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Managing Swaption Portfolio Risk under

Different Interest Rate Regimes

Poh Ling Neo*, Chyng Wen Tee†

Abstract

Efficient risk managing of swaption portfolios is crucial in the hedging of interest rate exposure.

This paper formulates a portfolio risk management framework under stochastic volatility models.

The implication of using the right volatility backbone in the stochastic-alpha-beta-rho (SABR) model

is analyzed. In order to handle negative interest rates, we derive a displaced-diffusion stochastic

volatility (DDSV) model with closed-form analytical expression for swaption pricing. We demonstrate

that the dynamics naturally allow for negative rates, and is also able to fit the market well. Finally, we

show that choosing the right backbone in the DDSV model results in optimal hedging performance

and P&L explanation.

Keywords: derivatives valuation, stochastic volatility models, interest rate markets, swaptions, risk

management, portfolio management, pricing and hedging.
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1 Introduction

Swaptions are the main interest rate volatility instrument in the fixed income market, and are traded

in high volume between interdealers and institutional investors to hedge interest rate exposure, or to

take on positions on swap curve movements. In addition to being the main instrument for interest rate

risk management, they also form the basis for all volatility-sensitive interest rate product valuations,

including Bermudan swaptions, callable LIBOR exotics, and constant maturity swap (CMS) payoffs,

to name a few. Therefore, efficient risk management of swaption portfolio plays a crucial role across

the whole spectrum of interest rate volatility products.

A key question swaption portfolio managers face is whether the forward swap rates follow a

“normal” or a “lognormal” model. Several recent studies investigated this subject extensively. Levin

(2004) explores the swaption market and demonstrates that swaptions with low strikes are traded with

a close-to-normal volatility, while swaptions with higher strikes are traded with a square root volatility.

CEV analysis unambiguously rejects lognormality and reveals a more suitable model. Deguillaume,

Rebonato and Pogudin (2013) look at the dependence of the magnitude of rate moves on the level of

rates, and find a universal relationship that holds across currencies and over a very extended period

of time (almost 50 years). Interestingly, they found that volatilities of very low and very high rates

behave in a lognormal fashion, while intermediate rates exhibit normal behavior. The results are

robust across currencies, tenors and time periods. More recently, Meucci and Loregian (2016) show

that US Treasury (UST) yields and Japanese Government Bond ( JGP) yields are neither normal nor

lognormal. Using the “shadow rate” concept introduced by Black (1995), they develop an “inverse-call”

method to convert observable interest rates into shadow rates. They then show that these shadow

rates has superior quality from a risk management perspective, in that the behavior is consistent

whether rates are low or high.

In the fixed-income market, the stochastic alpha-beta-rho (SABR) model proposed by Hagan et

al. (2002) is the de facto model used for swaptions pricing. Compared to other stochastic volatility

models (say, for instance, the Heston (1993) model), the main advantage of SABR model lies in

its ability to express implied volatility as a closed-form analytical formula, allowing swaptions to

be priced in a quick and efficient manner. Being able to value swaption portfolio efficiently using

analytical formula is important, as swaptions are used as the basis to price more exotic products.

For instance, pricing CMS payoffs involve a 1-d integral across a continuum of weighted swaptions

(see Brigo and Mercurio (2006) and Andersen and Piterbarg (2010) for more information). Having an
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analytical expression for the swaption prices significantly speed up the pricing speed of exotic payoffs.

The performance of SABR model has been investigated extensively in the literature. Wu (2012)

explore the application of SABR to the interest rate cap market. The study concludes that SABR

model exhibits excellent pricing accuracy and captures the dynamics of the volatility smile over time

very well. Separately, Yang, Fabozzi and Bianchi (2015) apply SABR model to the foreign exchange

market. They use empirical study to show that SABR model can fit market option prices and predict

volatility well. SABR mobel is also useful in analysis involving volatility risk premia. Duyvesteyn and

de Zwart (2015) use SABR model to test and analyze the maturity effect in the volatility risk premium

in swaption markets by looking at the returns of two long-short straddle strategies.

It has long been established that the swaption market follows neither normal or lognormal back-

bone, but something in between. Swaption portfolio managers heuristically set the value of β in their

SABR model based on subjective perception of the prevailing backbone behavior, and calibrate the

rest of the model parameters (α, ρ, and ν) to match the swaption prices observed in the market. In

high interest rate environments, traders tend to assume the rate is closer to lognormally distributed

(β → 1), while in low interest rate environments, the rate is closer to be normally distributed (β → 0).

Fixing a constant beta, or equivalently fixing a constant assumption on the underlying distribution,

such as a normal or lognormal, cannot fully capture market risk.

Given the wide-spread use of SABR model in the risk management of interest rate derivatives,

Zhang and Fabozzi (2016) investigate the issue of choosing the right backbone under SABR model,

and how an optimal choice of beta leads to superior hedging performance by minimizing pricing

error. The key to the proposed method is that the option pricing model parameters not only can be

estimated by calibrating the model to the cross-sectional data, such as the implied volatility smile,

but also can be estimated by choosing the set of parameters that minimize the hedging error. The

proposed method meets the no-arbitrage condition, delivering better hedging performance than the

existing fixed-beta style calibration method. The most important discovery reported in this article is

the often-overlooked fact that although the beta parameter in the SABR model does not have a major

impact on the fit of the model to market data, it does play a critical role in controlling the model’s

hedging performance.

Building on the insights and findings of Zhang and Fabozzi (2016), we further develop the concept

of optimal hedging performance. SABR model is known to be able to fit market prices extremely well.

If the model parameters (α, ρ, and ν) are calibrated daily to the market, the fitting error is expected

to be negligible. From a risk management perspective, the daily profit and loss (P&L) of holding a
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swaption portfolio from one day to the next can be explained by contribution from interest rate delta,

vega, and skew/smile sensitivity (ρ and ν). In the context of hedging, optimal performance is attained

when the majority of the daily P&L movement can be explained by delta, followed by vega, with

significantly smaller contribution from skew and smile movement, barring genuine movement in the

volatility market. The underlying assumption is that given the right backbone choice, the bulk of the

P&L should be attributed to rates movement, followed by volatility movement. Changes in skew and

smile should be slowly varying.

It is important to note that the process in SABR model specified for the forward swap rate

follows a constant elasticity of variance (CEV) process first proposed by Cox and Ross (1976) (see Cox

(1996) for further information). However, unless we are explicitly setting β = 0, the model cannot

support negative rates. Practitioners circumvent this problem by either using a normal SABR model

with β = 0, or a shifted SABR model that moves the rates (and strikes) up by a pre-determined

fixed positive amount. Apart from these off-the-cuff fixes, more sophisticated solutions have also be

recently proposed. For instance, Anthonov, Konikov and Spector (2015a) formulated a free boundary

SABR model by providing a structure to remove the negative rates boundary, making it flexible in

terms of calibration to market data. Anthonov, Konikov and Spector (2015b) also propose method

to handle negative rates by mixing 0-correlation free boundary SABR model with a normal SABR.

Nevertheless, these models are known to be unstable in the calibration process.

A good alternative model to use is the displaced-diffusion model first proposed by Rubinstein

(1983). This parameterization can be interpreted as a simple linearization of the CEV dynamics

around the initial value of the underlying. Similar to the CEV model, a displaced-diffusion model

implies that the forward rate behaves more like a normal distribution when rates are low, and vice

versa. Unlike CEV model, negative rates are admissible in a displaced-diffusion model. This coincides

with the recent observation that interest rates have not only been negative but distributed more like

a normal distribution. In fact, Marris (1999) shows that there exists a close correspondence between

the CEV and the displaced-diffusion dynamics, and that, once the two models are suitably calibrated,

the resulting interest rate caplet prices are virtually indistinguisable over a wide range of strikes and

maturities. Joshi and Rebonato (2003) therefore use the displaced diffusion setting, which, unlike the

CEV case, allow simple closed-form solutions for the realization of the forward rates after a finite

period of time, as a computationally simple and efficient substitute for the theoretically more pleasing

CEV framework, which does not allow negative forward rates. In fact, Svoboda-Greenwood (2009)

posited displaced-diffusion processes as suitable alternatives to a lognormal process in modelling the
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dynamics of market variables such as stock prices and interest rates. The mathematical properties of

a displaced diffusion model is rigorously investigated further in Lee and Wang (2012).

Observation in the recent negative interest rate regime in EUR shows us that zero rate did not

become an absorbing barrier, contrary to the behavior of a CEV process with β ∈ (0, 1). On the other

hand, rates did become negative, but there appears to be a lower bound as to how negative it can be,

which is controlled by the European Central Bank (ECB). These are consistent with the behavior of a

displaced-diffusion dynamics, as opposed to a normal model which a lower bound. Recent use cases

of displaced-diffusion model include Chen, Hsieh and Huang (2018) to resolve severe problems of the

existing Libor Market Model (LMM) that has failed since 2008 crisis.

In this paper, we formulate a displaced-diffusion stochastic volatility model for efficient swaption

valuation, which is able to match market quotes well in both positive and negative interest rate

regimes alike. We also introduce the concept of optimal hedging performance, measured by the

“concentration” of P&L breakdown. We show that choosing the right volatility backbone yields the

best hedging performance. This paper is organized as follows: Section II presents the data used

in this study, and documents the empirical analyses performed on the data set. To handle negative

interest rate regime, a displaced-diffusion stochastic volatility model is derived in Section III. Next,

a P&L explanation framework and hedging performance benchmark are formulated in Section IV,

followed by our results on the hedging performance of the models. Finally, conclusions are drawn in

Section V.

2 Data and Empirical Analyses

The swaption data used in this study is acquired from IHS Markit. The swaptions are denominated in

EUR. IHS Markit collects market data quotes from all data vendors and subject the data to specifically

designed checks before cleaning and collated them into aggregated data in daily frequency. The data

used in this paper covers 5 full calendar years from 1-Oct-2012 through to 30-Sep-2017, with 1,305

trading days. The data on each day comprises of 20 expiries and 14 tenors, with 14 strikes available

for each swaption chain (tenor-expiry pair), defined by their respective moneyness. Table I provides

a quick summary of the market data used in our study.

Standard convention in the fixed-income market is to quote implied lognormal volatility based on

the Black (1976) model in forward space (as opposed to Black and Scholes (1973)). However, as swap

rates become lower, and eventually enter the negative regime, swaptions with negative strikes and
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forward rates can no longer be quoted using the Black (1976) lognormal model. As a workaround,

IHS Markit data also provide implied normal volatility quotes based on a Black (1976) normal mode,

which support negative rates. On the other hand, ICAP, a major interest rate derivatives broker,

continue showing implied lognormal volatility quotes, but started shifting the forward rates and

strikes up by a pre-determined fixed amount in December 2012. Today, the shift amount is 3% for

EUR.

Figure 1 plots the forward swap rates across the 5-year period included in this study. For economy

of representation, only 4 liquid tenor-expiry pairs are plotted, though the same trend and behavior are

observed across the entire data set. The important economic landmark events are also labeled in the

figure. The ECB cut EUR rates to negative on 25-June-20141, and swap rate levels started falling after

that. Although short expiries forward swap rates only became negative on 10-March-2015, strikes

of short maturity swaptions have already become negative prior to that. From the figure, it is also

obvious that the 5y period included in the study can be split into a “high” rate regime (prior to March

2015) and a “low” rate regime (post March 2015).

We measure volatility by plotting annualized standard deviation of daily increments vs the rate

level. We can collect all daily rate increments and group them into quintiles, with each one cor-

responding to a specific range of rate level. After the data are collected, we calculate the standard

deviation of each bucket, and then annualize them (×10000 ×
√

252). Figure 2 plots the standard

deviation against forward swap rate quintiles, along with the number of observations in each bucket.

From the figure, it is clear that as the swap rate levels increase, the standard deviations decrease.

This observation is fully consistent with swaption market convention, where portfolio managers use

a SABR model with β closer to 1 under high rates regime, but β closer to 0 under low rates regime.

Again, for the sake of economy in presentation, we only plot 4 commonly traded expiry-tenor pairs,

namely 5y10y, 10y10y, 20y20y, and 30y30y, but similar results is obtained for all expiry-tenor pairs in

our data set.

Next, we also calculate skewness to explore asymmetry in daily swap rate movement. The forward

swap rate levels are grouped into quartile, and Figure 3 plots the skewness against forward swap rate

quartiles, along with the number of observations in each bucket. Skewness is negative under low rates

regime, but positive under high rates regime. This shows that the rates movement distribution has a

heavier right tail when rates are higher, but a heavier left tail when rates are lower. We also calculate

1ECB first cut rate to negative to −0.10% to spur inflation, and further cut to −0.20% in September 2014. Deposit facility
rate was cut to −0.30% in December 2015 to boost low inflation, and further cut to −0.40% in March 2016.
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the excess kurtosis of the daily swap rate movement. The forward swap rate levels are again grouped

into quartile, and Figure 4 plots the excess kurtosis against the forward swap rate level. The excess

kurtosis are all positive, highlighting the fact that the distribution of daily changes in swap rate has

a heavier tail than normal distribution. However, the tails are heavier under low rates regime, and

relatively lighter under high rates regime.

As explained earlier, prior to the negative interest rate regime, the swaption market’s convention

is to quote prices in terms of implied volatilities of the Black76 lognormal model. This convention has

changed as negative rates are inadmissible under lognormal models. A commonly adopted convention

is to quote the implied volatilities of a Black76 normal model instead. Since a normal model for rate

movement allows for negative rates, this quoting convention is able to provide consistent price quotes

without having to ensure that the shift amount is sufficient to guarantee positive forward swap rates

and strikes. Figure 5 plots the implied lognormal volatilities (top panel) and the implied normal

volatilities (bottom panel) against forward swap rates. In the top panel, it is obvious that as rates

become lower, a high lognormal implied volatility is required to match the market price. On the

other hand, when rates are higher, the lognormal implied volatility required to match the market

swaption price is lower. This figure is a clear and visual indication that the backbone of the swaption

market is not lognormal – high rates are associated with lower lognormal volatilities, while low rates

are associated with higher lognormal volatilities. Compared to the lognormal volatilties, the normal

implied volatilities in the bottom panel is relatively flatter. This shows that the backbone of the

swaption market is closer to the normal model.

Next, we use principal component analysis (PCA) to investigate the factor structures of daily

changes in implied volatility curves of the swaption chains. PCA are generally sensitive to the units

in which the underlying variables are measured. It is customary, therefore, to standardize variables

to unit variances, or equivalently to extract the eigenvalues and eigenvectors from the correlation

matrix. Figure 6 plots the first, second and third principal components before and after the negative

rate regime, using March 2015 as the split. Similar to the common case of yield curve analysis, the

first principal component (PC) captures parallel implied volatility curve movement, the second PC

captures the change in volatility skew (asymmetric slope movement), while the third PC accounts for

the variation in implied volatility smile (symmetric curvature movement). The explanatory power

of each PC is measured by the magnitude of the eigenvalues. The explained variance ratio of each

PC is labeled in the figure. Prior to the negative rate regime, the first 3 PCs collectively account for

98.85% of the implied volatility curve movement. Once we entered the negative rate regime, the curve
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movement is dominated by parallel movement, with the first PC alone accounting for 98.1% of the

variance.

Statistical decomposition of the implied volatility curve’s daily changes demonstrates that there are

three principal factors explaining a majority of the variation: level, slope, and curvature. Generally

speaking, the level of the curve is typically anchored by the at-the-money volatility (ATM), the slope is

the difference between highest strike (+300bps) and lowest strike (−300bps) volatility, and curvature as

the ATM volatility relative to an average of highest strike and lowest strike volatilities. As a sensitivity

check, we present our estimates for each of the implied volatility smile latent factor together with the

corresponding empirical proxies directly computable from market quotes in Figure 7:

Empirical Skew Proxy = σATM+300bps − σATM−300bps

Empirical Smile Proxy = −2× σATM + σATM−200bps + σATM+200bps Black Volatility

We borrow the concept of proxy “empirical slope” and “empirical curvature” from the yield curve

literature to provide a model-free approach to quantify skew (asymmetric) and smile (symmetric) in

the implied volatilities. We use 2%-shifted implied lognormal volatility quotes in this figure, but the

same behavior is observed for other shift values. When forward swap rates are low, empirical skew is

negative and empirical smile is high. When rates become higher, empirical skew becomes closer to 0

and eventually positive, while empirical smile is relatively smaller. This observation is consistent with

the skew and excess kurtosis calculation presented in earlier figures.

3 Model

3.1 Volatility Backbone

Let Ft denote the forward swap rate. Under a model following normal distribution, the volatility of

interest rate movements over time is independent of the interest rate level. This can be expressed as

the following stochastic differential equation:

dFt = σndWt ⇒ Ft = F0 + σnWt,

where σn is the normal volatility of the swap rate, and Wt is a standard Brownian motion with the

distribution Wt ∼ N(0, t). In words, the interest rate behaves like a random walk. In contrast,

under a model following lognormal distribution, the volatility of interest rate movements over time is
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proportional to the interest rate level, such that high rates are associated with high volatilities, and

vice versa. This can be expressed in the following stochastic differential equation:

dFt = σlnFtdWt ⇒ Ft = F0e
−σ

2
lnt

2
+σlnWt .

where σln is the lognormal volatility of the swap rate. In words, the log rates behave like a random

walk. Whether forward rates follow a normal model, a lognormal model, or any model in between,

has important implication in risk management. Consider a series of following implied volatility curves

under different forward rates. As the forward rate Ft varies, the at-the-money implied volatility σATM

also varies. The curve traced out by the this ATM volatility as a function of the forward rate is

referred to as the backbone. Because ATM swaptions are by far the most liquidly traded in the

market, choosing the right backbone plays an important role in guaranteeing the stability of the

hedged portfolio. Suppose β = 1, market follows a lognormal backbone, and any movement in the

forward rates will result in the same implied lognormal volatility. On the other hand, if β = 0, market

follows a normal backbone, and any movement in the forward rates will result in identical normal

volatility. Comparing between the process

dFt = σndWt = σβcevdWt = σlnFtdWt,

it should be clear that for normal volatility to remain unchanged when rates move, the implied

lognormal volatility will decrease when rate moves up, and increase when rate moves down.

In this section, we provide an example to illustrate the importance of choosing the optimal back-

bone (β) from a risk management perspective. Suppose the market backbone is given by βmkt, and

that the implied volatilities in the market is plotted in Figure 8. A swaption portfolio manager uses

SABR model with the right backbone (βmkt) to calibrate to these quotes, and is able to match ob-

served swaption prices with a high degree of accuracy. Suppose another swaption portfolio manager

is using an incorrect backbone of βmodel. This portfolio manager will still be able to calibrate to the

market with a close match in prices, as denoted by the dashed red line in the figure. In other words,

in terms of daily mark-to-market, whether or not the right backbone (β) is used, portfolio managers

will always be able to match market prices closely as long as they recalibrate the model parameters

frequently.

That said, the disadvantage of choosing the wrong backbone manifests when the portfolio man-
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agers try to use the model for risk management, and to breakdown daily P&L in terms of sensitivity

and market movement. Suppose the swap rate moved up overnight, and this is the only movement in

the market (volatility market remains unchanged). For the portfolio manager using the right backbone

value of β = 0.7, no changes in the SABR parameters (α, ρ, and ν) is required to match the swaption

prices after the move – the P&L movement can be explained entirely by interest rate delta. On the

other hand, the portfolio manager using the incorrect backbone value of β = 1 will have to recalibrate

to the swaption market in order to match the market prices closely. Under the wrong backbone, the

same amount of P&L movement will now have to be explained by delta, vega, and a combination of

skew and smile sensitivity.

As a numerical example, support βmkt = 0.7. Consider an out-of-the-money (OTM) receiver

struck at 1.5%, and an out-of-the-money payer struck at 4%. As illustrated in Figure 8, suppose

the swap rate moves up, without other changes in the volatility market, the portfolio manager risk

managing this receiver swaption with the right backbone of β = 0.7 will be able to explain the P&L of

the position by interest rate (IR) delta. On the other hand, the portfolio manager using the incorrect

backbone of β = 1 will have to explain the same P&L movement via offsetting components in IR

delta, IR vega, and skew sensitivities (ρ and ν).

In this simple example, it should be clear that also SABR model is always able to match market

quotes well by frequent recalibration, the advantage of choosing the right volatility backbone becomes

apparent in that efficient risk management and P&L explanation can be done in a more economical

fashion.

3.2 Displaced-diffusion Stochastic Volatility Model

In this section, we propose a displaced-diffusion stochastic volatility model for swaption pricing. The

key strength of the displaced-diffusion process lies in its ability to accommodate negative interest

rates. We derive a closed-form analytical expression for swaption pricing, and show that it can also

match market prices with a high degree of accuracy.

Consider the displaced-diffusion forward swap rate process as follows

dFt = σ[βFt + (1− β)F0]dWt, (1)

σ is the volatility, the β is the displaced-diffusion model parameter, and Wt is a standard Brownian

motion with Wt ∼ N(0, t). For now, let us assume that σ is a deterministic constant. We will
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generalize this to a stochastic volatility model in later part of this section. The process can also be

written as

d

(
Ft +

1− β
β

F0

)
= σβ

(
Ft +

1− β
β

F0

)
dWt.

Written in this way, it should be clear that with
(
Ft + 1−β

β F0

)
modeled as a geometric Brownian

process, it is strictly positive. In this case, as long as the β parameter is positive, the forward rate

process Ft is now allowed to take on negative value, since the process is well-defined as long as

Ft + 1−β
β F0 > 0. In other words, under the displaced-diffusion model, the forward rate process is

allowed to be negative, so long as Ft >
β−1
β F0. When F0 > 0, any choice of 0 < β < 1 will provide a

negative value as the lowerbound to the forward rate process. If F0 < 0 however, then we can choose

β < 0, which corresponds to a super-normal process, and still support negative rates. Solving the

stochastic differential equation in Equation (1), we obtain

FT =
F0

β
exp

[
−β

2σ2T

2
+ βσTWT

]
− 1− β

β
F0. (2)

To value a payer swaption with payoff (FT −K)+, we note that

F0

β
exp

[
−β

2σ2T

2
+ βσ

√
Tx

]
− 1− β

β
F0 > K

⇒ x >

log

(
K+ 1−β

β
F0

F0/β

)
+ β2σ2T

2

βσ
√
T

= x∗

and so

Vp(0) = A(0)E[(FT −K)+] =
A(0)√

2π

∫ ∞
x∗

(
F0

β
exp

[
−β

2σ2T

2
+ βσ

√
Tx

]
− 1− β

β
F0 −K

)
e−

x2

2 dx

=
A(0)√

2π

∫ ∞
x∗

(
F ′0e
−σ
′2T
2

+σ′
√
Tx −K ′

)
e−

x2

2 dx

= A(0)Black76LognormalCall(F ′0,K
′, σ′, T, β),

where

K ′ = K +
1− β
β

F0, F ′0 =
F0

β
, σ′ = βσ,

and A(0) =
∑N

i=1D(0, Ti) is the swap annuity, N is the total number of swap cashflows, and
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D(0, T ) is a discount factor discounting cashflow from T to 0. In other words, if the volatility σ is

deterministic, the displaced-diffusion model can be expressed in the closed-form expression of Black

(1976) lognormal model by simply adjusting the parameters. Obviously, with a deterministic σ and a β

parameter, we will only be able to fit to the implied volatility skew. A stochastic volatility extension is

therefore required so that the volatility-of-volatility parameter can be used to calibrate to the volatility

smile observed in the swaption market.

To this end, we propose the following stochastic variance model:
dFt = σt

[
βFt + (1− β)F0

]
dWt

dVt = νVtdZt

(3)

where Wt and Zt are independent Brownian motions (Wt ⊥ Zt), and σt =
√
Vt. Under this for-

mulation, we model the stochastic variance as a lognormal process2. Solving the displaced-diffusion

process for Ft in Equation (3), we obtain

log

[
βFT − (1− β)F0

F0

]
= −β

2

2

∫ T

0
Vt dt+ β

∫ T

0

√
Vt dZt

⇒ FT =
F0

β
exp

[
−β

2

2

∫ T

0
Vt dt+ β

∫ T

0

√
Vt dZt

]
− 1− β

β
F0,

Next, we define the mean integrated variance (V̄ ) as

V̄ =
1

T

∫ T

0
Vt dt. (4)

Conditional on this integrated variance V̄ , we have the distribution

log

[
βFT − (1− β)F0

F0

]
∼ N

(
−β

2V̄ T

2
, V̄ T

)
.

Let ψ denote the probability density function of the mean integrated variance V̄ in Equation (4), the

swaption can be priced as

Vp = A(0)

∫ ∞
0

∫ ∞
0

(FT −K)+f(FT |V̄ ) dFT ψ(V̄ ) dV̄

2A quick application of Itô’s formula to σt = f(Vt) =
√
Vt shows that the stochastic volatility σt follows the process

dσt = − 1
2ν

2σtdt+ 1
2νσtdZt.
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Under the assumptions that the forward rate movements are uncorrelated with the variance, then the

probability density f(FT , V̄ ) can be written as

f(FT , V̄ ) = ψ(V̄ )f(FT |V̄ ),

Now the expected value of the sum of the swaption payoffs over all forward rates contingent on a

fixed mean integrated variance is equal to the displaced-diffusion formula, which has a closed-form

expression Displaced-Diffusion
(
F0, K, V̄ , T, β

)
, so that we can write

Vp = A(0)

∫ ∞
0

Displaced-Diffusion
(
S0, K, V̄ , T, β

)
ψ(V̄ ) dV̄

In other words, since log
[
βFT−(1−β)F0

F0

]
conditional on V̄ is normally distributed with known mean

and variance (under the assumption that Ft and Vt are uncorrelated), the inner integral becomes the

closed-form displaced diffusion formula. In words, the DDSV option price is the weighted sum over

the displaced-diffusion formula for different integrated variance. This intuitively pleasing result is

often called the “mixing” theorem and was first derived by Hull and White (1987).

It is impossible to obtain an analytical form of the distribution for V̄ . However, following Hull

and White (1987), while the distribution of the integrated variance V̄ is unknown, its moments can be

readily evaluated. The first three moments are given by:

E
[
V̄
]

= V0, E
[
V̄ 2
]

=
2
(
eν

2T − ν2T − 1
)

ν4T 2
V 2
0 , E

[
V̄ 3
]

=
e3ν

2T − 9eν
2T + 6ν2T + 8

3ν6T 3
V 3
0 .

Using Taylor expansion, we expand the displaced diffusion formula around its expected value to

obtain

V =

∫ ∞

0

Displaced-Diffusion(F0,K, V̄ , T, β) ψ(V̄ ) dV̄

= Displaced-Diffusion(F0,K, σ
2
0 , T, β)

+
1

2

∂2Displaced-Diffusion(F0,K, σ
2
0 , T, β)

∂V̄ 2

(
E[V̄ 2]− E[V̄ ]2

)
+

1

6

∂3Displaced-Diffusion(F0,K, σ
2
0 , T, β)

∂V̄ 3

(
E[V̄ 3]− 3E[V̄ ]

(
E[V̄ 2]− E[V̄ ]2

)
− E[V̄ ]3

)
+ · · ·

(5)

For sufficiently small values of ν, which is the case for most cases, the series converges very quickly.

Higher accuracy can be attained by adding higher order corrections to the expansion series. Once

calibrated to swaption market quotes, Equation (5) provides an alternative way for us to evaluate

swaption prices using closed-form expression. The main advantage of our proposed model over SABR

13



model is that it can incorporate negative rates without any further tweak or adjustment, allowing it

to be used consistently in both positive and negative interest rate regimes.

Figure 9 provides a comparison of SABR model and the DDSV model formulated in this paper.

Both models are able to match observed swaption market quotes closely. For the sake of comparison,

two dates are shown in this figure: the left panel show that during positive interest rate regime, both

modes fit the market implied lognormal volatility quotes well. However, the right panel show that

as we enter negative interest rate regime, SABR model is no longer able to calibrate due to negative

rates and strikes. Practitioners get around this issue by shifting all rates and strikes up by 3% before

calibrating the SABR model. On the other hand, the DDSV model can be directly calibrated to

market prices without any further adjustment.

4 Analysis of Hedging Performance

This section provides an exposition on the hedging performance of the swaption pricing models in

risk managing swaption portfolio. First, we describe how sensitivities to market movement (Greeks)

are quantified, and how the daily dollar P&L can be expressed in a risk-related P&L explanation

framework.

SABR model provide a closed-form expression for the Black volatility as a function of market and

model parameters, i.e. σSABR

(
α(σATM), F, K, β, ρ, ν, T

)
. At-the-money swaptions are very liquid,

and must be repriced exactly. It is therefore common among practitioners for the α parameter to

be fitted on-the-fly via a root solver to match the ATM volatility, rather than merely assigning more

weights to the ATM swaption in the calibration process. Here, σATM is the at-the-money volatility,

marked according to a specific backbone (CEV beta). The value of a swaption is valued as

V (F,K, σSABR, T ) = Black76Formula(F,K, σSABR, T )

As explained in previous sections, if the right volatility backbone is chosen, the bulk of the daily

P&L movement can be captured by interest rate delta, with vega capturing actual changes in the

volatility market. Further, skew and smile (ρ and ν sensitivites) are expected to be slowly varying.

14



The sensitivities of the SABR swaption prices are given by

IR Delta = ∆ =
dV

dF
=
∂V

∂F
+

∂V

∂σSABR

· ∂σSABR

∂F

IR Vega =
dV

σATM

=
∂V

∂σSABR

· ∂σSABR

∂α
· ∂α

∂σATM

IR Skew =
dV

dρ
=

∂V

∂σSABR

· ∂σSABR

∂ρ

IR Smile =
dV

dν
=

∂V

∂σSABR

· ∂σSABR

∂ν

Moving from one day to the next, suppose the SABR model parameters (α, ρ, and ν) are calibrated

on both days, the dollar P&L of a swaption position from one day (t − 1) to the next (t) can be

explained as

SABR P&L Explanationt =
dV

dF
×
(
Ft − Ft−1

)
+

dV

dσATM

×
(
σATM,t − σATM,t−1

)
+
dV

dρ
×
(
ρt − ρt−1

)
+
dV

dν
×
(
νt − νt−1

) (6)

The actual P&L, which can be readily calculated as the dollar price difference between the 2 days, is

given by

Vt = Vt−1 + SABR P&L Explanationt + εt,

where εt is the residual difference that cannot be captured by the hedging and P&L explanation

framework, which is expected to be negligible. Note that we can also include the theta (1-day time

decay) in the framework, though the contribution of this is generally minimal.

On the other hand, for the DDSV model, given that the pricing formula provides prices directly,

the derivatives (sensitivities) can be directly calculated:

IR Delta = ∆ =
dV

dF
, IR Vega =

dV

dσATM

, IR Skew =
dV

dβ
, IR Smile =

dV

dν
.

And the daily P&L can be explained as

DDSV P&L Explanation =
dV

dF
×
(
Ft − Ft−1

)
+

dV

dσATM

×
(
σt − σt−1

)
+
dV

dβ
×
(
βt − βt−1

)
+
dV

dν
×
(
νt − νt−1

)
.

(7)
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Note that in the DDSV model, the β parameter is used to capture both volatility skew and backbone.

In both Equation (6) and (7), the explanation is not expected to match exactly the actual dollar

P&L. The residual is typically quantified as “unexplained” P&L, though an efficient model for risk

management should be able to provide an accurate P&L breakdown with negligible εt. Figure 10

provides a comparison of hedging performance across different swaption pricing models. The top

panel shows the contributions of each risk to the overall P&L breakdown, calculated as the absolute

mean of each category. The bottom panel shows the dollar hedging error, defined as

Dollar Hedging Err =

∣∣∣∣∣∑
k

|exk| − |P&L|

∣∣∣∣∣ ,
where exk are delta, vega, skew (ρ or β), and smile (ν) contribution to daily P&L movements. The

optimal model should have the smallest hedging error. Our analysis show that the DDSV model with

the right backbone provides the smallest hedging error among all models investigated.

In order to provide a metric to quantify the “concentration” or “fragmentation” of the hedging

performance of the swaption pricing model in terms of P&L explanation, we borrow the concept of

the Herfindahl-Hirschman index. Originally designed as a measure commonly used in the industrial

organization literature to measure market concentration, this metric has since been adapted in other

fields for similar measures. For instance, Madhavan (2012) uses a volume Herfindahl-Hirschman index

definition to measure market fragmentation. Here, we define the hedging performance Herfindahl-

Hirschman index as a measure of concentration in P&L breakdown:

Hh =
∑
k

(
|exk|∑
k |exk|

)2

,

where exk carries similar meaning as the equation above. Note that unlike common definition, in

the context of P&L explanation it is necessary to take the absolute value in order to prevent ignoring

offsetting values of opposite signs. The Herfindahl-Hirschman index in our definition ranges from

0 to 1, which higher figures indicating higher concentration (less fragmentation) in P&L explanation,

which is a more desirable characteristics. Figure 11 compares the Herfindahl-Hirschman index across

different swaption pricing models. Again, we use a 3% shifted SABR model to handle negative rate

regime, while no further adjustment is necessary for the DDSV model. Given the right choice of β,

our calculations reveal that othe DDSV model is able to provide optimal hedging performance with

highest amount of concentration in P&L breakdown.
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5 Conclusions

The interest rate markets use OTC swaptions as the main interest rate volatility instrument. In

addition to hedging interest rate risk, traders also use swaptions to gain exposure, or to structure

more exotics products such as CMS payoffs, Bermudan swaptions, callable Libor exotics. Therefore,

efficient risk management of swaptions portfolio impacts the whole spectrum of interest rate volatility

products.

This paper focuses on the recent transition of interest rate regime from intermediate to negative,

and the behavior of volatility of daily rate movement. PCA analysis reveals that before the negative

interest rate regime (prior to March 2015), the first 3 PCs collectively account for 98.85% of the daily

changes in implied volatility curve. After moving into the negative interest rate regime (post March

2015), the first PC alone (parallel shift) accounts for in excess for 98% of the daily implied volatility

curve movement.

A closed-form analytical swaption pricing model capable handling negative rates in a consistent

manner is essential for swaption portfolio managers. In this work, we propose a displaced-diffusion

stochastic volatility model with closed-form expression. The displaced-diffusion dynamic is able to

handle negative rates with a lower bound. We show that the model is able to fit the market quotes

well, and is able to fit prices in negative interest rate regime without any further adjustment.

Building on the insights of Zhang and Fabozzi (2016), we set out a swaption portfolio risk man-

agement framework that accounts for variation in forward rates, implied volatilities, as well as the

shape of the implied volatility curve (skew and smile). SABR model is widely known to be able to fit

to market quotes extremely well, as long as the model parameters are calibrated frequently. When

the right backbone is chosen, the bulk of the daily P&L should be explained by IR delta, followed by

IR vega. Changes in skew and smile are expected to be slowly varying compared to rates movement.

If the incorrect backbone is chosen, daily calibration of SABR parameters will still ensure that we fit

the market well, and are able to capture the daily dollar P&L. However, the P&L breakdown will have

offsetting contribution from IR delta and IR vega, and also contribution from the changes in ρ and ν

in order to fit market prices. Given the right choice of volatility backbone, we show that the DDSV

model has optimal P&L breakdown performance. Our results provide important insights for swaption

portfolio manager in choosing the optimal model for risk management.
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Table I: Summary of Data Set

Expiries 20 1m, 2m, 3m, 6m, 9m, 1y, 18m, 2y, 3y, 4y, 5y, 6y, 7y, 8y, 9y, 10y, 15y, 20y, 25y, 30y

Tenors 15 1y, 2y, 3y, 4y, 5y, 6y, 7y, 8y, 9y, 10y, 15y, 20y, 25y, 30y

Moneyness 15 ATM, ±25bp, ±50bp, ±75bp, ±100bp, ±150bp, ±200bp, ±300bp
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Figure 1: EUR forward swap rates.
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Figure 2: Standard deviation vs forward swap rate level. As rates increase, the standard deviations (volatilities) decrease.
This is consistent with market observation — that β = 1 under high rates regime, and β = 0 under low rates regime.
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Figure 3: Skewness vs forward swap rate level. Empirical results show that as rates increase, the skewness also increases.
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Figure 4: Excess kurtosis vs forward swap rate level. Empirical results show that as rates increase, the kurtosis decreases.
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rate regime (right panel). SABR model can no longer be used once rates or strikes become negative. Market convention is to
shift the rates (and strikes) up by a fixed amount before calibration. On the other hand, negative rates are admissible in the
DDSV model, and it can be calibrated without any further tweaks or adjustments.
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Figure 10: Comparison of hedging performance across different swaption pricing models. Given that the period studied
includes negative interest rate regime, for SABR model we use a 3% shifted model in order to calibrate to swaption market
prices. The DDSV model, with the correct backbone, yields the smallest hedging error and the highest concentration in P&L
breakdown.
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Figure 11: The hedging Herfindahl-Hirschman index of different swaption pricing models. The index measures “concentra-
tion” of risk in P&L explanation. The index ranges from 0 to 1, with higher values indicating higher concentration in P&L
breakdown, which is more desirable. The DDSV with the right backbone is again shown to demonstrate superior hedging
performance.
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