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Abstract

Traffic congestion reduces productivity of individuals by in-
creasing time spent in traffic and also increases pollution. To
reduce traffic congestion by better handling dynamic traffic
patterns, recent work has focused on online traffic signal con-
trol. Typically, the objective in traffic signal control is to min-
imize expected delay over all vehicles given the uncertainty
associated with the vehicle turn movements at intersections.
In order to ensure responsiveness in decision making, a typ-
ical approach is to compute a schedule that minimizes the
delay for the expected scenario of vehicle movements instead
of minimizing expected delay over the feasible vehicle move-
ment scenarios. Such an approximation degrades schedule
quality with respect to expected delay as vehicle turn uncer-
tainty at intersections increases.

We introduce TUSERACT (TUrn-SamplE-based Real-time
trAffic signal ConTrol), an approach that minimizes expected
delay over samples of turn movement uncertainty of vehicles.
Specifically, our key contributions are: (a) By exploiting the
insight that vehicle turn movements do not change with traffic
signal control schedule, we provide a scalable constraint pro-
gram formulation to compute a schedule that minimizes ex-
pected delay across multiple vehicle movement samples for
a traffic signal; (b) a novel mechanism to coordinate multi-
ple traffic signals through vehicle turn movement samples;
and (c) a comprehensive experimental evaluation to demon-
strate the utility of TUSERACT over SURTRAC, a leading
approach for online traffic signal control which makes the
aforementioned approximation. Our approach provides sub-
stantially lower (up to 60%) mean expected delay relative to
SURTRAC with very few turn movement samples while pro-
viding real-time decision making on both real and synthetic
networks.

Introduction

Sub-optimal traffic signal control can significantly increase
traffic congestion (Chin et al. 2004) due to either: (i) Im-
proper allocation of green time to multiple traffic streams;
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ucation Academic Research Fund (AcRF) Tier 2 grant MOE2016-
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(i) lack of coordination between traffic lights; or (iii) inabil-
ity to respond to changing traffic patterns in real time. Im-
provements to traffic signal mechanisms can reduce traffic
congestion and therefore increase the effective capacity of
existing road networks. Computing an offline static sched-
ule (which indicates the green duration for competing traffic
streams at each traffic signal) is not viable, as such static
schedules cannot adapt to changing traffic patterns and can
result in situations where vehicles travelling in one direction
wait at a traffic signal even when there are no vehicles travel-
ling in other directions. Therefore, recent work has focussed
on online traffic signal control.

While online traffic signal control can be significantly
more useful, it is also a challenging problem because scal-
able, network-wide control must be achieved under limited
planning time, constantly changing traffic patterns, and real-
world uncertainty associated with vehicle turn movements
(Xie et al. 2014; Cai et al. 2009; Yu and Recker 2006).

Related Work: Owing to the practical benefits and the chal-
lenging nature of the underlying control problem, there have
been multiple threads of research dedicated to online traf-
fic signal control. First, we have the centralized traffic-
responsive signal control systems (Guilliard et al. 2016a;
Sims and Dobinson 1980; Robertson and Bretherton 1991;
Luyanda et al. 2003) that are adept at reducing network-wide
delays. However, they are not scalable since the scale of
problems increases exponentially with each additional traffic
intersection. Second, we have research (Sen and Head 1997,
Gartner, Pooran, and Andrews 2002) that has focused on de-
centralized adaptive traffic signal control mechanisms with-
out explicitly considering neighbouring intersections while
planning. However, such approaches are myopic and can
lead to traffic build ups across the network. Third, we
have methods based on multi-agent Reinforcement Learn-
ing (Bazzan 2005; Kuyer et al. 2008) and Deep Reinforce-
ment Learning (Li, Lv, and Wang 2016; Mousavi, Schukat,
and Howley 2017; Prabuchandran, AN, and Bhatnagar 2014;
Prashanth and Bhatnagar 2010; Shabestary and Abdulhai
2018; Wei et al. 2018), which are decentralized and also
coordinated with neighbouring intersections. Unfortunately,
RL based approaches have multiple issues which have pre-
vented deployment on real traffic lights: (1) Require elabo-



rate simulators (typically present in games) and millions of
simulations of traffic flows to learn good policies for a single
intersection; (2) As highlighted in Van der Pol and Oliehoek
(2016), Deep MARL approaches for traffic intersection con-
trol are not stable and may not converge to solutions. (3)
The number of simulations required grows exponentially in
number of agents. Papers in DeepRL have shown results on
networks with at most four intersections (Van der Pol and
Oliehoek 2016) and limited traffic.

Finally, we have SURTRAC (Scalable Urban Traffic Con-

trol) (Xie, Smith, and Barlow 2012; Xie et al. 2012), which
is a real-time, distributed, schedule-driven approach and a
leading approach for online traffic signal control. In this pa-
per, we primarily focus on experimental comparison against
SURTRAC since it provides a significant improvement over
traditional traffic signal control methods; scales up to net-
works close to an order of magnitude larger than the related
work discussed and has been deployed on real traffic signals
in Pittsburgh. Despite its scalability and effectiveness, SUR-
TRAC has two fundamental limitations: (1) Instead of mini-
mizing expected delay over possible turn movement scenar-
ios of vehicles, it minimizes delay for the expected scenario
of vehicular turn movements. (2) In order to ensure scal-
able coordination among traffic signals, only the expected
scenario of outgoing traffic is communicated to neighbour-
ing traffic signals. While these approximations ensure real-
time tractability, schedule quality with respect to expected
delay degrades as probability of vehicles taking turns at in-
tersections increases. Since our focus is on improving a fun-
damental approximation in SURTRAC, we choose its most
basic version (Xie, Smith, and Barlow 2012; Xie et al. 2012)
for comparison. Recent enhancements (Hu and Smith 2018;
Goldstein and Smith 2018) to SURTRAC are complemen-
tary to our approach.
Contributions: To address these key limitations, we intro-
duce TUSERACT (TUrn-SamplE-based Real-time trAffic
signal ConTrol), a turn-sample-driven distributed schedul-
ing approach to traffic signal control. TUSERACT (i) opti-
mizes expected delay over a small set of vehicle movement
scenarios and (i) communicates samples of projected out-
going traffic to neighbouring traffic signals. This is achieved
through a combination of two key contributions: (i) By ex-
ploiting the insight that vehicle turn movements are indepen-
dent of traffic control schedule, we provide a scalable con-
straint programming formulation that computes an expected
delay minimizing schedule over a few vehicle movement
samples. (ii) A novel communication mechanism between
traffic signals at neighbouring intersections that is based on
samples of vehicle turn movements.

On multiple benchmark problems considered in the liter-
ature and on a real network from Pittsburgh, we demonstrate
that TUSERACT is able to significantly outperform the lead-
ing approach for real-time traffic signal control, SURTRAC.
We were able to consistently reduce the expected delay un-
der varying traffic demand conditions.

Online Traffic Signal Control (OTSC)

Traffic signal control systems aim to give right-of-way to
competing streams of oncoming traffic at intersections so as

367

== Stop line
2 4 Entry approach

I 1111

¢ — — &
* — — ¢

L L h L
—Tlf——?r—ﬁ——ﬁ—

(b)

(a)

Figure 1: (a) An intersection with multiple entry and exit
approaches. Arrows indicate the direction of traffic flow. (b)
Phase design for a 4-phase intersection. Each arrow repre-
sents a turn movement, i.e., traffic flow from an entry road
to an exit road at the intersection. Turn movements that
can safely be given right-of-way simultaneously are grouped
into a phase.

to minimize network-wide vehicular expected delays. On-
line traffic signal control ensures adaptability to constantly
changing traffic patterns. In this section, we intuitively and
formally describe the key aspects (local context and relevant
non-local context) of the online traffic signal control prob-
lem at each traffic signal.

Intuitively, each traffic signal has to compute a sched-
ule for different competing traffic streams (referred to as
phases) based on its local context — operating constraints,
observed traffic and initial conditions — and relevant traffic
from neighbouring traffic signals. While there is observed
traffic information, there is uncertainty about whether each
vehicle will continue straight or take a turn at an intersection.
This uncertainty results in uncertainty about traffic in each
phase and consequently in uncertainty about delay along
each phase. Therefore, the goal is to compute a schedule that
minimizes expected delay in crossing the intersection given
uncertainty over turn movements of vehicular traffic.

Local Context — Operating Constraints, \;: Intuitively,

there are three parts to the operating constraints at an in-

tersection 7:

e First, we have the possible turn movements at a traffic sig-
nal or intersection.! Figure 1a provides an example of pos-
sible directions for traffic at an intersection. Formally, the
set of possible turn movements is represented using I';.

e Second, we have turn probabilities for different turns at
an intersection. Formally, p] represents the probability of
turn movement 7 € I';. p; and py, refers to the probabil-
ity distributions for all possible turns at an intersection ¢
and its neighbours NV, respectively.

e Finally, we have the set of phases, where each phase rep-
resents a set of non-conflicting turn movements as shown
in Figure 1b. The ordering of phases, the lower and upper
bounds on the green time for each phase, inter-green time
between phases are all critical operating constraints.
Formally, ¢; is the phase model for intersection i. ¢ is
an ordered set of phases that are cyclically given right-of-
way at the intersection. Each phase v is further character-
ized by the tuple (7, Gnin, Gimaz, Y ), where T C T'is

"We will refer to traffic signal and intersection synonymously.



the set of turns that have right-of-way during the phase,
Gmin and G4, are the lower and upper bounds on the
time for which 1 has right-of-way (green time), and Y is
the fixed inter-green time (informally, yellow time) that
must be applied after v, during which no phase has right-
of-way to ensure safety.

Local Context — Observed Traffic, §;: Observed traffic at
intersection ¢ along different phases is crucial for the de-
cisions on how much green time to allocate to each of the
phases. In this paper, § is represented in terms of vehicle
cluster sequences detected on the intersection’s different en-
try roads (Figure 1a).

Local Context — Initial Conditions, 09: Initial conditions
represent the initial conditions at the intersection at the de-
cision point, i.e., the phase that has right-of-way (or green
time) at the decision point and the time for which it has been
green (current phase duration). The initial conditions deter-
mine the extension feasibility of the current phase.
Relevant Non-Local Traffic, on,: The non-local traffic
conditions, primarily the traffic conditions at neighbouring
intersections, have an impact on the delay-minimizing traf-
fic signal plan computed at each intersection. §_; refers to
the traffic conditions at all other intersections in the network.
Formally, at a decision step, d_; is the non-local context of
relevance to ¢ and is communicated to ¢ from one or more
intersections in V' \ {i}, where V is the set of all intersec-
tions in the network. Since we are interested in scalable con-
trol, we assume that the non-local traffic at a decision step is
communicated to ¢ solely from its immediate neighbouring
intersections [V;.

OTSC Objective: At each intersection, given a planning
horizon, local context and non-local traffic conditions at a
decision point, the goal is to compute an expected delay-
minimizing traffic signal timing plan. Formally, a traffic sig-
nal timing plan computed at intersection ¢ specifies the du-
ration of each phase ¥ € ¢; in every cycle 7 of phases and
is represented as 7"

Due to turn probabilities (i.e., p;, pn;, ), there is uncertainty
about traffic reaching the intersection on each phase (i.e.,
about 6¥) and consequently there is uncertainty about the
delay, £. We compute a traffic signal timing plan, m; that
minimizes the expected delay for the vehicles approaching
the intersection:

minEy, 5y, [5(5?,...,51‘.@“1 | 51-,5N“>\1-,771-)} )

The computed traffic signal timing plan is then implemented

up to the next decision point, after which it is recomputed to

account for newly arrived traffic. Hence, it is an online traffic
control mechanism.

Here, we consider systems that simply make a termination
or extension decision for the current phase and then recom-
pute the plan at the next decision step:

e Termination: The current phase is terminated and the
next phase is given right-of-way for a minimum green
time after an appropriate yellow time.

e Extension: The current phase is extended for a duration
€ > 0.
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Figure 2: Manifestations of: (a) No uncertainty; (b) Intra-
phase uncertainty; (c) Intra- and inter-phase; uncertainty.

Like in previous work (Hu and Smith 2018), we assume
that minimizing expected delay over all traffic signals is
equivalent to minimizing expected delay at each individual
traffic signal subject to each individual traffic signal consid-
ering relevant traffic from neighbours.

TUrn-SamplE-based Real-time trAffic signal
ConTrol (TUSERACT)

In this section, we describe our key contribution, TUSER-
ACT that is an online approach for minimizing expected
delay in OTSC problems. In order to appropriately situate
our contribution, we first provide details of SURTRAC, a
state-of-the-art OTSC method that has been successfully de-
ployed to control traffic signals in Pittsburgh (Xie, Smith,
and Barlow 2012; Xie et al. 2012). To ensure scalability and
responsiveness (taking decisions within a few seconds), it
computes a schedule that minimizes the delay for expected
number of vehicles:

HTlran E(Em,pzvi [5?]7 ce 7Epi,pNi [(Symlil] | 0is (;Ni’ Ai Wi)
2)

Note that this objective considers delay, £ for expected traf-
fic in each of the phases, F,, ,,, [6¥] and hence differs from
the actual OTSC objective of minimizing expected delay
(see Equation 1). The key cause of the difference between
the two objectives is the uncertainty associated with vehicle
turn movements. This uncertainty manifests itself as:

e Intra-phase uncertainty: This arises when vehicles on an
entry edge can exit the intersection in the same phase, but
on to different exit edges, as shown in Figure 2b. This
impacts traffic outflows d, communicated by and to in-
tersection ¢.

e Intra- and inter-phase uncertainty: This arises when ve-
hicles on an entry edge can exit the intersection in multi-
ple, competing phases, as shown in Figure 2c. This has a
direct impact not only on d,, but also on per-phase traffic
flow estimation at intersection i, i.e., %.

TUSERACT is a distributed, schedule-driven approach
to traffic signal control that minimizes expected delay over
samples of the intra and inter-phase uncertainty.

The first key observation that we exploit in TUSERACT is

that turn uncertainty is independent of the traffic signal tim-

ing plan. That is to say, whether a vehicle turns at an inter-
section is typically not dependent on how long the vehicle



had to wait at a traffic signal. Turns are typically decided
beforehand.
Due to this independence of samples and traffic signal tim-
ing plan, we can employ a sample-based approach, where
(i) samples of traffic turn movements are generated before-
hand (based on the turn probabilities) and (ii) a traffic signal
timing plan that minimizes expected delay over the gener-
ated samples can be computed through optimization.
Formally, each realization/sample £ € Z; is represented

£=1{02¢),, 8”171 (e)}

where 6¥(¢) is the traffic along phase k at intersection i
according to realization &. Using Sample Average Approx-
imation (SAA) (Kleywegt, Shapiro, and Homem-de Mello
2002), we can approximate the expectation of delay over
intra- and inter-phase uncertainty by averaging delay across
multiple realizations of traffic flow along different phases.
This approximates the original stochastic optimization prob-
lem of Equation 1 as the following deterministic problem:

1
mlnm Z £(§ | 6i75Ni7Ai77T’i)

£eg;

3

The second key observation that we exploit in TUSERACT
is that this is primarily a scheduling problem with many
time interval variables (corresponding to green times asso-
ciated with the phases). To effectively exploit this observa-
tion, we employ a Constraint Program (CP) solver, instead
of a Mixed Integer Programming (MIP) solver, to solve the
above sample-based deterministic problem.

Overall, at each decision step, each intersection indepen-
dently samples turn movements for observed vehicles, clus-
ters them by proximity (Xie et al. 2012), computes a sig-
nal timing plan that minimizes the average delay across
these clustered samples, terminates or extends the current
phase according to the computed plan, and communicates
projected traffic outflow samples to neighbouring intersec-
tions. The key changes with respect to SURTRAC are (i) a
sampling-based objective function (i7) sampling-based com-
munication (iii) cluster division (preemptive scheduling).
We now describe the major components of our sample-based
constraint programming approach.

Constrained Optimization

As we described above, our approach to the scheduling prob-
lem under uncertainty is based on sample average approxi-
mation, where we aim to compute a signal timing plan that
minimizes the average delay across sampled traffic inflows.
We formulate this deterministic, sample-based scheduling
problem (Equation 3) as a constraint program, and solve it
using the IBM ILOG CP Optimizer. Specifically, we com-
pute a schedule for clusters of vehicles (as multiple vehicles
can be close to each other) and not for individual vehicles.
Inputs: The key inputs to the constraint program at inter-
section ¢ at a particular decision point are as follows:
=;: Each sample, ¢ € =; describes the incoming cluster se-
quence 6% (&) for each phase 1% € ¢, ordered by arrival
times at the intersection. Each cluster is represented as
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¢t (&) € 6F(€), and points to the clustered group of ve-
hicles at position ¢ in the sequence on phase k at inter-
section ¢ according to sample &. Each cluster has four at-
tributes: (i) number of vehicles in the cluster ({|cf, EDs
(ii) arrival time at the intersection stop line denoted by
a (&) (with af (€) > af " (€)): (iii) length of the clus-
ter denoted by lﬁ 4(&); and (iv) cluster composition (ar-
rival times and sampled exit edges for each vehicle in
the cluster) denoted by /', (£).

Planning horizon or number of cycles. A cycle represents
one complete sequence of all phases.

(M\i, On,): Refer to Section for the inputs from the underly-
ing Online Traffic Signal Control (OTSC) problem.

Decision Variables: We model our decision variables using
the notion of interval variables, which allow us to intuitively
model scheduling problems in terms of intervals of time. An
interval variable ¢ is an interval of time [start(c), end(r)).
length(c) is defined as end(t) — start(c). An interval vari-
able can be optional, i.e., it may or may not be present in the
solution. The key decision variables are as follows:

H

o Traffic signal timing plan: This represents the amount of
green time to be allocated for different phases. Wf ", rep-
resents the interval corresponding to phase k in cycle r for
intersection .

e Qutgoing cluster intervals: Each cluster of vehicles could
potentially leave an intersection in multiple different
phases and different cycles. This set of interval variables
captures these outgoing fragments of a cluster. Specifi-
cally, O (¢), represents the fragment of cluster cf, (6

schedulé’ in cycle r (if any). We assume that clusters are
divisible and that fragments of a cluster may be sched-
uled in any cycle. start(Oﬁ » (€)) represents the time at

which the cluster fragment starts leaving the intersection
by crossing the stop line. The absence of Oﬁ "qr(f ) implies
that no fragment of cﬁ o is scheduled in cycle r.

Constraints: We now describe intuitively and formally the
main constraints that are required to compute an optimal
traffic signal control plan. The computed signal timing plan
m; and outgoing cluster departures are constrained by the
the initial conditions at the decision point, the observed traf-
fic inflow, and the distributed traffic signal control inputs.
The constraints are summarized formally in Table 1 and are
intuitively described below:

Phase duration: The duration of each phase is constrained
by a minimum green and a maximum green time prede-
fined by the operating constraints of the traffic signal.

Phase order: In each cycle, the phases ¢; must be given
right-of-way in a fixed order per the operating con-
straints of the traffic signal, and a fixed intergreen time
must be applied between consecutive phases.

Cycle order: The cycles occur in a fixed order, and a fixed
inter-green time is applied between consecutive cycles.

Cluster fragment length: We assume that clusters are divis-
ible, and that fragments of a single cluster can be sched-
uled in different cycles. To ensure correct scheduling of
the fragments we have two constraints. The first ensures



Table 1: Constraint Program, TUSERACT

Name Constraint

Phase duration length(z?") e [GE . GE ] v,k € ¢;
Phase order start(rF") = end(xFHT) 4 YR1 vk € ¢y k # 1,7
Cycle order start(rl") = end(xl® ) 4y 1ol Vr#1

Cluster fragment length
Cluster fragment length
Fragment departure
Fragment departure

length(Oﬁ’;(@) € [Llfq(g)}
>, length(Oi’i"qr(f)) =1F, (9
start(Of_”J(f)) > aﬁq(g)

start(OL) (€)) > start(x}™")

VE € B, vk € ¢iryq
VE € B, 98 € diyriq

VEe =,k rq
VE € B, 08 € iy

Fragment departure end(Oﬁ L) < end (7"

Cluster precedence

Cluster precedence end(Ofgfl(f)) < start(Oﬁ )
1

Initial conditions

presenceOf(OﬁbT(g)) - not(presenceO f(OF (€))
k#£0,rr"e{r+1,r+2,...},q

start(m;" ) =t—g ; end(ﬂ'?’l) >t

V§ € Eﬂwk € ¢i7r7q
ig—1 Vf €z
(i.e. v’ is a succeeding cycle)

v€€Eia¢k €¢i7q7é07r

that length of each fragment of a cluster is constrained
by the length of the cluster. The second ensures that each
cluster completely leaves the intersection in all cycles.
Fragment departure: There are three constraints related to
fragment departure. First, outgoing clusters can be
scheduled to exit the intersection only after they arrive
at the stop line: Second and third constraints ensure that

if fragment Oﬁg(f) is scheduled, it is scheduled in the

appropriate phase wf " with respect to its start and end
times.

Cluster precedence: A cluster can be scheduled only after
the previous cluster in the same phase has completely
exited the intersection. This is achieved through two con-
straints.

Initial conditions: The current phase ¥° at decision time ¢
determines the feasibility of extension of the current sig-
nal timing plan. We formulate this by constraining the
start and end times of ¢/° in the current cycle r = 1.

Objective: We compute a single signal timing plan 7; that
minimizes the cumulative waiting time across the vehicles
in all the inflow samples using 4.

Delay incurred by cluster fragment Of_‘qr €3]

min 3 [ (start(oﬁg'(g))—aﬁq(@) x

&k
. Of’rf

O x W | @
—_————

Number of vehicles in fragment Of; €3]

Sample-Based Communication

Our approach to signal control involves intersections inde-
pendently receiving non-local traffic information to extend
their observation horizons, computing signal timing plans
for traffic in these extended horizons, and in turn commu-
nicating projected traffic outflow samples to neighbouring
intersections to expand their observation horizons. Limit-
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ing communication to immediate neighbours makes the ap-
proach scalable to large road networks. At each intersection
1, our approach involves six key steps:

(i) Receive samples of non-local vehicle arrival times along
each incoming edge; (if) Append each sample of non-local
vehicle arrival times to the estimated arrival distribution of
locally observed vehicles to create extended observations;
(iii) Sample exit edges for vehicles in each extended obser-
vation and cluster them by proximity to create samples of
incoming clusters =;; (iv) Compute a delay-minimizing sig-
nal timing plan 7; using =; and operating constraints, \;;
(v) Estimate vehicle departure times for each sample £ € =;
using 7;; (vi) Communicate these departure time samples to
the appropriate neighbours /V; along the sampled exit edges.

Experimental Setup

We implement and evaluate two versions of TUSERACT
— an uncoordinated TUSERACT version without commu-
nication between neighbouring intersections (UTuS) and a
coordinated TUSERACT version with communication be-
tween neighbouring intersections (CTuS). We use our re-
implementations of two versions of SURTRAC as baselines
— uncoordinated SURTRAC without communication among
neighbours (USUR) (Xie et al. 2012) and coordinated SUR-
TRAC with communication between neighbours (CSUR)
(Xie, Smith, and Barlow 2012).

We evaluate our approach on a variety of synthetic road
networks adapted from the literature (Xie et al. 2012;
Xie, Smith, and Barlow 2012) in increasing order of net-
work complexity: (1) isolated intersection; (2) arterial net-
work; and (3) 5x5 grid network. We modify the original net-
works to allow vehicle turning. We vary road lengths (ob-
servation horizon) and phase designs across the synthetic
networks in order to evaluate our approach in a variety of
scenarios (Table 2). We also evaluate our approach by sim-
ulating traffic movements on a real road network in Pitts-
burgh adapted from (Smith et al. 2013). We import a free
street-level map from OpenStreetMap and modify it to ob-
tain the nine-intersection network used in the paper. We keep
the road lengths (observation horizon) and phase design un-



Table 2: Configurations of traffic networks used for performance evaluation. Network maps (Figures 3a, 4a, 5a, 6a) indicate

road lengths, allowed turns and phase designs.

Isolated 1x5 grid 5x5 grid Real Network
Phase 4-phase 3-phase, 4-phase, 4-phase
designs 2-phase 2-phase
Road 300 250 25,75, 150 Between 36.66 and 168.60
lengths (m) with an average of 82.37
Observation 30 25 2.5,75,15 Between 3.66 and 16.86
horizon (sec) with an average of 8.23
Turn {0.6-0.2-0.2} {0.65-0.15-0.20, {0.65-0.15-0.20, {0-0.8-0.2, 0.2-0.8-0,
probabilities 1-0-0, 1-0-0, 0.8-0.2-0} 0.2-0.6-0.2, 1-0-0,
(through, 0.8-0-0.2} 0-1-0}
left,right)
Demand {900, 1350, 1800} {900, 1200, 1500} {4000, 5000, 6000} {5200, 7800, 9600}
levels (vph)
Horizon - 20 15 15
extension (sec)
900 vehicles/hour 1350 vehicles/hour 1800 vehicles/hour
- S — Ea
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Figure 3: Isolated Intersection: (a) Setup; (b) Demand flow profile; and (c) Performance gain achieved by UTuS over USUR for

various sample counts and demand levels

changed across the network to simulate real world condi-
tions. We allow vehicle turns according to the routes used in
the performance analysis in (Smith et al. 2013). Since our
approach is decentralized and communication occurs only
between immediate neighbours, adding intersections to the
network without an increase in width (maximum number of
neighbouring nodes) does affect the performance of our ap-
proach. We have considered the worst-case real-world sce-
nario of a maximum of four neighbours in our 5x5 network.

We use the IBM ILOG CP Optimizer (single thread, 5s
solver compute time limit) to solve the sample-based con-
straint program at every decision point. Mean vehicle de-
lay or waiting time is used as an indicator of solution qual-
ity. Similar to previous work, all simulations are run on
SUMO (Behrisch et al. 2011), an open source traffic sim-
ulation package. For each network, we define a traffic de-
mand profile that specifies how the total traffic demand is
distributed over the input edges in the network over time.
For each network, we run simulations on low, medium, and
high traffic demand levels (in vehicles/hour or vph, 20 test
instances per demand level unless specified). Traffic is gen-
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erated for 15 minutes and the problem horizon extended till
all vehicles have cleared the network as is done by Guil-
liard et al. (2016b). We evaluate TUSERACT on each test
instance with 5 independent and identically distributed sam-
ple sets. For each sample set, we run TUSERACT with {1,
5, 10,20, 30} samples. This amounts to 100 runs of TUSER-
ACT for each demand level and sample count. We generate
samples offline to study the effect of adding additional sam-
ples to an existing sample set. In practice, vehicle turns are
sampled online at each decision step.

Following Xie et al. (2012), we assume that vehicles
travel at the constant speed of 10 m/s and queued vehicles
are discharged after a startup lost time of 3.5s. All vehi-
cles are 5m long. Vehicles arriving at the intersection within
the same second are clustered together and a threshold of 3s
is used to further aggregate clusters by proximity. For each
phase, we set G™" to 5s, G to 55s and Y to 5s. The
time resolution used by our implementation of SURTRAC
is 0.5s while that used by TUSERACT is 1s. An optimiza-
tion horizon of 3 cycles is used to limit schedules computed
by TUSERACT. Our solver is limited to taking 5 seconds
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Figure 4: Arterial Network: (a) Setup; (b) Demand flow profile; and (c) Absolute delays for coordinated and uncoordinated
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Figure 5: 5x5 Grid Network: (a) Setup: Shaded circles represent 4-phase intersections where through, left and right turns are
permissible on all roads; other intersections are 2-phase intersections; and additional turn movements are shown alongside the
respective roads; (b) Demand flow profile; and (c) Absolute delays for coordinated and uncoordinated SUR and TuS10 for

various demand levels.

which is slightly more than SURTRAC. We can improve this
by trading off samples for an increase in delay and by using
commercial processors. For both approaches and all simula-
tions:

e Vehicles are detected exactly along the full observation

horizon without detection error.

Turn proportions remain static and are known exactly by
each intersection. In practice, these are estimated online
as moving averages but this would not require any modi-
fication to our approach.

Planning and communication times are counted outside
the simulation. We make this simplifying assumption to
focus solely on the solution quality of the two approaches.
We acknowledge the trade-off between solution quality
and real-time tractability in the context of both the ap-
proaches, but do not aim to address it in this paper. Here,
we investigate whether a sampling-based approach can re-
duce waiting times when planning under turn uncertainty.
To ensure that non-sampling-related enhancements (cluster
division, maximum green time constraint) do not provide a
significant performance improvement by themselves, we ran
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TUSERACT with a single expected traffic sample as used
by SURTRAC for varying traffic conditions on an isolated
intersection. Non-sampling enhancements did not provide a
significant advantage (at best 7.77%) and in low-traffic sce-
narios gave worse results than SURTRAC.

Experimental Results

Isolated Intersection (Figure 3). Figure 3c shows the per-
centage change in mean waiting time of UTUS relative to
USUR for our three demand levels of 900, 1350, and 1800
vehicles per hour (vph). For each demand level, the figure
shows the improvements of UTUS with varying number of
samples. We make the following observations:

e UTuS results in significantly lower (40% on average)
mean vehicle waiting times with respect to USUR across
all demand levels.

The number of samples required to produce this substan-
tial improvement is small. Using 5 or more samples con-
sistently provides a 35-45% reduction in delay across all
demand levels.

Increasing the sample count beyond 10 results in a perfor-
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Figure 6: Real-world Network: (a) Road network with 9 intersections in the East Liberty neighbourhood of Pittsburgh, Penn-
sylvania. Setup: All intersections are 4-phase; for shaded intersection: through, left and right turns are permissible; for other
intersections: allowed turn movements are shown alongside the respective roads; (b) Demand flow profile; and (c) Absolute
delays for coordinated SUR, TuS5 and TuS10 for various demand levels. Each boxplot includes data from 10 independent test

instances.

mance drop for higher demand levels due to the tougher
computational challenge posed to UTuS. To verify that
this degradation is due to insufficient compute time, we
ran simulations with a solver time limit of 30 seconds.
The increased compute time indeed results in higher per-
formance gains (~45%) even for high demand (1800 vph)
and high sample counts {20, 30}.

Arterial Network (Figure 4). This network tests our ap-
proach in a scenario with low uncertainties. To allow com-
parison between coordinated and uncoordinated versions of
SURTRAC and TUSERACT we plot absolute delays. For
brevity, we report results for TUSERACT with 10 samples
only. We observe that TUSERACT is able to perform at
par with SURTRAC and even reduce mean waiting times
(by 10-40%) in scenarios with low uncertainty. However,
for both approaches, coordinated approaches do not signifi-
cantly outperform uncoordinated approaches. This could be
due to the fact that: (i) The observation horizon is suffi-
ciently long and non-local information does not provide sig-
nificant advantage during planning, and (ii) the bottleneck
intersection causes queue spillover that propagates to neigh-
bouring intersections. Xie, Smith, and Barlow (2012) pro-
poses a spillover prevention strategy, which we plan to ex-
plore as part of future work.

5x5 Grid Network (Figure 5). Since the intersections are
closely placed (as in a typical urban network), this scenario
represents a situation that could benefit from coordinated
planning. At 10 samples, UTuS provides a 7-17% reduc-
tion in delay over USUR and CTuS provides a 19-40% delay
over CSUR. We also observe that the performance gains can
be significantly improved (up to a consistent 40-50%) by
using a previously computed signal timing plan as a start-
ing solution to guide CP search at the current decision step
(additional details in the supplementary material). We note
that the coordinated approaches significantly reduce delays
relative to uncoordinated approaches as any observation be-
yond the short local observation horizon is advantageous.
In experiments with non-local observation, we note that in-
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creasing the non-local observation length from 5s to 30s for
TUSERACT can reduce delays by as much as 20%.
Real-world Scenario (Figure 6). The road network is a tri-
angular grid with nine intersections. The three major roads
have bidirectional traffic flow along with incoming traf-
fic from minor roads. Distances between the intersections
range between 36.66 to 168.60 meters, with an average of
82.37 meters, requiring tight coordination between the in-
tersections. The demand levels are selected to simulate non-
congested, moderately-congested and highly-congested traf-
fic conditions. At 5 and 10 samples we observe that CTuS
reduces mean waiting times by 27-39% over CSUR, while
UTuS provides 16-20% less delay over USUR. To allow
comparison between CSUR and CTuS we plot the absolute
delays. We focus on the coordinated versions of SURTRAC
and TUSERACT, since the coordination between neighbour-
ing intersection reduces delay.

Conclusions

In this paper, we propose a sampling-based approach to traf-
fic signal control in the presence of vehicle turn-induced un-
certainty. We show experimentally that our approach pro-
vides significant reductions in delay over SURTRAC, which
makes an approximation to solve the turn-induced stochastic
optimization problem in order to remain real-time tractable.
This performance improvement can be achieved with very
few samples (<10) and in reasonable time (5s). We did a
thorough set of experiments to evaluate the performance
of TUSERACT on low, medium and high complexity net-
works over numerous parameter settings. Our results show
that sampling is a promising approach to tackle uncertainty
in this domain and we obtained up to 60% reduction in delay
over the leading approach for online traffic signal control.
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