problem in Android malware detection,
which is due to the lack of adapting to the changes in Android specifications during malware detection. Different from periodic
retraining of detection models in existing solutions, SDAC evolves effectively by evaluating new APIs’ contributions to malware
detection according to existing API’s contributions.
In SDAC, the contributions of APIs are evaluated by their contexts in the API call sequences extracted from Android apps. A neural
network is applied on the sequences to assign APIs to vectors, among which the differences of API vectors are regarded as the
semantic distances. SDAC then clusters all APIs based on their semantic distances to create a feature set in the training phase, and
extends the feature set to include all new APIs in the detecting phase. Without being trained by any new set of real-labelled apps,
SDAC can adapt to the changes in Android specifications by simply identifying new APIs appearing in the detection phase. In extensive
experiments with datasets dated from 2011 to 2016, SDAC achieves a significantly higher accuracy and a significantly slower aging
speed compared with MaMaDroid, a state-of-the-art Android malware detection solution which maintains resilience to API changes.

Index Terms—Android Malware Detection, Mobile Security.

F

1 INTRODUCTION

Most Android malware detection models age quickly.
According to Zhu and Dumitras [1], an Android malware
detection model generated in 2012 failed to detect any
malware in the Gappusin family while a 2014 model could
detect most of them. In another research of Wang from
Baidu [2], the recall rate of an Android malware detection
model developed at Baidu decreased by 7.6% in the first
six months. Recent research has identified a main reason
of model aging to be API changes over time in Android
specifications [1], [3]. Apparently, malware samples making
use of newly added APIs in performing malicious behaviors
may evade from the detection of aged models.

The common solution to address the aging of An-
droid malware detection models is either to update signa-
ture databases for signature-based malware detection, or
to renew malware detection models using new Android
apps with true labels (i.e., malware and benignware) for
learning-based models. However, this process is usually
time-consuming and costly, which may involve many do-
main experts’ efforts on the sample labelling and data
sharing across multiple organizations. Furthermore, the true
labels of newly collected apps may not be connivently or
promptly available and even be mistaken in real life.

For instance, we downloaded the reports for a set of
42808 apps from VirusTotal1 in July 2017 and July 2018
respectively. In these apps, about 11% (4717/42808) of them
which were labelled as “benign” by all the antivirus engines
in July 2017 turned out to be labelled as “dangerous” by
at least one antivirus engine in July 2018, indicating that
the labels may be erroneous for a long time. It is thus

1. VirusTotal is a website which aggregates multiple antivirus scan
engines.

imperative to develop a slow-aging solution that remains
accurate in malware detection for longer time and can be
renewed without relying on the true labels of new apps.

While Android API changes have been identified as a
major problem leading to model aging in Android malware
detection [1], [3], the adaptation to API changes has not
been rigorously addressed in the design of slow-aging so-
lutions. A recent solution named PikaDroid [4] addressed
the aging problem by utilizing the contextual information
of sensitive APIs in malware detection. However, it does
not adapt to the changes of Android specifications since the
feature set in PikaDroid remains unchanged in its design.

Another approach, MaMaDroid [5] proposed a detection
method which is resilient to the changes in Android spec-
ifications. In particular, MaMaDroid first abstracts applica-
tion programming interfaces (APIs) to their corresponding
packages (or package families) in the API execution paths
derived from each Android app. It then summarizes all ab-
stracted paths to a Markov model, and converts the Markov
model to a feature vector for each app in model training and
testing.

By abstracting APIs to packages, MaMaDroid is re-
silient to the adding of new APIs to existing packages and
performs significantly better than other solutions such as
DroidAPIMiner for Android malware detection. However,
MaMaDroid does not address the contribution of any new
packages to malware detection since the transitions caused by
any new packages in Markov models convert to no features
in MaMaDroid.

On average, about 340 new APIs in 4 new packages
were added to each API-level compared to its previous
one according to the Android developer documentation [6].
These new packages and new APIs are important factors
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leading to model aging in Android malware detection. With-
out model updating, the performance of existing malware
detection models, including MaMaDroid, may downgrade
significantly over time as more and more new packages
and APIs are added in Android specifications and used in
Android app development.

In this paper, we develop a learning-based and slow-
aging solution for Android malware detection. Our slow-
aging solution is named SDAC, which stands for semantic
distance based API clustering. SDAC identifies an API’s
contribution to malicious behaviors based on the APIś con-
texts, which refers to the APIs within a fixed-size window
from the API in the API call sequences performed by apps.
In particular, given a training set of apps with true labels,
SDAC extracts API call sequences from the apps. Based
on the extracted API sequences, SDAC applies a two-layer
neural network to embed APIs into API vectors and arrange
these vectors into a vector space. In the vector space, the
APIs sharing common API contexts are located close to
each other. A feature set is formed according to API vector
clusters, where each feature is defined as the set of all APIs
whose corresponding API vectors are in a same cluster.

For each app in the training set, a binary feature vector
is generated by a one-to-one mapping from the feature set.
An element in an app’s feature vector is assigned to zero
if none of the APIs in the mapped feature is used by this
app, and it is one otherwise. Any classification models can
be built based on the feature vectors that are derived from
training apps and their corresponding labels.

To make SDAC slow-aging, it is important to identify
the new APIs’ contributions to malware detection without
knowing the true labels of the new apps that use these
APIs. The key technique of performing such identification
in SDAC is feature extension. In this step, each new API
that appears in the testing set of apps is added to the
closest feature in the feature set according to the distance
measured in the API vector space. A new API’s contribution
to malware detection is modelled to be equivalent to the
contribution of the other APIs in the same feature. A trained
classification model does not need to be re-trained in the test
phase since the contributions of all “old” APIs have already
been evaluated in the training phase.

When performing malware detection over time on a
series of testing sets in which apps are developed in suc-
cessive time periods, SDAC can be executed in two major
modes, SDAC-FEO and SDAC-FMU. SDAC-FEO is short for
“SDAC-Feature Extension Only”, in which feature extension
is performed each time with a new testing set, while the
trained classification model keeps unchanged all the time. In
SDAC-FMU, which is short for “SDAC-Feature and Model
Updating”, both the classification model and the feature set
are updated with new testing set. Note that although the
classifiers are changed in some cases, both SDAC-FEO and
SDAC-FMU do not need any labelled new samples in the
successive time periods while can still keep a high accuracy
over time, thus the whole solution SDAC is regarded as
being slow-aging.

Both SDAC-FEO and SDAC-FMU require the current
testing set to be wholly available in feature extension to
collect the new APIs’ contexts. To relax this constraint,
we design SDAC-FEO-OL and SDAC-FMU-OL for online

detection of individual apps without waiting for the whole
testing set being available. In particular, they use existing
classification models with no feature extension for online
detection of individual apps, while after the whole testing
set is available, they resort to their off-line versions to
update themselves.

We evaluated the performances of SDAC in different
modes and versions using 70,142 Android app samples dat-
ed from 2011 to 2016. For simplicity, we refer to the scenario
as our “default setting” in which the 2011 samples are used
for both training and 5-fold cross validation, while the 2012-
2016 samples are used for testing. The evaluation results
in the default setting show that the F-score of SDAC-FEO
declines by 4.81% per year on average from 2011 to 2016,
while MaMaDroid declines by 7.67% per year. The average
F-score of SDAC-FEO on these testing sets is 87.23%, which
is higher than that of MaMaDroid in the same case(59.03%),
by 28.2%. Compared to SDAC-FEO, SDAC-FMU further
reduces the aging speed from 4.81% to 0.10% per year on
average, and increases the average F-score from 87.23%
to 97.09%. While the online versions are more efficient in
classifying each app online, their accuracies are slightly
lower, and their aging speeds are slightly higher than the
corresponding non-online versions.

2 BASIC SDAC
An Android app can be considered as a set of operation
paths, where each operation path is a sequence of operations
that can be executed on Android platforms under certain
conditions. In the design of SDAC, we focus on API call
operations by which an Android app accesses Android
system services and resources. An Android app may use
any API that is provided in Android specifications at the
time when it is developed. While Android specifications
evolve over time from API-level 1 to API-level 27, a number
of new APIs are added continually. Of course, an Android
app cannot use any new APIs that do not exist at the time
when it is developed.
Assumptions. SDAC is trained with a set of Android apps
that are associated with true labels, including malware and
benignware, where the apps in the training set are devel-
oped in a same time period. After training, SDAC is used
to classify all apps in testing sets in other time periods. It
is assumed that no true labels are available for the apps in
testing sets when SDAC is in use.

A basic SDAC is first developed to classify apps in one
testing set, which is developed in a time period after the
training set. It is then extended in different modes and
versions to classify apps in multiple testing sets, which are
developed in successive later time periods.
Structure. The structure of basic SDAC is illustrated in
Fig. 1. It consists of two phases, a training phase in which
SDAC is trained with a training set, and a detection phase in
which SDAC is used to detect malware in a testing set. In
both phases, the basic SDAC proceeds through four steps,
where the first two steps, including API path extraction and
API vector embedding, are shared in both phases. The last
two steps are API cluster generation and classification model
training in the training phase, and API cluster extension and
classification model testing in the detection phase.
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Fig. 1: Structure of Basic SDAC with One Classification Model

2.1 API Path Extraction
The first step of SDAC is to extract a set of API call paths
from each app it processes. A suitable static analysis tool
such as FlowDroid [7] can be exploited to transform each
app from bytecode to proper representation (e.g., Jimple
code), and extract a directed call graph among its program
methods. From a call graph, SDAC extracts a call graph s-
nippet for each method, and excludes any call graph snippet
that is a sub-graph of another call graph snippet.

The call graph snippet for a target method consists of
all methods and all directed links between them in the call
graph. In a call graph snippet, all the methods are located
at most d links away from the target one in the call graph,
where the links pointing to any methods that use no APIs
are not counted in the snippet. SDAC then derives all API
call paths from each call graph snippet. Appendix A shows
a real-world example for API call path extraction.

If d is large enough, SDAC would output all possible API
call paths for each app, which is an intractable number to
program size [8]. To make SDAC practical, the parameter
d is chosen to be relatively small, which is equal to the
window size S as mentioned in the next subsection.

2.2 API Vector Embedding
The goal of this step is to embed each API into an n-
dimensional real-valued vector in [0, 1]K according to the
API’s context in a set of apps. An API’s context in a set of
apps is defined to be the set of all its neighboring APIs
within a fix-sized window containing the API in all API call
paths that are extracted from the set of apps. Different APIs
with similar contexts are mapped close to each other in the
vector space.

The process of API vector embedding is illustrated in
Fig. 2. Based on the API call paths extracted in step “API
path extraction”, SDAC builds an API vocabulary which
consists of all unique APIs in these paths. For each target
API in the API vocabulary and for each extracted API path,
SDAC derives all neighboring APIs which are at most S
APIs away from the target API in the API path, where S
is called window size. Then, SDAC pairs each target API
with each of its neighboring APIs, and uses all such pairs
to train a Skip-Gram model, which is a neural network with

an input layer, a hidden layer, and an output layer [9]. In
the model, a real-valued input-hidden matrix WV ∗K is used
to transform an input vector to a hidden input vector, and
a real-valued hidden-output matrix W ′K∗V is used to further
transform a hidden input vector to an output vector, where
V is the API vocabulary size, and K is the API vector size.

In the training process, a target API and all its paired
APIs are regarded as the input and the target outputs of the
Skip-Gram model, respectively. For a target API, the input
of Skip-Gram model is a one-hot encoded vector of size V ,
where the index corresponding to the target API points to
one and all other indexes point to zero. Similarly, a target
output for a paired API is a one-hot encoded vector of size
V where the index corresponding to the paired API points
to one and all other indexes point to zero. For each target
API, the Skip-Gram model computes an output vector from
the input vector by transforming it with the input-hidden
matrix, the hidden-output matrix, and the softmax function
(i.e., normalized exponential function), successively. Then,
the Skip-Gram model updates the elements in these two
matrices using backpropagation, which is a common opti-
mization step for supervised learning of neural networks, so
as to minimize the total error between the computed output
and the target outputs.

After the Skip-Gram model is trained with all API pairs,
SDAC outputs an API vector for each API. In Fig. 2, the
APIT ’s vector is the T -th row in the input-hidden matrix,
where T is the index of APIT in the API vocabulary. An
API’s vector embeds the API’s context, which represents all
its neighboring APIs that are encoded in the target outputs.
If two different APIs are embedded to similar API vectors,
thus they have similar contexts because the computed out-
puts are optimized in model training to approximate their
target outputs.

2.3 API Cluster Generation and Extension
The third step of basic SDAC is API cluster generation in its
training phase, and API cluster extension in its detection
phase. The purpose of this step is to group the APIs in
the API vocabulary into a number of clusters based on the
semantic distance between APIs, where the semantic distance
is defined as the Euclidean distance in the API vector space.
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Fig. 2: API Vector Embedding

The output of this step, which is a set of API clusters, will
be used as the feature set for generating a feature vector for
each app in the next step.
API Cluster Generation. In the training phase, SDAC ap-
plies the same-size k-means cluster algorithm from [10] to
the API vectors that are calculated from the training set. The
algorithm partitions API vectors into k clusters in which
each API vector belongs to the cluster with nearest mean,
where the difference in size among all clusters is at most
one. Using the clusters, an initial feature set is defined by a
one-to-one mapping from the clusters, where each feature
consists of all APIs whose API vectors appear in a same
cluster. The APIs in a same feature share similar contexts
(due to the closeness of their API vectors), and thus make
similar contributions to malware detection in our model.

The same-size k-mean algorithm is chosen in SDAC
because it can effectively avoid skew clustering results and
thus maximize the differences between the feature vectors of
benign apps and malicious ones. Please refer to Appendix B
for the detail of the same-size k-means cluster algorithm
which we choose.
API Cluster Extension. In the detection phase, SDAC out-
puts a set of API vectors derived from a testing set in
the previous step. Now it extends the initial feature set to
include all new APIs that appear in the API vocabulary of
the testing set, but not in that of the training set. This step is
also named feature extension because each cluster is regarded
as one feature in the feature set.

In general, SDAC extends feature X to include a new
APIY if APIY has the least average semantic distance from
the APIs of feature X among all features, where semantic
distance is measured by API vectors derived from the
testing set. In a feature, if an API does not exist in any apps
of the testing set, SDAC excludes it from the calculation
of average semantic distance unless no API in the feature
exists in the testing set, in which case corresponding API
vectors derived from the training set are used for semantic
distance calculation. An extended feature set is defined from
the initial feature set after all new APIs are included in
feature extensions.

A toy example is shown in Fig. 3 to illustrate the feature
extension. In Fig. 3, two clusters are formed in the vector

Fig. 3: API Cluster Extension

space generated from a training set, including the one for
Feature P containing APIA, APIB and APIC , and the one
for Feature Q containing APID, APIE and APIF .

Now consider a new API APIY in the vector space
generated from a testing set, an average semantic distance is
calculated between APIY and each cluster of Feature P and
Feature Q. Since Feature Q has the least average distance from
APIY , it is expanded to include APIY for feature extension.
After that, Feature Q will contain four APIs: APID , APIE ,
APIF and APIY , while Feature P keeps unchanged. Note
that APIB does not appear in testing set and thus has no
representative API vector in the vector space, so it is simply
excluded in the calculation.

The purpose of generating an extended feature set is
to simulate new APIs’ contributions to malware detection
using existing APIs’, where the former cannot be directly
measured by a classification model due to the lack of true
labels in testing sets.

2.4 Classification Model Training and Testing
Feature Vector Generation. Given a feature set, which is
either initial feature set in the training phase, or extended
feature set in the detection phase, SDAC generates a binary
feature vector for each app by a one-to-one mapping from the
feature set. An element in an app’s feature vector is zero if
none of the APIs in its mapped feature is used by the app,
and it is one otherwise.
Classification Model Training. In the training phase, SDAC
generates a feature vector for each app in the training set,
and associates the feature vector with the app’s true label.
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Then, SDAC trains a classification model with all feature
vectors and associated labels.
Classification Model Testing. In the detection phase, SDAC
generates a feature vector for each app in the testing set.
Then, SDAC uses the trained classification model to output
a predicted label for each app according to its feature vector
as model input.

2.5 Model Voting

In SDAC, a feature in the feature set may consist of multiple
APIs. It is possible that some of these APIs are used by
a benign app, and some of them are used by a malicious
app. A single feature can hardly be used to distinguish
between benign and malicious apps. It is thus much better
to leverage on all features in the feature set for malware
detection. To further improves its accuracy, SDAC exploits
the distinguishing power of multiple feature sets instead
of a single feature set. In particular, SDAC performs its
cluster algorithm for m ≥ 1 times in its third step and thus
generates m initial feature sets and m extended feature sets.
A classification model is trained on each initial feature set
in the training phase and then tested on the corresponding
extended feature set in the detection phase. With total m
classification models, SDAC outputs a predicted label “mal-
ware” for an app if at least τ ≤ m out of m classification
models agree on such label, and it outputs “benignware”
otherwise.

In our experiments, we discover that F-scores of SDAC
increase by around 3% to 10% using multiple voting. The
details on tuning τ and m are explained in section 4.

3 TWO MODES OF SDAC AND ONLINE VERSIONS

While the basic SDAC focuses on processing one test-
ing set only, it can be extended in two different modes,
SDAC-FEO and SDAC-FMU, to process multiple testing
sets T1, T2, . . . , TN in which apps are developed in different
time periods with some new APIs. The difference between
SDAC-FEO and SDAC-FMU is that in the detection phase,
SDAC-FEO performs feature extension only, while SDAC-
FMU performs feature and model updates as well.

3.1 SDAC-FEO

In the training phase, SDAC-FEO takes a training set as
input and outputs m initial feature sets and m classification
models in the same way as the basic SDAC does. In the de-
tection phase when it is applied to testing set T1, each initial
feature set is extended to an “extended feature set for T1”.
Then, each app in T1 is transformed to m feature vectors
according to m “extended feature sets for T1”. Finally, the
m classification models are used in model voting to predict
a label for each app according to its feature vectors.

When SDAC-FEO is applied to testing set TN (N ≥ 2),
each “extended feature set for TN−1” is regarded as “initial
feature set for TN”, and then it will be extended to an
“extended feature set for TN” in the same way as the
“feature extension” step in the basic SDAC. After that, each
app in TN is transformed to m feature vectors according to
m “extended feature sets for TN”. The same m classification

Fig. 4: Structure of SDAC-FEO with One Training Set (2011
apps) and Three Testing Sets (2012 apps, 2013 apps, and
2014 apps)

models are used as before to predict a label for each app
according to its feature vectors.

Fig. 4 shows the structure of SDAC-FEO with one train-
ing set (2011 apps), and three testing sets (2012 apps, 2013
apps, and 2014 apps). In this figure, the set of 2011 apps is
used to generate initial feature sets and train classification
models. The same classification models are used to classify
2014 apps after they are applied to 2012 apps and 2013 apps.
The extended feature sets for 2014 apps are generated by
extending the initial feature sets for 2011 apps three times in
a sequence.

3.2 SDAC-FMU
SDAC-FMU is the same as SDAC-FEO in its training phase,
and in the detection phase when it is applied to testing
set T1. It performs additional steps on feature and model
updates when it is applied to other testing sets T2, . . . , TN .

Now assume that SDAC-FMU has been applied to test-
ing sets T1, . . . , TN−1, producing a prediction label (i.e.,
pseudo-label) for each app in these sets. When SDAC-FMU
is applied to testing set TN , it first generates m “initial
feature sets for TN” (in the same way as the basic SDAC
generates initial feature sets) from the union of the training
set and T1, . . . , TN−1. We call this process feature update.
Note that this is different from SDAC-FEO where the initial
feature sets never change.

Then, SDAC-FMU trains m classification models for TN
from scratch using (i) the apps in the training set with
their true labels, and (ii) the apps in T1, . . . , TN−1 with
their pseudo-labels, in which each app is converted to m
feature vectors according to m “initial feature sets for TN”.
We call this process model update. Note that no true labels are
available for the apps in testing sets in our assumption; thus,
SDAC-FMU uses pseudo-labels for the apps in T1, . . . , TN−1
for model update.

After model update, SDAC-FMU extends each “initial
feature set for TN” to an “extended feature set for TN” (in
the same way as the basic SDAC extends an initial feature
set). Then, each app in TN is converted to m feature vectors
according to m “extended feature sets for TN”. Finally, the
classification models for TN which have been trained in
model update are used to predict a label for each app in
TN according to its feature vectors.
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Fig. 5: Structure of SDAC-FMU with One Training Set (2011
apps) and Three Testing Sets (2012 apps, 2013 apps, and
2014 apps)

Fig. 5 shows the structure of SDAC-FMU with one train-
ing set (2011 apps), and three testing sets (2012 apps, 2013
apps, and 2014 apps). When SDAC-FMU is applied to 2014
apps after it is trained with 2011 apps and applied to 2012
apps and 2013 apps, it first generates initial feature sets for
2014 apps from the union of 2011 apps, 2012 apps, and 2013
apps. Then, SDAC-FMU generates feature vectors for each
app in the union, and trains classification models for 2014
apps using (i) 2011 apps with their true labels, and (ii) 2012
and 2013 apps with their pseudo-labels, where each app is
converted to its feature vectors for model training. Finally,
SDAC-FMU extends the initial feature sets with 2014 apps,
converts each 2014 app to feature vectors according to the
extended feature sets, and uses the classification models for
2014 apps to classify each 2014 app by its feature vectors.

3.3 Online Versions

Both SDAC-FEO and SDAC-FMU require that the current
testing set TN be available for performing feature extension
before they can be applied to classify each individual app
in this testing set. To overcome this restriction, we develop
their online versions, SDAC-FEO-OL and SDAC-FMU-OL,
in which the feature extension step is skipped, for classify-
ing individual apps in time without waiting for the whole
testing set to be available.
SDAC-FEO-OL. SDAC-FEO-OL is the same as SDAC-FEO
in the training phase, which generates m initial feature sets
and m classification models. When SDAC-FEO-OL is used
to classify each app in T1, it converts the app to m feature
vectors according to m initial feature sets. Then, it uses m
classification models that have been trained to output a
predicted label for each app according its feature vectors.
After all apps in T1 have been classified, SDAC-FEO-OL
generates m extended feature sets for T1 the same way as
SDAC-FEO does from the whole set T1.

When SDAC-FEO-OL is used to classify each app in TN
(N ≥ 2), it converts the app to m feature vectors according
to m extended feature sets for TN−1. Then, it uses the same
classification models that have been trained to output a
predicted label for each app in TN via its feature vectors.

After all apps in TN have been processed, SDAC-FEO-
OL resorts to SDAC-FEO to process TN again, generating m

extended feature sets for TN . This is to prepare SDAC-FEO-
OL for detecting apps in the next time period.
SDAC-FMU-OL. SDAC-FMU-OL is the same as SDAC-
FMU in the training phase, which generatesm initial feature
sets for T1 and m classification models for T1. SDAC-FMU-
OL is the same as SDAC-FEO-OL when it is applied to
classify each app in T1 according to m initial feature sets
for T1 using m classification models for T1.

With all apps in T1 being processed, SDAC-FMU-OL
resorts to SDAC-FMU to process T1 again, generating m
initial feature sets for T2, and m classification models for T2.

When SDAC-FMU-OL is applied on testing set TN
(N ≥ 2), it converts each app to m feature vectors accord-
ing to m initial feature sets for TN . Then, it uses the m
classification models for TN to predict label for each app
in TN according its feature vectors. After all apps in TN
are processed, SDAC-FMU-OL performs feature and model
updates the same way as SDAC-FMU does with the whole
set TN .
Notes. When an individual app is detected online, the app
is first converted to m feature vectors according to the set of
APIs it used, and then classified by m classification models.
The first three steps of SDAC (API path extraction, API vec-
tor embedding, and API cluster generation and extension)
are not performed in this process, which makes the online
versions much faster than the offline ones.

SDAC-FEO-OL and SDAC-FMU-OL are different from
direct applications of online machine learning in malware
detection [11] since our online versions do not require true
labels to be used for model updates, while online machine
learning does require [12].

4 EVALUATION OF SDAC

Dataset. SDAC is evaluated using a dataset of around
36k benignware samples and 35k malware samples ran-
domly chosen from an open Android application collection
project [13]. Table 1 shows an overview of our dataset, which
consists of benignware samples and malware samples de-
veloped in six years from 2011 to 2016. The time of each app
is defined as the time its APK file was packaged, which can
be found in the .dex file inside its APK [14].

The labels of the samples in our dataset were decided
according to the reports from VirusTotal [15] which we
obtained in July 2018. Based on the reports, we labelled
apps with zero positive result as “benign”, and apps whose
reports containing more than a threshold Tmal positive
results as “malicious”.

In the literature of malware detection, different values
of Tmal are used for labelling “malicious” apps. According
to Roy et al., malware samples that received one positive
report only from VirusTotal were considered to be of “low
quality,” and those received more than ten positives out
of 54 scanners were considered “high quality” [3]. Arp et
al. labelled an app as malicious if it received at least 20%
positive results from a set of selected scanners [16]. Alex et
al. performed a large-scale study on aggregating the results
of scanners from Virustotal and deemed a malicious label
to be trustful if it came from 4 or more positive scanning
results out of 34 different scanners [17].
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TABLE 1: Overview of Dataset(Tmal = 15)

Year 2011 2012 2013 2014 2015 2016

Benign 6072 5887 5920 5934 5929 5903
Malware 4961 5953 5877 5902 5925 5879

# total APIs 14842 16213 17519 17714 17933 19933
# new APIs n/a 3369 3407 2701 2902 4009
% new APIs n/a 20.78 19.45 15.645 16.18 20.11

In our experiments, we evaluate SDAC on 3 different
datasets labelled with Tmal = 4, 9 and 15, respectively, out
of total 63 scanners in Virustotal1. We set Tmal = 15 in the
default case and show our results for Tmal = 4 and Tmal = 9
in section 4.5.

Table 1 shows the number of unique new APIs and
the number of all APIs in different years from the dataset
labelled with Tmal = 15. An API is considered to be new in
a year if it is not used by any app that was developed before
that year in our dataset.
Tools and Parameters. We choose the following tools and
parameters for the evaluation of SDAC. In the API path
extraction step, we choose FlowDroid to extract a directed
call graph among program classes from each app [7]. The
parameter d used for API path extraction is chosen to be
the same as the window size for API vector embedding.
In the API vector embedding step, we rely on the gensim
toolkit [18] to implement the Skip-Gram model and derive
API vectors from a set of apps, where we choose window
size S = 5 and API vector size K = 200 (i.e., the dimension
of API vector space).

In the API cluster generation and extension step, we
choose the same-size k-means cluster algorithm from open-
source data mining framework ELKI [10], and set the num-
ber of clusters k = 1000. In the classification model training
and testing step, we choose linear SVM models as our
classification models, and set the number of classification
models m = 9, and the threshold τ = 3 in model voting.

We tune these parameters, as well as other parameters
(e.g., iteration times and learning rate for API vector embed-
ding), to produce the best results when SDAC is trained and
tested in cross validation using the same training set (2011
apps) under the constraint of our computing resources (a
desktop computer with 3.3 GHz CPU and 12GB memory).
These parameters are used across all experiments for the
evaluation of SDAC on various testing sets.
Selection of Parameters: k, m and τ . The parameters k (as
in k-means clustering algorithm), m (i.e. the number of clas-
sification models used by SDAC) and τ (i.e. the threshold
used in model voting) are tuned for the best performance of
SDAC in the cross-validation on the training set, which is
the 2011 dataset in our experiments.

Fig. 6 shows the performance of SDAC in cross-
validation with different k values. The F-score of SDAC
increases rapidly from k = 50 to k = 500, and remains
stable after k = 1000. Since a higher k costs more time
on model training and testing, we choose k = 1000 in our
experiments.

Fig. 7 shows how the numbersm of classification models
and threshold τ are decided. In the cross-validation experi-

1. Lists of .apk file hashes in these datasets can be found at
http://dx.doi.org/10.21227/rasc-k457.

Fig. 6: F-score of SDAC in Cross Validation on 2011 Training
Set with Different k

Fig. 7: F-score of SDAC in Cross Validation on 2011 Training
Set with Different m and τ

ments, SDAC reaches its highest F-score (above 97%) when
m > 7 and τ/m is around 30% to 40%. Since the overhead
of SDAC is proportional to m, we choose m = 9 and τ = 3,
which reaches the highest F-score with the smallest m.

4.1 Evaluation of SDAC-FEO
Three sets of experiments are conducted to evaluate SDAC-
FEO. The first set is conducted to evaluate the accuracy of
SDAC-FEO when it is trained and tested in cross validation
using a set of samples developed in the same time period.
The second set of experiments is conducted to evaluate the
aging speed of SDAC-FEO when it is trained on a set of
samples developed in one time period, and tested on other
sets of samples developed in later time periods. The third
set of experiments is conducted to compare the accuracy
and aging speed of SDAC-FEO with MaMaDroid [5].

The accuracy of a malware detection model can be
measured in F-score on a set of malware and on a set
of benignware. F-score is the harmonic mean of precision
and recall, where precision = |TP |/(|TP | + |FP |) and
recall = |TP |/(|TP | + |FN |). We use TP (i.e., true
positives) to denote the set of malware that is correctly
detected as malware, FP (i.e., false positives) the set of
benignware that is incorrectly detected as malware, FN
(i.e., false negatives) the set of malware that is incorrectly
detected as benignware, and TN (i.e., true negatives) the
set of benignware that is correctly detected as benign.

The accuracy of SDAC-FEO is first evaluated in 5-fold
cross validation using samples developed in the same time
period. Table 2 shows the accuracy of SDAC-FEO in terms
of precision, recall, and F-score on different set of apps,
which is denoted by the time period in which the apps were
developed. The average F-score of SDAC-FEO is 98.25%,
which serves as a good starting point for evaluating SDAC-
FEO over time.
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TABLE 2: F-score of SDAC-FEO in Cross Validation

App set Precision Recall F-Score

2011 0.9885 0.9672 0.9778
2011~12 0.9918 0.9842 0.9880
2011~13 0.9906 0.9848 0.9877
2011~14 0.9915 0.9829 0.9872
2011~15 0.9905 0.9812 0.9858

SDAC-FEO Performance Over Time. The aging property of
SDAC-FEO is evaluated in a series of experiments in which
SDAC-FEO is trained on a set of samples developed in one
time period and tested on other sets of samples developed
in later time periods. Fig. 9 shows the F-score of SDAC-FEO
in detection over time. When SDAC-FEO is evaluated on a
testing set that is newer than the training set by one year,
its average F-score is 97.49%, which declines by 1.03% from
its average F-score in cross validation (98.52%). It declines
further to 95.02%, 88.48%, 78.22%, 73.72% when SDAC-FEO
is evaluated on testing sets that are newer than the training
sets by two, three, four, and five years, respectively. The
average aging speed of SDAC-FEO is 4.96% in F-score per
year in these experiments.
Analysis on API Cluster Extension. API cluster extension
is a critical step in SDAC. In this step initial feature sets are
extended with new APIs to create the extended feature set.
This enables SDAC to evaluate new APIs’ contributions to
malware detection with the existing classification models,
which have been trained by a set of labelled apps in which
none of the new APIs are used. Several case studies of new
APIs being added to existing API clusters are described in
Appendix C.

To further understand how API cluster extension con-
tributes to slow aging of SDAC-FEO, in this section, we
calculate the changes on feature vectors of testing set apps
with and without feature extension, and then extract each
feature’s weight in the linear SVM model which helps to
figure out how such change will affect the detection results.

In detail, in the SVM model used by SDAC-FEO, the
inner product between an app’s feature vector and the linear
SVM model’s weight vector is the output score of the app’s
feature vector in the SVM model [16], which represents the
confidence of the SVM model in classifying the app as either
malware if the output score is positive, or benignware if the
output score is negative. The confidence of an SVM model
is proportional to the absolute value of an output score.

For each app in a testing set, we transform it to two
feature vectors according to an initial feature set and an
extended feature set for each SVM model, respectively. The
output score difference of an app is defined as the output score
of its feature vector derived from the extended feature set
subtracted by the output score of its feature vector derived
from the initial feature set. The output score difference of an
app in an SVM model represents the change in confidence
on the app caused by API cluster extension. A positive
(negative, respectively) output score difference means more
confidence in classifying an app as malware (benignware,
respectively).

Then, we examine the average output score difference
for all malware samples in a testing set and for all classi-
fication models used by SDAC-FEO. We also examine the

Fig. 8: Distinguishability of API Cluster Extension

average output score difference for all benignware samples
in the same testing set. The distinguishability of API cluster
extension in each experiment (with a training set and a
testing set) is defined as the average output score difference
for all malware samples subtracted by the average output
score difference for all benignware samples. If the distin-
guishability of API cluster extension is positive, then the API
cluster extension makes a positive contribution to malware
detection, and thus contributes to slow aging of SDAC-FEO.

Fig. 8 shows the distinguishability brought by API cluster
extension in our experiments. The contributions of API
cluster extension to malware detection are positive in all
of our experiments, which demonstrates that the feature
extension will indeed contribute to the accuracy of SDAC.
Aging Slower Than MaMaDroid. The aging speed of
SDAC-FEO is compared with MaMaDroid using the same
dataset. MaMaDroid is the only solution which we know to
be resilient to the changes in Android specifications, and has
a significant better performance than other solutions such as
DroidAPIMiner [5]. In particular, MaMaDroid first derives
API paths from each app using FlowDroid, and abstracts
APIs to their corresponding packages (or package families)
in the API paths. It then summarizes all abstracted paths
to a Markov model, and converts the Markov model to a
feature vector for each app, where each feature in the feature
vector represents a transition between two existing packages
in the Markov model. After that, it trains a machine learning
classification model from a training set of apps according to
their feature vectors and associated true labels. By abstract-
ing APIs to packages, MaMaDroid is resilient to the adding
of new APIs to existing packages in Android specifications;
however, it is not designed to be resilient to the adding of
new API packages.

We re-implemented MaMaDroid using its sourcecode
[19]. Both SDAC-FEO and MaMaDroid rely on FlowDroid
to decompile app Apk files; they were evaluated using the
same training sets, testing sets, standard SVM classification
models, and F-score measurement.

We note that in the original MaMaDroid paper [5],
the random forests algorithm produces the best malware
detection results among four classification algorithms, in-
cluding random forests, 1-NN, 3-NN, and SVM. However,
in our experiments, MaMaDroid performs the best with
SVM. Please refer to Appendix D for the comparison of
MaMaDroid with different classification algorithms on our
datasets. Therefore, we choose SVM as the classification
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Fig. 9: Comparison between SDAC-FEO and MaMaDroid (CV: 5-fold cross validation)

model for MaMaDroid in our experiments.
Fig. 9 shows that the performance of SDAC-FEO is

significantly and consistently better than MaMaDroid in all
experiments. In particular, the average F-scores of SDAC-
FEO when it is evaluated on testing sets that are newer
than training sets by one to five years are 97.49%, 95.02%,
88.48%, 78.22%, and 73.72%, respectively. In comparison,
the average F-scores of MaMaDroid in the corresponding
cases are 81.00%, 75.86%, 68.05%, 55.80%, and 43.07%, re-
spectively. The average F-score of SDAC-FEO is higher than
MaMaDroid by 20.65% when they are evaluated on the same
training set and testing set across all experiments. In terms
of aging speed, SDAC-FEO declines by 4.96% in F-score per
year on average over five years, while MaMadroid declines
by 8.15% in the same case.

We notice that the performance of MaMaDroid in our
experiments is not as good as what was reported in [5]. One
possible reason is that overlaps exist between the training
sets and the testing sets used in [5], where two benign
sets were collected from PlayDrone [20] and Google Play
store, and five malware sets were collected from Drebin [16]
and VirusShare [21]. For one set of experiments in [5], the
same “oldbenign” benign set was used to mix with various
malware sets dated from 2012 to 2016 to form training sets
and testing sets. For another set of experiments, the same
“newbenign” benign set was used to form all training sets
and testing sets. Such overlaps made it difficult to evaluate
how MaMaDroid aged over time.

4.2 Evaluation of SDAC-FMU

Aging Slower Than SDAC-FEO and MaMaDroid. Com-
pared to SDAC-FEO, SDAC-FMU takes additional steps of
feature update and model update for better performance.
Fig. 10 shows that its performance is significantly and
consistently better than SDAC-FEO. The average F-score of
SDAC-FMU (97.39%) is higher than SDAC-FEO (92.89%) by
4.50% when they are evaluated on the same training set
and testing set across all experiments. In terms of aging
speed, SDAC-FMU declines by 0.25% in F-score per year
on average over five years, while SDAC-FEO declines by
4.96% in the same case.

Since SDAC-FMU updates its classification models with
pseudo-labels, we also update MaMaDroid classification
models with pseudo-labels for a fair comparison. Fig. 10 also
shows that the performance of MaMaDroid updated with

pseudo-labels is almost the same as before. One possible
reason is that MaMaDroid neglects the APIs of new pack-
ages in generating these pseudo-labels, and the updating
will then reinforce the mistakes caused by neglecting these
new APIs in MaMaDroid’s model.
False Positives. We examine the misclassified results of
SDAC-FMU when it is trained on 2011 set and evaluated
on five testing sets, dated from 2012 to 2016. To understand
why false positives are misclassified, we compute a weight
for an API by averaging the weights of the features that
contain this API in all SVM models when SDAC-FMU is
applied to each testing set. The weight of an API can be
used to measure its contribution to the confidence of SDAC-
FMU in classifying an app. We sort all APIs according to
their weights for each testing set. We choose the top p
and the bottom p APIs in each sorted list, which are the
APIs with most contributions to the confidence of SDAC-
FMU in classifying an app as malware and as benignware,
respectively.

For a set of apps, we define API ratio for an API as the
percentage of the apps in the set that use this API. We
further define top-p ratio (bottom-p ratio, respectively) as the
average of API ratios for the top p APIs (bottom p APIs,
respectively). The top-p ratio subtracted by the bottom-p
ratio for a set of apps means the confidence of SDAC-FMU
in classifying the set as malware.

Fig. 11 shows typical values of top-p ratio subtracted
by bottom-p ratio for true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN), where
p = 1%. Compared to TN, SDAC has more confidence
in classifying FP as malware, and the most confidence in
classifying TP as malware.

In the list of top-weighted APIs, we discovered some
APIs such as getConfiguration() and getDeviceId() that were
considered as “dangerous" in previous research [16], [5].
Benign apps using such APIs are more likely to be detected
as malware by SDAC. For example, 40% (126/315) of false
positives and more than a half of true positives (3310/5890)
use API getConfiguration(), while only 23% (1289/5555) of
true negatives makes use of it. For another example, 66%
(208/315) of false positives and 96% (5633/5890) of true
positives include API getDeviceId() in class TelephonyMan-
ager, while only 22% (1245/5555) of true negatives use it.
Please refer to Appendix E for 1% top-weighted APIs which
contribute to the false positive results.
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Fig. 10: Comparison between SDAC-FMU, SDAC-FEO, and MaMaDroid (CV: 5-fold cross validation)

Fig. 11: Difference in API Usage among TP, FP, FN, and TN
with 2011 Training Set

False Negatives. We also examine the false negatives of
SDAC-FMU when it is trained on 2011 set and evaluated
on five testing sets, dated from 2012 to 2016. Among 1076
false negative samples generated from all testing sets, about
69% (638/931) of them are classified as “positive: adware"
by at least one VirusTotal scanner. According to TrendMicro
[22], the adware apps may come from repackaging benign
apps with 3rd party advertisement libraries; it is difficult for
SDAC-FMU to distinguish them from true benign apps.

Besides, about 8.5% (79/931) false negative samples are
classified as “positive: riskware", and about 17.4% (162/931)
as “positive: not-a-virus" by at least one VirusTotal scanner.
According to the explanation from Kaspersky Lab [23],
riskware refers to legtimate programs which are easy to be
exploited by malicious attackers, and not-a-virus is associ-
ated with adware and riskware.+

Fig. 11 also shows that compared to TP, SDAC has more
confidence in classifying FN as benignware, and the most
confidence in classifying TN as benignware.

4.3 Evaluation of SDAC-FEO-OL & SDAC-FMU-OL
The performances of SDAC-FEO-OL and SDAC-FMU-OL
are evaluated in the default case, which is formed with the
smallest training set (2011 apps) and the longest time span
across testing sets (2012-2016) in our experiments. Fig. 12
shows that SDAC-FMU-OL performs very closely to SDAC-
FMU, while the performance gap between SDAC-FEO-OL
and SDAC-FEO is more obvious. Compared to SDAC-FMU,
the F-score of SDAC-FMU-OL declines by 0.41% on average,
by -0.29% in minimum (for 2014 testing set), and by 0.85%

Fig. 12: Evaluation of Online Versions with 2011 Training Set
(CV: 5-fold cross validation)

in maximum (for 2012 testing set). Compared to SDAC-FEO,
the F-score of SDAC-FEO-OL declines by 3.45% on average,
by -0.30% in minimum (for 2013 testing set), and by 7.97%
in maximum (for 2014 testing set). Nonetheless, both SDAC-
FMU-OL and SDAC-FEO-OL perform significantly better
than MaMaDroid.

4.4 Runtime Performance

The runtime performance of SDAC is evaluated on a desk-
top computer using one Intel(R) i5-4590 3.3 GHz CPU and
12 GB physical memory running on the Ubuntu 14.04 (LTS)
operating system. Table 3 shows the runtime performance of
SDAC in all four steps: (i) API Path Extraction, (ii) API Vec-
tor Embedding, (iii) API Cluster Generation and Extension,
and (iv) Classification Model Training and Testing.
Runtime of SDAC-FEO-OL and SDAC-FMU-OL in Detec-
tion Phase. SDAC-FEO-OL can be used to detect individual
apps online without waiting for a whole testing set to be
available. The time cost for detecting an app online is 0.20
seconds on average. Once a whole testing set is available,
SDAC-FEO-OL extends its feature sets using the whole test-
ing set in the same way as SDAC-FEO does. This additional
time cost is similar to SDAC-FEO in its detection phase.

The time cost of SDAC-FMU-OL is the same as SDAC-
FEO-OL for detecting an app online. Once a whole testing
set is available, SDAC-FMU-OL performs feature and model
updates in the same way as SDAC-FMU, so the additional
time cost is also same as in SDAC-FMU.
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TABLE 3: Runtime Performance of SDAC

Step Runtime

API Path Extraction Call Graph Generation Avg. 37.29 sec. per app (min. 3.12s & max. 1184.33s)
API Path Extraction Avg. 16.82 sec. per app (min. 8.30e-4s & max. 1350.06s)

API Vector Embedding Transform APIs into Vectors 333.20 sec. (11033 apps) ~ 3154.48 sec. (58360 apps)
API Cluster Generation

and Extension
API Cluster Generation (in training phase) 85.91 sec. (11033 apps) ~ 300.33 sec. (58360 apps)
API Cluster Extraction (in testing phase) 48.93 sec. (11033 apps) ~ 25.77 sec. (58360 apps)

Classification Model Training
and Testing

Classification Model Training (in training phase) 9.77 seconds (11033 apps) ~ 1683.75 seconds (58360 apps)
Classification Model Testing (in testing phase) Avg. 8.90e-4 sec. per app (min. 4.57e-4s & max. 1.59e-3s)

Runtime of MaMaDroid. MaMaDroid takes three major
steps in both training phase and detection phase: (i) Flow-
Droid is exploited to derive a set of API paths from an
app, (ii) a Markov model is formed from a set of API
paths, and then used to compose a feature vector, and (iii)
a classification model is trained from (in training phase) or
applied to (in detection phase) a set of apps. In our im-
plementation, the training phase of MaMaDroid takes 37.29
seconds on average in step one, 0.41 seconds on average in
step two, and 16.3 seconds (785.29 seconds, respectively) for
processing a set of 11,033 apps (58,360 apps, respectively) in
step three. In its detection phase, MaMaDroid takes 0.0036
seconds on average for classifying a single app in step three,
while the first two steps take the same time as in the training
phase.
Runtime Performance Comparison. In the training phase,
SDAC spends more time (54.17 seconds per app on average)
than MaMaDroid (37.70 seconds per app on average) for
transforming decompiled codes into feature vectors. In the
next step of classification model training, which refers to
model training in SDAC-FEO or model updating in SDAC-
FMU, the time cost ranges from 9.77 seconds (on the s-
mallest training set containing 11033 apps) to about 0.47
hours (on the largest training set containing 58033 apps)
for training each classification model. Since 9 classification
models are used in SDAC, the total time cost of SDAC for
this step ranges from 87.93 seconds to about 4.2 hours. In
comparison, MaMaDroid spends 16.3 seconds to about 13.1
minutes on different training sets in the model training step.
In the detection phase, the average time for detecting each
app is 8.90e-4 seconds for SDAC, and 3.6e-3 seconds for
MaMaDroid.

Although SDAC takes longer training time than Ma-
MaDroid, it achieves much higher accuracy and slower
aging speed as shown in sections 4.1 to 4.3. The runtime
performance of SDAC is acceptable in all out experiments
even though they are conducted on a common desktop
computers (i.e., i5-4590@3.3GHz CPU and 12GB memory).
Notes. For both SDAC-FMU and SDAC-FMU-OL, the time
cost for feature and model updates increases with the size
of its input data, which is the union of its training set and
all past testing sets. The size of the input data keeps in-
creasing as more testing sets are processed and accumulated
over time. To address this problem, we suggest to apply a
validation window to the input data which covers all past
testing sets starting from the last testing set in which all
apps’ true labels are available1. The size of this validation

1. Relaxing our assumption, we believe that true labels of testing apps
will be finally available after a limited period of time.

Fig. 13: Comparison between SDAC-FMU, SDAC-FEO, and
MaMaDroid with Tmal = 4 and Tmal = 9 (CV: 5-fold cross
validation)

window is limited, and so is the time cost for feature and
model updates.

The time granularity in forming testing sets is mainly
decided by the number of apps that were collected within
each time granularity, and each testing set should be large
enough to extract accurate API context information from it.
We suggest to choose each testing set to be larger than 5500
apps based on our experience with SDAC.

4.5 Evaluation of SDAC with Different Tmal

The performance of SDAC-FEO and SDAC-FMU are also
evaluated on datasets that are labelled with different posi-
tive threshold Tmal = 4 and Tmal = 9 in VirusTotal reports.
We also run MaMaDroid on these datasets for performance
comparison.

Fig. 13 shows the F-measurements of SDAC when
Tmal = 4 and Tmal = 9, respectively. In both cases, the 2011
app set is used as the training set and the 2012~2016 data
sets are used as the testing sets. In the case of Tmal = 4,
SDAC-FEO declines by 4.89% in F-score and SDAC-FMU
declines by 0.40% per year, while MaMaDroid declines by
6.12% per year on average. The advantages of SDAC-FEO
and SDAC-FMU over MaMaDroid are 14.85% and 22.55%,
respectively, in F-score on average. When Tmal = 9, the av-
erage aging speed in F-score is 3.94% for SDAC-FEO, 0.44%
for SDAC-FMU, and 5.95% for MaMaDroid. The advantages
of SDAC-FEO and SDAC-FMU over MaMaDroid are 19.22%
and 25.22%, respectively, in F-score on average.

4.6 Evaluation of SDAC with Unbalanced Datasets
On our balanced datasets, SDAC outperforms MaMaDroid
significantly. However, according to a recent research
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Fig. 14: Comparison between SDAC-FMU, SDAC-FEO and
MaMaDroid with Datasets of Unbalanced Ratio (CV: 5-fold
cross validation)

project, a balanced dataset may lead to biased results in
malware detection since malware is usually the minority
class (as compared to benignware) in the wild. It was
reported that the ratio of malware is around 10% in a real-
world setting [24]. To estimate SDAC’s performances in this
case, we downsample malware to make its ratio to be 10%
out of all apps, and form new datasets in our evaluation.
The performances of SDAC on such datasets are shown
in figure 14, which demonstrate wider differences between
SDAC and MaMaDroid, and a similar trend as shown in our
previous evaluations.

5 DISCUSSIONS

5.1 SDAC against Obfuscation
Code obfuscation tools, such as DroidChameleon [25] or [26]
are often used to obfuscate malicious apps to avoid detec-
tion. Since SDAC presents its detection based on Android
APIs, the obfuscation methods can be mainly classified into
three categories by their impacts on the APIs used in apps:
category-I: the set of APIs used by an app is not changed in
obfuscation (e.g. encrypt native exploit or payload, rename
identifier, identifiers or package), category-II: the set of APIs
used by an app is enlarged to include new APIs in obfus-
cation (e.g. repackage, or insert junk code) and category-III:
the set of APIs used by an app is reduced during obfuscation
(e.g. method call hiding or reflection[27], [28]).

SDAC is naturally robust to category-I obfuscation meth-
ods since it detects an app solely based on the set of APIs
used by it. Category-II obfuscation methods, such as “insert
junk code" and “repackage malware into benignware", may
enlarge the set of APIs used by an app, and thus avoid
detection by SDAC. To test the robustness of SDAC against
category-II methods, we generate a collection of 10,000 API
sets for each testing set. Each API set in that collection is the
union of the API set used by a benign sample and that by
a true-positive malware sample randomly chosen from the
testing set. One united API set is considered to be derived
from a virtual malicious app created by “injecting” the code
of a malware sample into the code of a benign sample. Then
SDAC is applied to such virtual malicious apps to check its
recall rates in various modes on different testing sets. Table 4

TABLE 4: Robustness of SDAC (in recall rate) against
Category-II Obfuscation with 2011 Training Set

Testing set 2012 2013 2014 2015 2016
SDAC-FMU 81.41% 69.87% 59.85% 49.88% 36.54%
SDAC-FEO 81.41% 67.22% 64.23% 36.49% 37.79%

SDAC-FMU-OL 77.63% 81.57% 60.98% 48.82% 47.49%
SDAC-FEO-OL 77.63% 65.49% 62.23% 58.03% 45.17%

shows that the recall rates of SDAC in all modes are higher
than 65% in the first two years, indicating that they can still
detect a majority of obfuscated malware in such cases.

The category-III obfuscation methods are mostly
achieved by making certain malicious codes loaded at run-
time [26], which is invisible from static analysis. In general,
no static analysis is robust against category-III obfuscation
methods. Nonetheless, SDAC can be potentially applied in
dynamic analysis since the API call sequences captured in
dynamic analysis can be directly used as the input to the API
embedding step in SDAC. It remains interesting to test the
robustness of SDAC in dynamic analysis against category-
III obfuscation methods in the future.
Obfuscation by App Packing. Packing technique is also
an effective method to apply obfuscation on apps and
hide their codes. Various kinds of packing techniques are
widely adopted by malware developers as reported in [29].
These mechanisms protect packed malware against reverse
analysis and thus thwart path extracting and feature vector
generating in SDAC. However, it is still potential to com-
bine SDAC with either dynamic analysis tools or Android
unpackers [29], [30], [31] against the packed malware.

5.2 API Semantic Extraction
Besides sequential APIs from which SDAC extracts API
semantics, data dependency is another way to analyze APIs’
relationship and extract their semantics. This method has
been used in previous research such as DarkHazard [32].

SDAC currently focuses on malware detection based on
sequential API analysis, which is complementary to data
dependency analysis. Some APIs may have direct data
dependency with each other but do not have any sequential
relationship. On the other hand, data dependency analysis
may miss some API relationship in malware detection.
For example, in an Android malware detection solution
proposed by Wang et, al. in [33], it is found that data depen-
dency information is lost in self-defined methods and thus
may result in malicious behaviors being undetected. While
in SDAC, these self-defined methods are collected together
with their caller methods and callee methods, and then
used in generating API sequences. It would be interesting
to extend SDAC to cover data dependency relationships in
semantic extraction in a future work.

5.3 Limitations
In our experiments, FlowDroid is used in the first step of
SDAC for extracting API paths from Android apps. It is
observed that FlowDroid fails to process 2.89% (1053/36490)
benign samples and 1.74% (610/35106) malware samples
among all the apps we collected originally, these samples
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are excluded in our experiments. Some failures are due to
exceeding memory limit in the extracting (i.e., 4 GB in our
experiments for API path extraction under the Soot tool). To
address this problem, one may use more powerful comput-
ers with larger memory, or rely on other static analysis tools
such as Amandroid [34] and Androguard [35] for API path
extraction.

Another limitation in our experiments is that FlowDroid
does not cover HTML5 codes, native codes, or the codes
which are loaded at runtime. It is a future direction to extend
SDAC to cover such codes by performing dynamic analysis.

6 RELATED WORK

Android Framework Evolvement. Android apps rely on
Android APIs to perform their functions, and many APIs
are added or deprecated in Android specifications over
time. The impact of API evolution to the usability of apps
has been studied recently. For example, McDonnell, Ray,
and Kim investigated how Android app developers follow
and adopt Android API changes over time [36]. Linares-
Vásquez et al. studied the relationship between API change
and fault proneness, and evaluated its threat to the success
of Android apps [37]. Brito et al. studied the adoption
of API deprecation messages and its impact to software
evolution [38]. Recently, Wu et al. focused on inconsistency
between the versions of declared Android API frameworks
and the actual ones used in Android apps [39]. While most
of previous research in this area focused on the usability of
apps, no rigorous study has been conducted on the impact
of Android framework evolvement to malware detection.
Android Malware Detection. Android malware detection
can be categorized into static analysis and dynamic analysis
(e.g., [40], [41], [42], [43], [44], [45]). SDAC belongs to static
analysis though its approach could be extended to dynamic
analysis in the future.

Static analysis detects Android malware according to the
information extracted from app APK files. It can be further
categorized into signature based solutions (e.g., [46], [47],
[48]) and learning based solutions. We briefly summarize
some learning based solutions that are more closely related
to SDAC than other solutions.

A wide variety of features have been examined in de-
veloping learning based solutions. For example, Arp et al.
devised Drebin to extract eight classes of features (e.g.,
network addresses, component names, permissions, and
API calls) from manifest files and disassembled codes. Avdi-
ienko et al. examined the difference in sensitive data flows
between malware and benignware [49]. Yang et al. designed
DroidMiner to extract malicious behavior patterns from
APIs and framework resources [50]. In another work, Ke, Li,
and Deng devised ICCDetector to extract inter-component
communication features from app components [51].

In addition, DroidAPIMiner proposed by Aafer, Du, and
Yin extracts a set of API-level features including critical
API call frequencies, framework classes, and API parameter-
s [52]. DroidSIFT proposed by Zhang et al. extracts weighted
contextual API dependency graphs from apps based on
sensitive APIs [53]. MAST proposed by Chakradeo et al.
examined strong relationships between declared indicators
of application functionality (e.g., permissions, intent filters,

and the presence of native code) [54]. Many other types of
features are also used in learning based solutions (e.g., [55],
[56], [57], [58], [59], [60]).

A common feature of the feature sets in most learning
based solutions is that they are “static”, not keeping up
with the evolvement of Android frameworks. Consequently,
the accuracy of such solutions may decline significantly
over time (i.e., model aging), which has been observed in
both industry (e.g., [2]) and academia (e.g., [1], [3]) recently.
While MaMaDroid is resilient to the adding of new APIs to
existing packages in Android specifications [5], the model
aging problem is largely unsolved before because many new
packages are continually added in Android framework.

7 CONCLUSION

In this paper, we designed a novel slowing aging solution
named SDAC for Android malware detection. The key
drivers to achieve slow aging in SDAC include (i) clustering
APIs based on the semantic distances among APIs, (ii) eval-
uating a new API’s contribution to malware detection using
existing APIs’ based on API clusters, and (iii) updating API
clusters and classification models based on both training
data with true labels and testing data with pseudo-labels.
The best versions of SDAC achieve both high accuracy
with average F-score 97.49%, and slow aging speed with
average F-score decline 0.11% per year over five years in our
experiments. The other versions have lower requirements
on computing resources, but still perform better than the
state of the art.
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