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European Floating Strike 
Lookback Options: Alpha 
Prediction and Generation Using 
Unsupervised Learning
Tristan Lim, Chin Sin Ong, and Aldy Gunawan

ABSTRACT: This research utilized the intrinsic 
quality of European f loating strike lookback call 
options, alongside selected return and volatility 
parameters, in a K-means clustering environment, 
to recommend an alpha generative trading strategy. 
The result is an elegant easy-to-use alpha strategy 
based on the option mechanisms which identifies 
investment assets with high degree of significance. 
In an upward trending market, the research had 
identified European f loating strike lookback call 
option as an evaluative criterion and investable 
asset, which would both allow investors to predict 
and profit from alpha opportunities. The findings 
will be useful for (i) buy-side investors seeking alpha 
generation and/or hedging underlying assets, (ii) 
sell-side product manufacturers looking to structure 
the European f loating strike lookback call options, 
and (iii) market trading platforms looking to 
introduce new products and enhance liquidity of 
the product. 

TOPICS: Options, volatility measures, 
statistical methods, simulations, machine 
learning*

Goldman, Sosin, and Gatto (1979) 
introduced an exotic option 
contract, namely the lookback 
options, which are options at 

which the owners can “look back” at the 
point of contract expiration to determine the 
optimal point at time t between time {0, T}. 
At time t, the price differential between 
the strike price and the market price of the 
underlying asset at time t is the most optimal, 
thereby maximizing the option holders’ 
profit. In this way, market timing of trading 
assets, such as commodities or stocks, is less 
important, providing investors with a new 
exotic class of tradable call and put assets, 

•	 Outperformance of mean Sharpe of forward European f loating strike lookback call 
options selected using K-means clustering was statistically significant using ANOVA test 
at p value = 0.0002. Tukey-Kraner HSD test showed that Sharpe risk adjusted return 
improved by 4.94% to 7.04%.

•	 Evaluating Sharpe based on European f loating strike lookback call option provided a clear 
choice of trading cluster of options, whereas this was not clearly apparent if the standard 
call option Sharpe was used as the only evaluating criteria for the selection of tradable 
option clusters.

•	 Consistency and stability of the predictive results implied that the European f loating 
strike lookback call options acted as a useful evaluation criterion for option investment.

KEY FINDINGS
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risk hedging instruments, while helping to expand the 
investable asset universe. 

Lookback options are a lesser used investment 
instrument, largely because it is a non-exchanged traded 
structured product which lowers its market liquidity. 
Further, it is, by nature, more costly vis-à-vis normal 
call options due to its nature of profit maximization by 
utilizing the global minima price vis-à-vis a fixed strike 
price of the underlying asset. 

In this study, the research will like to utilize the 
intrinsic quality of European f loating strike lookback 
call options, alongside selected return and volatility 
parameters, in a K-means clustering environment, to 
recommend an alpha generative trading strategy. The 
result is an elegant easy-to-use alpha strategy based on 
the option mechanisms which identif ies investment 
assets with high degree of significance.

LITERATURE REVIEW

In the face of continuing chase of yields and 
changing economic conditions for asset managers, client 
sophistication entails bespoke solutions which allow 
the capturing of alpha across price trends and volatility 
conditions. To address such needs, there exists increasing 
demand for alpha generation across differentiated 
structured financial products. There exists a dearth of 
studies applying lookback options for alpha generative 
strategies. 

Lookback options come in two forms: (i) f ixed 
strike, or (ii) f loating strike; while this study is a proof-
of-concept that focuses on the latter instrument, the 
study’s result can be extrapolated, with further research 
undertaken in other exotic option classes. Floating strike 
lookback options (Goldman, Sosin, and Gatto 1979), in 
contrast with fixed strike lookback options, or options 
on extrema (Conze and Viswanathan 1991), are options 
with f loating strike prices throughout the life of the 
option. At option maturity, the holder of the option 
can decide the point of time t during the life of the 
option when the price of the underlying asset is the most 
attractive and set this as the strike price. 

For instance, given a European cash-settled 
f loating strike call lookback option, and suppose the 
price of the option begins trading at the option initiation 
date at $100, falls to $50 and rises to $120 during the life 
of the contract, and closes at $90 at contract maturity. 
In the case of a standard European call option, if the 

strike price is f ixed at option initiation date at $100, 
the holder of the call option will have let the option 
expire worthless, as this holder will rather buy the asset 
at the market price of $90 at contract expiry, rather 
than exercising the buy option of the option at the $100 
strike price. In comparison, the holder of this f loating 
strike lookback option can “look back” and exercise the 
option at the global minina asset price when the price 
was $50, thereby making a profitable trade of $40 (or 
option maturity price of $90 subtracting global minima 
price $50). However, this profit opportunity comes at 
a cost – lookback options are priced at higher option 
premiums than the typical plain vanilla call and put 
options. 

There are many different methods to price a 
European cash-settled f loating strike call lookback 
option. The key differences lie on whether the sub-
interval of the said option is of discrete-time, or of 
continuous-time interval.

Discrete-time Binomial Option  
Pricing Model 

Introduced by Cox, Ross, and Rubinstein (1979), 
and further expounded by Kat (1995) and Cheuk and 
Vorst (1997), among others, binomial option pricing 
model provides a simple and accurate method to 
numerically price options. Binomial pricing model is a 
discrete-time path dependent model, calculated over a 
prespecified number of observation frequency fixings, 
for instance, daily, weekly, quarterly. Valuation is 
performed from the valuation date at time t0, iteratively 
across f ixed observation frequencies (or discrete time 
points N at time points t0, t1, t2, … tN), for the time to 
maturity T, with ti = iT/N. 

Exhibit 1 illustrates a visualization of a binomial 
valuation tree diagram. From Exhibit 1, asset price S0 
at t0 is recomputed for every node at each discrete time 
point until tN. Assuming volatility of the underlying asset 
σ, and Dt = T/N, the option value for each node step is 
assumed to move up or down by a factor of = σu e t  
or = =−σ 1d e t

u , such that for instance, option value 
at the upper node for time t1 is given by Su = u.S0. In 
addition, let r be one plus domestic market risk-free rate 
over discrete time period, and let m be the no arbitrage 
growth rate µ = ∆e r t. Price of a European f loating strike 
call lookback option, Cfloat at time point tj for underlying 
asset value S is given by Equation 1.
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where p and (1 - p) are risk neutral probabilities, p = 
µ(  –  )

(  –  )
d

u d , and m, n are the number of up and down states 
at each tN node. 

Monte Carle Simulation on Binominal 
Option Pricing Model

With Monte Carlo simulation, binomial option 
pricing model can be extended beyond small discrete time 
points N. Lookback options are path dependent options 
which do not have analytic price solutions; solutions that 
depend not only on asset prices at option maturity, but 
also the path of the prices at each discrete time point.

In Exhibit 2 (Benninga, 2008), the variable Runs in 
the VBA algorithm indicate the number of randomized 
price paths created, which are averaged to compute the 
Monte Carlo simulated price of the call option. Price 
paths are generated based on price neutral probabilities. 
In Exhibit 2, the price of the asset increases when the 
random number generator rand() is greater than price 
neutral probability p, and decreases when the random 
number generator is less than or equal to p. Henceforth, 
risk neutral probabilities of each price path are built into 
the price path itself (Benninga, 2008).

Black Scholes Option Pricing Model

Introduced by Black and Scholes (1973), and 
modified by Goldman, Sosin, and Gatto (1979) under 

the Black Scholes framework, Black Scholes model 
provides a lookback option with continuous and non-
discrete monitoring of asset price across the lifetime of 
the option. 

Assuming S is the price of the underlying asset, 
Smin is the global minima asset price, r is the risk free 
rate, q is the continuous payout, σ is the volatility of the 
underlying asset, T is the time to maturity and N() is 
the cumulative normal distribution, price of a European 
f loating strike call lookback option, Cf loat is given by 
Equation 2.
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−

× 





− + −
σ

− −












− − −

− −
σ −

( ) ( )
2( )

(
2( )

) ( ) ,

min

min

1 2

2

2( )

1 1

2

C Se N a S e N a Se
r q

S
S

N a
r q

T e N a

float
qT rT rT

r q

qT 	
		

(2)

 

where = + − + σ
σ1

ln( / ) ( 0.5 )min
2

a S S r q T

T  and = − σ2 1a a T .

Exhibit 3 (Benninga, 2008) illustrates the VBA 
functions used to price a European f loating strike call 
lookback option.

METHODOLOGY

The aim of this study is to identify predictive 
alpha strategies using lookback option mechanism based 
on unsupervised clustering techniques. Specif ically, 
the research will like to use common industry used 
variables, such as daily historical equity return and 
volatility variables, alongside K-means clustering as a 
technique to cluster-identify and predict suitable long 
call candidates in an upward trending market. Post-
clustering, investors can use the equities identified in 
the clustering technique to generate alpha by investing 
in its associated call options.

Data 

This research focused on European f loating strike 
lookback call options and standard European call options 
utilizing the top equities by market capitalization listed 
on the Singapore Exchange as underlying assets. In this 
research, the top 120 equities were selected. Post-data 
processing, such as the accounting for lack of data due 

E x h i b i t  1
Binomial Valuation Lattice
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to the launch of initial public offering late in the period 
of selection, 92 securities were selected. 

In order to improve rigority of test results, research 
utilized four period historical two-year rolling windows 
as follows: (i) 1 January 2015 to 31 December 2016, 
(ii) 1 April 2015 to 31 March 2017, (iii) 1 July 2015 to 
30 June 2017, and (iv) 1 October 2015 to 30 September 
2017. For each rolling window period, the option 
prices were obtained for (i) continuous (Black-Scholes 
framework), (ii) daily (binomial model), (iii) weekly 
(binomial model), and (iv) monthly (binomial model) 
security price intervals, for forward three month, six 
month, nine month and twelve month maturities for 
both European f loating strike lookback call options and 
standard European call options. With these parameters, 
the study attains 11,776 option price observations, 
inclusive of four rolling window periods, each computing 

four forward maturity observations for 92 securities, for 
four different continuous-discrete price intervals, for the 
two aforementioned types of options. 

Security prices between 2015 to 2018 were 
extracted from Bloomberg. Public holiday that fell 
on a weekday will result in blank data. These were 
imputed with the last closing price. Use of Bloomberg 
was consistent as a widely used data source for portfolio 
management investment practitioners. 

Research utilized the computation of logarithmic 
returns, which conveniently represented the calculation 
of compounded returns, while allowing the distribution 
to be transformed for normalization, adjusting for trend 
and seasonality effects (Dhamija and Bhalla 2010). 
This also brought about an added convenience of time 
additivity of a running sequence of n trades. Equations 
3 and 4 were used to compute the geometric return (ri) 
and annualized standard deviation (σi) respectively. 

	
=





−

ln
1

r
p

pi
i

i 	
(3)

E x h i b i t  2
VBA Algorithm of Monte Carlo Simulation on 
Binomial Option Pricing Model

Function ELBCall(initial, Up, Down, _
Interest, Periods, Runs)
Dim PricePath() As Double
ReDim PricePath(Periods)

‘Risk-neutral probabilities
piup = (Interest – Down)/(Up – Down)
pidown = 1 – piup

Temp = 0

For Index = 1 To Runs
‘Generate path
For i = 1 To Periods

PricePath(0) = initial
pathprob = 1
If Rnd > pidown Then

PricePath(i) = PricePath(i – 1) * Up

Else:
PricePath(i) = PricePath(i – 1) * _
Down

End If
Next i

callpayoff = Application.Max _
(PricePath(Periods) – Application.Min(PricePath), 0)
Temp = Temp + callpayoff

Next Index

ELBCall = (Temp/Interest ^ Periods)/_
Runs

End Function

E x h i b i t  3
VBA Algorithm of Black Scholes Option  
Pricing Model

Function aOne(Stock, Smin, Time, Interest, Sigma)
aOne = (Log(Stock/Smin) + ((Interest + (Sigma ^ 2)/2) * Time))/_

(Sigma * Sqr(Time))
End Function

Function aThree(Stock, Smin, Time, Interest, Sigma)
aThree = (Log(Stock/Smin) + ((–Interest + (Sigma ^ 2)/2) * Time))/_

(Sigma * Sqr(Time))
End Function

Function yOne(Stock, Smin, Interest, Sigma)
yOne = –1 * (2 * (Interest – ((Sigma ^ 2)/2)) * _

(Log(Stock/Smin)))/(Sigma ^ 2)
End Function

Function BSLBCall(Stock, Smin, Time, Interest, Sigma)
BSLBCall = Stock * Application.NormSDist(aOne(Stock, _

Smin, Time, Interest, Sigma)) – Stock * _
((Sigma ^ 2)/(2 * Interest)) * _
Application.NormSDist(–1 * aOne(Stock, _
Smin, Time, Interest, Sigma)) – Smin * _
Exp(–Time * Interest) * (Application.NormSDist _
(aOne(Stock, Smin, Time, Interest, Sigma) _
– Sigma * Sqr(Time)) – ((Sigma ^ 2)/(2 * Interest)) _
* Exp(yOne(Stock, Smin, Interest, Sigma)) * _
Application.NormSDist(–1 * aThree(Stock, Smin, _
Time, Interest, Sigma)))

End Function
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Historical and forward holding period returns 
and lookback drawdown returns were computed as 
input variables; historical returns for test of predictive 
qualities, and forward returns for payoff and Sharpe 
computation. Computation of holding period returns 
is tr ivial. Computation of lookback drawdown 
returns is illustrated in Equation 5. Lookback drawdown 
returns rLB equation parameters are the option maturity 
stock price SFinal and option global minima price Smin. 

	  = −   ir
S S

SLB
F nal min

min

	 (5)

Sharpe ratio was uti l ized to evaluate the 
performance of trading results. According to Harvey and 
Liu (2015), it is a routine industry practice to discount 
the reported Sharpe ratios by 50%, among many other 
proposed haircut methods, in trading backtests. In 
this research, we would discount any improvements 
or declines in Sharpe ratio, dS, when comparing two 
portfolio Sharpe by 50% as a simple penalization hurdle, 
based on Equation 6. 

	  δ = −




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=
−
σ
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r r
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	 (6)

Since the dataset comprised of Singapore equities, 
annualized risk-free rate (rf) was assumed at 2%, 
approximating the short-term annual interest returns 
of Singapore Government Securities. 

Modelling 

Modelling interactivity interface was generated 
using Microsoft Excel, supported by Python for 
computationally intensive iterative operations, for 
instance, high run-rate binomial option pricing 
modelling. SAS® Enterprise Miner™ version 14.1 
(“EM”) was also utilized during the results validation 
stage for its fast unsupervised clustering computation 
capabilities for large datasets, and SAS® JMP Pro 14.0.0 
was utilized for One-way ANOVA and post-hoc Tukey 
Honestly Significant Difference (HSD) tests. Exhibit 4 

illustrates the research modelling utilized to generate 
the research output. 

K-means clustering was utilized to cluster-identify 
investable assets for its extensivity of use and simplicity 
as an unsupervised machine learning technique, for the 
purposes of industry adoption. According to Hartigan 
(1975), K-means clustering divides data observations into 
like-clusters, by breaking up M points in N dimensions 
into K clusters, through the minimization of within-
cluster sum of squares (WSS). Repeated iterations are 
conducted until the stopping criterion is met. In this 
research, Euclidean distance is utilized for similarity 
distance and the Aligned Box Criterion is the method 
used to identify the optimal clusters generated. The 
latter improves on the gap statistic method (Tibshirani, 
Walther and Hastie 2001) through a high-performance 
machine-learning based analysis structure (SAS Institute 
2016). Historical equity holding period return, historical 
equity lookback drawdown return and historical equity 
volatility were the input variables for K-means clustering; 
Equity names acted as the input ID. 

Microsoft Excel and Python were utilized for the 
pricing of European f loating strike lookback call options 
and standard European call options based on algorithms 
in Exhibits 2 and 3 respectively. Computation of binomial 
option pricing model required averaging binomial 
option price paths of 15,000 runs for each Monte Carlo 
simulation, at a total of 48 Monte Carlo simulations. 
Due to the computational intensiveness of the high 
number of iterations, Python was used for generation 
of binomial option pricing and Sharpe, among others. 

In Exhibit 5, it can be observed that at about 
15,000 runs and above, the standard deviations of 48 
Monte Carlo binomial option pricing model simulations 
were reduced and plateaued at just below 2%. Above 
15,000 runs, the marginal benefit of additional runs 
was insignificant. Hence, the research model utilized 
15,000 runs of binomial option price paths for each 
Monte Carlo simulation.

RESULTS AND DISCUSSION

Exhibit 6 illustrates that in a relatively high positive 
Sharpe environment for the underlying stock, trading 
European f loating strike lookback call options and 
standard European call options typically outperform 
its underlying equity trade. However, the option cost 
will offset payoff generation for option trades, to the 

AUTHOR-A
UTHORIZED C

OPY FOR LIM
ITED D

ISTRIB
UTIO

N O
NLY 



64      European Floating Strike Lookback Options: Alpha Prediction and Generation Using Unsupervised Learning	 Fall 2020

extent weak positive Sharpe positions in the underlying 
equity trades correspond to negative option trading 
performances.

Weak performances for both European f loating 
strike lookback call options and standard European 
call options valued using the Black Scholes framework 
across all historical rolling windows and forward option 

maturity periods preclude the use of a Black-Scholes-
priced option as a viable option trading strategy. 

K-means clustering results are listed in Exhibit 7. 
Variables with suffix of (1) are clustering inputs, and 
variables with suff ix of (2) are the forward actual 
performance of equity and options. K-means clustering 
identified Cluster 3 as a consistent outlier performer in 

E x h i b i t  4
Research Modelling

Back Test and Forward Option PricingK-means Clustering

Clustering Results
Predict

Stock price (92 equities)

Daily return interval

Cluster results

Rolling historical window 1:
1 Jan 2015 to 31 Dec 2016

Black Scholes continuous
return interval

European floating strike
lookback call option

Standard European call
option

Perform K-means clustering,
using ABC criterion

Forward 6 month
call option

Forward 9 month
call option

Forward 12 month
call option

Forward 3 month
call option

Rolling historical window 2:
1 Apr 2015 to 31 Mar 2017

Rolling historical window 3:
1 Jul 2015 to 30 Jun 2017

Rolling historical window 4:
1 Oct 2015 to 30 Sep 2017

Weekly return interval Monthly return interval

Back Test Trading Performance

Forward performance measures
– Holding period return
– Lookback drawdown return
– Volatility
– Sharpe ratio

Historical equity input variables
– Holding period return
– Lookback drawdown return
– Volatility
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all daily, weekly, and monthly option pricing intervals, 
across all rolling window periods and option maturity 
periods. Cluster 3 comprised one underlying equity with 
exceptional return performance, and high volatility.

From a product manufacturing standpoint, 
weekly and monthly f ixings due to its innate higher 
intervals would likely suffer from poor liquidity and 
stale industry pricing vis-à-vis daily fixings. Consistency 
of the clustering results between the daily, weekly, and 
monthly f ixing options meant that performance of 
clustering based on daily fixings was sufficient. Should 
a fund manager decide to long a weekly or monthly 
option, he or she can do so by extrapolating the daily 
clustering results. 

We investigate the daily option pricing interval 
performance. Results in Exhibits 7, 8, and 9 yielded a 
few observations: 

(i)	Identification of outperforming equity options: With 
reference to Exhibits 8 and 9, outperformance of 
mean Sharpe of forward European f loating strike 
lookback call options was statistically significant 
using ANOVA test at p value = 0.0002. Tukey-
Kraner HSD test showed that Sharpe risk adjusted 
return improved by 4.94% to 7.04% in Cluster 
3 vis-à-vis other clusters. As a test of strategy, 
applying a haircut of 50%, the improvement of the 

Sharpe risk-adjusted return was robust at 247 basis 
points to 352 basis points. While the difference in 
mean between Cluster 3 and 2 was not statistically 
significant, the wide variance and large number of 
equities in Cluster 2 precludes Cluster 2 as a choice 
of trading cluster. Evaluating Sharpe based on the 
European f loating strike lookback call option was 
able to provide a clear choice of positive trading 
cluster, whereas this was not clearly apparent if the 
standard call option Sharpe was used as the only 
evaluating criteria for the selection of an option 
tradable cluster.

(ii)	 Viability as a trading strategy: With reference to 
Exhibits 7, 8, and 9, Cluster 3 had one identi-
fied equity. Investing in its associated European 
f loating strike lookback call option, even across 
rolling periods, was more executable as a trading 
strategy vis-à-vis Cluster 1 and 2, which had 58 
and 33 equities respectively. Further, the spread 
of Sharpe in Cluster 1 and 2 were wide, which 
implied that Cluster 1 and 2 were not viable 
trading strategies.

(iii)	European floating strike lookback call options as an evalu-
ative predictive criterion for option trading: In Exhibit 
7, the consistency and stability of the predictive 
results also implied that it was viable to invest in 
the corresponding standard call option alternative 

E x h i b i t  5
Standard Deviation of Binomial Option Pricing on 48 Monte Carlo Simulations
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rather than the European f loating strike lookback 
call options, as the standard call option alternative 
would generally be of a lower option premium, 
and a higher payoff. Hence, in this case, the Euro-
pean f loating strike lookback call options acted as 
a useful evaluation criterion for option investment. 

In Exhibit 6, it is also observed that in an upward 
trending high positive Sharpe environment, investing in 
a call option would generate a significantly higher alpha 
vis-à-vis the underlying equity due to the latter’s higher 
capital requirement.

From a trading implementation standpoint, the 
study recommends the trading process as illustrated in 
Exhibit 10. Post-trade, it is recommended to continually 
monitor trading performance vis-à-vis changes in the 
systematic and non-systematic environment of the 
underlying equity, and making necessary adjustments 
to the trading model to sharpen alpha generation.

E x h i b i t  7
K-Means Clustering Results—Historical Mean-Variance and Forward Back Test Performance

E x h i b i t  8
ANOVA Output Using SAS® JMP Pro 14.0.0

Monthly Option Pricing Interval

Weekly Option Pricing Interval

Daily Option Pricing Interval

K-Means
Cluster

1
2
3
4

1
2
3
4

1
2
3

No. of
Observations

555
365
16
536

392
232
16
832

932
524
16

No. of
Underlying

Equity

35
23
1
34

25
15
1
52

58
33
1

Historical
Equity

Holding
Period
Return

(1)

0.11
–0.23
12.03
0.12

0.34
–0.30
12.23
–0.03

0.16
–0.20
12.03

Historical
Equity

Lookback
Drawdown

Return
(1)

0.31
0.08
13.41
0.30

0.58
0.12
13.61
0.18

0.39
0.12
13.61

Historical
Equity

Volatility
(1)

0.18
0.20
0.61
0.18

0.23
0.26
0.55
0.18

0.21
0.22
0.56

Forward
Equity

Holding
Period
Return

(2)

0.11
0.09
0.61
0.03

0.07
0.08
0.61
0.08

0.07
0.12
0.59

Forward
Equity

Lookback
Drawdown

Return
(2)

0.19
0.19
0.76
0.10

0.20
0.24
0.84
0.15

0.19
0.23
0.95

Forward
Equity

Volatility
(2)

0.14
0.17
0.49
0.16

0.19
0.24
0.49
0.13

0.18
0.19
0.50

Forward
ELB Call
Sharpe

(2)

–0.65
2.77
3.70
–1.85

–1.74
–2.42
3.15
–3.45

–3.77
–1.67
3.27

Forward
Std Call
Sharpe

(2)

10.75
10.31
5.73
0.61

1.54
0.22
5.23
2.26

0.85
4.93
4.68

Means for Oneway ANOVA

Source

H Cluster D
Error
C. Total

Level

1.00
2.00
3.00

Number

932
524
16

Std Error

0.3637
0.4851
2.7762

Lower 95%

–4.484
–2.626
–2.180

Upper 95%

–3.057
–0.723

8.711

Mean

–3.7705
–1.6748
3.2653

2097.63
181146.76
183244.39

Sum of
Squares

1048.82
123.31

Mean
Square

8.5053

F Ratio

0.0002*

Prob > F

2
1469
1471

DF

Rsquare
Adj Rsquare
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.011447
0.010101
11.10464
–2.94799

1472

Std Error uses a pooled estimate of error variance.

Oneway ANOVA

Summary of Fit

Analysis of Variance
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CONCLUSION AND FUTURE WORKS

The research had successfully utilized a simple 
industry-utilizable K-means as a clustering technique, 
with common industry used variables – daily historical 
equity holding period return, daily historical equity 
lookback drawdown return and historical volatility 
– to identify long equity call option candidates. Post-
clustering, investors can use the equities identified in the 
clustering to generate alpha by investing in its associated 
call options.

In an upward trending market, the research had 
identified European f loating strike lookback call option 
as an evaluative criterion and investable asset, which 

would both allow investors to predict and profit from 
alpha opportunities.

The findings will be useful for (i) buy-side investors 
seeking alpha generation and/or hedging underlying 
assets, (ii) sell-side product manufacturers looking to 
structure the European f loating strike lookback call 
options, and (iii) market trading platforms looking to 
introduce new products and enhance liquidity of the 
product. 

Future works can be applied across geographical 
markets, business cycles and asset classes to validate and 
extent the findings of this research.

E x h i b i t  9
Tukey-Kramer HSD Output Using SAS® JMP Pro 14.0.0

Confidence Quantile

HSD Threshold Matrix

Ordered Differences Report

Abs(Dif)-HSD

Positive values show pairs of means that are significantly different.

Levels not connected by same letter are significantly different.

A
A

B

Level

2.00
3.00

1.00

Level

3.00
3.00

2.00

– Level

2.00
1.00

1.00

Difference

4.940040
7.035764

2.095724

Std Err Dif

2.818225
2.799888

0.606333

Lower CL

–1.67175
0.46699

0.67321

Upper CL

11.55183
13.60453

3.51823

P-Value

0.1861
0.0324*

0.0016*

Mean

–1.674779
3.265262

–3.770502

3.00

1.00
2.00

–9.2109
3.00

0.4670
–1.6718

–1.6718
2.00

0.6732
–1.6095

0.4670
1.00

–1.2069
0.6732

Comparisons for all pairs using Tukey-kramer HSD

q*

2.34608

Alpha

0.05

Means Comparisons

Connecting Letters Report
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ADDITIONAL READING

Backtesting
Campbell R. Harvey and Yan Liu

The Journal of Portfolio Management 
https://jpm.pm-research.com/content/42/1/13

ABSTRACT: When evaluating a trading strategy, it is routine 
to discount the Sharpe ratio from a historical backtest. The reason 
is simple according to the authors: there is inevitable data mining 
by both the researcher and by other researchers in the past. In this 
article, the authors provide a statistical framework that systematically 
accounts for these multiple tests. They propose a method to determine 
the appropriate haircut for any given reported Sharpe ratio. They also 
provide a profit hurdle that any strategy needs to achieve in order to 
be deemed “significant.”

A Backtesting Protocol in the Era 
of Machine Learning
Rob Arnott, Campbell R. Harvey, 
and Harry Markowitz

The Journal of Financial Data Science
https://jfds.pm-research.com/content/1/1/64

ABSTRACT: Machine learning offers a set of powerful tools that 
holds considerable promise for investment management. As with 
most quantitative applications in finance, the danger of misapplying 
these techniques can lead to disappointment. One crucial limitation 
involves data availability. Many of machine learning’s early successes 
originated in the physical and biological sciences, in which truly vast 
amounts of data are available. Machine learning applications often 
require far more data than are available in finance, which is of par-
ticular concern in longer-horizon investing. Hence, choosing the right 
applications before applying the tools is important. In addition, capital 
markets ref lect the actions of people, who may be inf luenced by the 
actions of others and by the findings of past research. In many ways, 
the challenges that affect machine learning are merely a continuation 
of the long-standing issues researchers have always faced in quantita-
tive finance. Although investors need to be cautious—indeed, more 
cautious than in past applications of quantitative methods—these new 
tools offer many potential applications in finance. In this article, the 
authors develop a research protocol that pertains both to the application 
of machine learning techniques and to quantitative finance in general.
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