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Abstract—Sometimes a security-critical decision must be made
using information provided by peers. Think of routing messages,
user reports, sensor data, navigational information, blockchain
updates. Attackers manifest as peers that strategically report
fake information. Trust models use the provided information,
and attempt to suggest the correct decision. A model that
appears accurate by empirical evaluation of attacks may still be
susceptible to manipulation. For a security-critical decision, it is
important to take the entire attack space into account. Therefore,
we define the property of robustness: the probability of deciding
correctly, regardless of what information attackers provide. We
introduce the notion of realisations of honesty, which allow us
to bypass reasoning about specific feedback. We present two
schemes that are optimally robust under the right assumptions.
The “majority-rule” principle is a special case of the other scheme
which is more general, named “most plausible realisations”.

Index Terms—Provable robustness, malicious reporting, trust-
based security.

I. INTRODUCTION

On the internet, users or agents encounter situations where

they need to make decisions without sufficient direct expe-

rience or observations, e.g., deciding whether to install an

app. Feedback from peers helps enrich their knowledge about

the subject and make better decisions. For example, rating

system of an app store enables its users to share comments

about whether an app crashes, whether its user interface is

friendly, and whether it respects privacy, etc. In trust-based

secure routing, reports about the reliability of a node from

witnesses can be referred to decide whether to choose it as

the next hop [1]. Moreover, sharing security information e.g.,

indicators, malware reports, threat intelligence reports allows

users or organisations to learn from the experience of others

and seek advice, thereby improving their security posture [2],

[3].

The crucial commonality between these scenarios, is the

possibility of a malicious source (attacker) reporting fake feed-

back, potentially causing misguided decisions. For example,

some accounts of an app store may be bribed or compromised

to provide fake positive review to an app. Malicious feedback

This work is supported by the UK Engineering and Physical Sciences
Research Council (EPSRC) grant EP/R01034X/1 and by the Ministry of
Education, Singapore, grant MOE2016-T2-2-123.† These authors contributed equally.

will put a system under threat, when they are used for security-

critical decision making. Consider trust-based routing, wrong

routing messages may cause packets to be transferred to a

compromised node.

The issue of how to use potentially malicious feedback

is well-studied. One way to deal with inaccurate feedback

sources is to develop a trust system/model, and simulate its

accuracy. Another way is to implement and use such a system,

and determine the accuracy empirically. Both simulated and

empirical models base their analysis on the existing types of

malicious strategies employed by attackers. An alternative is to

use game theory to reason about malicious behaviour before it

is observed. Typically, systems are set up to punish malicious

behaviour and reward honest behaviour. Finally, it is possible

to apply formal reasoning to find the conditions under which

decisions are good or bad. Typical examples would be: “if

attackers control less than 50% of the resources”, or “if the

trusted third party is not compromised”.

Simulated/empirical models cannot predict what happens if

attackers change their behaviour; they are reactive. Although

incentive-based approaches are proactive regarding attacker

behaviour, they assume that the attack goals are set in stone.

Given a new utility function, a certain type of malicious

behaviour may now have a positive pay-off, despite there

being a punishment. It is desirable to consider the entire

attack space. The issue with condition-based models is that all

the guarantees are merely conditional, and we do not know

whether the conditions are actually met. Our approach is a

generalisation of the condition-based models: although we

may not know whether the conditions are met, there may be an

overwhelming probability that they are. We focus on proving

when there is an overwhelming probability that the conditions

for making a good decision are met.

We model feedback-based decision making as a function,

with the input being a set of reported data (feedback), and

the output being a choice of a belief or an action. Once

we know which option is true, the corresponding decision is

clear. Consider an example of deciding whether to install a

software based on its security property, feedback set includes

two options: “is malware” and “not malware”. Based on the

knowledge about the reporters, if the scheme trusts the first

option, then the action “not install” is selected. Honest sources
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report the true option, while malicious sources (attackers)

report strategically – with an unknown strategy. Each source

has a certain probability of being honest. As we want to be

proactive regarding malicious behaviour, we may not assume

what strategies an attacker would take, but consider the entire

attack space in a given decision making context. And we

allow attackers to know the decision scheme considering that

to rely on secrecy is a poor practice for security (e.g. NIST

recommends against this in systems security [4]).

There are several properties that we aim to achieve for a

decision scheme. The most important property we define is

ε-robustness, meaning that the probability that the scheme

decides correctly is at least 1 − ε, no matter what feedback

attackers provide. Another property is optimality, meaning

that no other decision scheme has better robustness. The final

property is monotonicity, meaning that robustness does not

decrease if we use more feedback sources. We prove that the

simple “follow majority” decision scheme is robust, monotonic

and optimal, if all feedback sources are equally probable to be

honest (e.g. all strangers). For the more interesting case, where

sources are not equal, we propose a new decision scheme

(“most plausible realisations”), and prove that it is robust,

monotonic and optimal too. Trust evaluation can be used to

estimate the probability of a source being malicious, but these

estimates may be inaccurate or biased. We use simulations

to investigate how actual attacks relate to the notion of

manipulation. The simulations also show that our results are

not very sensitive to the quality of the estimates. Finally,

we discuss how to build upon our results to move towards

applications where our assumptions need to be adapted.

II. SECURE DECISIONS BASED ON FEEDBACK

The goal of this paper is to introduce a general method-

ology to make decisions that are almost certainly correct, in

the existence of malicious feedback sources (attackers). The

attackers try to manipulate our decisions. If the probability that

the attacker successfully manipulates us is less than ε, then we

achieved ε-robustness. Our decision, therefore, is correct with

probability 1 − ε, despite manipulation attempts. We do not

assume specific attacker strategy (such as rational attackers,

or attackers that follow a particular template), but allow them

total freedom to select their manipulative feedback.

A. Model

We aim to introduce a general methodology to approach

feedback in a way that allows resistance to manipulation by

design. Of course, in a situation where all sources of feedback

are malicious, one can be manipulated. However, the probabil-

ity of this situation occurring is typically increasingly small as

more sources are used. On the other hand, it is possible that all

sources of feedback are honest, in which case no manipulation

can occur. The probability of this situation is also increasingly

small with more sources. It gets interesting when some sources

are malicious and some are honest. In those situations, whether

or not manipulation can occur depends on the way decisions

are made. In this section, we introduce the concepts required

to reason about decisions and manipulation.

Decisions are made using a decision scheme. A decision

scheme is a function that outputs a decision based on the

received feedback. The feedback comes in the form of a

discrete value (called an option) selected by a source1 in a

given set. Formally:

Definition 1 (Decision Scheme).
– There is a set of sources S = {0, . . . ,m− 1}.
– There is a set of feedback options O = {0, . . . , n− 1}.
– There is a set of decisions Q = {0, . . . , ν−1}. Only one

decision is correct in a decision making task.
– Feedback f ∈ F is an m-tuple: f = (f0, . . . , fm−1),

where fs represents the feedback option reported by
source s : s ∈ S and fs ∈ O.

– A decision scheme is a function D : F → Q.

A decision scheme works in a specific context, which is

defined by S,O,Q. For different contexts, a system will need

to select which decision scheme is appropriate. For example,

given O,Q, two schemes are required for m = 10 and m =
100. A decision mechanism selects an appropriate decision

scheme, based on context.

Informally, manipulation is when malicious sources select

their feedback to ensure that D(f) results in the incorrect

decision. The malicious sources are aware of what our decision

scheme is, and if we alter D , then they change their feedback

accordingly. Say D(0, 1, 0) = 0 and D(0, 1, 1) = 1, and

we receive (f0, f1, f2) = (0, 1, 0). If the third source is

malicious and 0 is the correct decision, he would provide the

feedback 1, and vice versa. So if we receive (0, 1, 0), then

the correct decision is 1 and if we receive (0, 1, 1) then it’s

0. Unfortunately, if we change D so that D(0, 1, 0) = 1 and

D(0, 1, 1) = 0 to reflect this, then the attacker responds by

swapping his feedback around. Hence, basing the decision

scheme on the feedback is problematic, as the feedback (of

attackers) depends on the decision scheme. We introduce the

notion of realisations, allowing us not to reason explicitly

about feedback, bypassing this issue altogether.

When receiving feedback, some of the sources providing it

will have been honest, and others malicious. Informally, this

is what a realisation is. Formally:

Definition 2 (Realisation). A realisation r ⊆ S is the set of
sources that are honest.
The set of all realisations R is the powerset of sources 2S .
The complement of a realisation is: r = S \ r.

A realisation indicates which sources are honest and which

are not. We use the phrase “under realisation r” to mean

“assume all s ∈ r are honest and all s ∈ r are malicious”.

Of course, when receiving feedback from sources, the

recipient does not know the realisation (as the recipient does

1We use the abstract term “source”, since it does not matter for our
purposes whether or not the source is a person, an agent, a sensor, a device.
As long as it provides manipulative data if it is (controlled by) an attacker,
but useful information if it is not.
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not know who is honest or malicious). But, depending on how

the recipient makes decisions, he is open to manipulation in

some realisations, but cannot be manipulated in others. Of

course, some ways of making decisions are superior to others

as they allow manipulation less often. Our goal is to make

decisions in such a way that it is improbable to be manipulable.

This is helpful for security critical decisions.

If a source s is honest under the realisation (s ∈ r), then

s does not try to manipulate the decision scheme. What s
reports (fs), does not depend on the decision scheme being

used and is not affected by attackers’ choices. We call this

the weak assumption of honesty. If s is not honest, then he

is an attacker. Attackers are aware of the decision scheme,

hence able to pick fs depending on which decision scheme

is used. This means that s can provide any feedback (true or

false) in O. If there are multiple attackers under the realisation,

then their feedback may contain diverse options, of which all

combinations must be considered. We call the set of all the

possible feedback given a realisation the attack space (of the

realisation).

Intuitively, feedback from honest sources should lead to the

correct decision. In this paper, we make a stronger simplifying

assumption, namely that there is a one-to-one correspondence

between which decision is correct, and which feedback honest

sources provide. This means that feedback of honest sources

are the same and it maps to the correct decision. We call this

the strong assumption of honesty. To simplify notation, we

can use equality to model the one-to-one correspondence, and

claim that the feedback that an honest source provides is the

correct decision. Accordingly, we have O = Q.

Under the strong assumption of honesty, given a realisation

r and c ∈ Q as the correct decision, we can only receive

feedback f where every s ∈ r reports c (i.e. fs = c). The

malicious sources, however, are not restricted and can provide

any feedback in O. We refer to this as the attack space:

Definition 3 (Attack Space). The attack space is a function
a : Q×R → F . If the correct decision is c and the realisation
is r, then a(c, r) = {f ∈ F|∀s∈r(fs = c)} is the set of all the
possible feedback we could receive.

Being non-manipulable under a realisation means that no

matter what feedback the attackers report, the decision scheme

always decides correctly.

Definition 4 (Non-Manipulability). A decision scheme D
is considered non-manipulable under a realisation r when:
∀c ∈ Q and ∀f ∈ a(c, r), D(f) = c.

If a scheme D is non-manipulable under r, then we say r
is non-manipulable for D . The set D̂ is the set of all non-

manipulable realisations for D .

Reasoning backwards, we may wonder whether for a set

of realisations R ⊆ R, it is possible to have a decision

scheme which is non-manipulable under all realisations r ∈ R.

Unfortunately, being non-manipulable in all realisations R is

impossible. For example, the realisation where all the sources

are malicious (r = ∅) is always manipulable. We define that

a set of realizations R is attainable, if there exists a D for

which all r ∈ R are non-manipulable.

Definition 5 (Attainable). A set of non-manipulable realisa-
tions R ⊆ R is attainable: A(R) if and only if there exists a
decision scheme D such that R ⊆ D̂ .

As it turns out, whether or not a set of realisations is

attainable is characterised by a simple predicate, not involving

actual decision schemes or feedback. This characterisation is

the basis of our claim that we do not need to focus on actual

feedback. A set of realisations is attainable, if and only if every

pair of realisations shares at least one source:

Theorem 1. A(R) if and only if ∀r1,r2∈R(r1 ∩ r2 �= ∅).
Proof. To see that ∀r1∈R,r2∈R(r1 ∩ r2 �= ∅) is a necessary

condition for A(R), assume that r1 and r2 are disjoint. Select

f s.t. ∃s : s ∈ r1 ∧ fs = c1. Since s �∈ r2, f ∈ a(c1, r1) and

f ∈ a(c2, r2). Either D(f) �= c2 or D(f) �= c1.

We show that ∀r1∈R,r2∈R(r1 ∩ r2 �= ∅) is a sufficient

condition for A(R) by constructing a decision scheme D so

that R ⊆ D̂ . If possible, pick D so that D(f) = x, when

there exists a realisation r ∈ R such that for all sources s ∈ r,

fs = x. If there are multiple realisations r1 and r2 where

for all sources s ∈ r1, fs = x and for all t ∈ r2, ft = y,

then x = y, since r1 and r2 share at least one source. So

our choice of D has at most one value x per f , such that we

require D(f) = x, and thus D exists.

Theorem 1 implies that a realization and its complement

cannot coexist in an attainable set of realizations. An impor-

tant corollary follows this observation, which states that the

maximum size of an attainable set of realisations is half of the

total possible realisations.

Corollary 1. If A(R), then |R| ≤ 1/2|R|.
Proof. Theorem 1, that r and r cannot both be in R. At most,

R = 1/2|R|, with R\R being the set of its complements.

In conclusion, our approach focuses on the possible reali-

sations (honesty states of sources), rather than on the actual

feedback. This allows us to reason more clearly about the

attack spaces in different scenarios. Using the assumption that

there is a bijection between honest feedback and correct deci-

sions, we were able to further specify the model. Importantly,

we show that by appropriately selecting the realisations under

which we wish to be non-manipulable, we know a decision

scheme exists where we indeed are non-manipulable under

these realis-ations. Immediate corollaries are the fact that at

most half the realisations allow us to be non-manipulable, and

that only either one realisation or its complement can be non-

manipulable.

B. Probability

Corollary 1 proves that given an arbitrary set of sources,

at least half of the realisations are manipulable, hence the

possibility that an arbitrary decision scheme gets manipulated

always exists. However, it may be the case that manipulable
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realisations are improbable. We can define the probabilistic

notion of ε-robustness to capture the idea that the probability

of being under a manipulable realisation, is at most ε. To do

so, we introduce probability in this section.

Being manipulated means making incorrect decisions based

on feedback. To achieve a notion of robustness, we have to

consider the entire attack space of a given set of malicious

sources. We cannot make assumptions about the probability

distribution of the feedback that attackers provide.

Below, we introduce a way to compute the probability of

deciding incorrectly for a given decision making task, named

as error rate. First, let variable C model what the correct

decision is. The outcomes of C are from the set Q: c ∈ Q.

Let random variable R model the realisation we are under, and

previously defined r ∈ R is its outcome. Let random variable

I be the decision. Based on the law of total probability, error

rate: p(I�=c | C=c) =
∑

r∈R p(R = r | C = c) · p(I �=
c | R = r, C = c). Whether a source is honest or not does

not depend on C. Hence, p(R = r | C = c) = p(R = r).
Define the distribution Δ on R s.t. Δ(r) = P (R = r). The

distribution Δ provides a context to the sources, by defining

how probable it is that certain sources are honest.

The decision I is defined by the decision scheme when

provided with feedback. Let random variable F denote the

received feedback, and f : f ∈ F is its outcome. Given

realisation r and the correct decision c, all possible feedback

is in the attack space a(c, r), which is the support of F.

The decision I equals D(f), and p(I �= c | F = f) = 1
iff D(f) �= c. Hence: p(I �= c | R = r, C = c) =∑

f∈a(c,r)∧D(f)�=c p(F = f | R = r, C = c).
We use a shorthand notation to describe the probability

distribution of feedback in an attack space: β(r, c)(f) = p(F =
f |R = r, C = c). Since honest sources only report the correct

decision under the strong assumption, the distribution β(r, c)
is purely determined by attackers. Different β(r, c) describes

different strategy of attackers within the space a(c, r). And

p(I �= c | R = r, C = c) =
∑

f∈a(c,r)∧D(f)�=c β(r, c)(f).
With Δ and β, we can derive a general formula of error

rate Err(D ,Δ, β) = p(I �= c | C = c):

Err(D ,Δ, β) =
∑
r∈R

∑
f∈a(c,r)∧D(f)�=c

Δ(r) · β(r, c)(f) (1)

Note, when Δ and D are given, the error rate is in control of

attackers, specifically purely determined by β. Next, we study

three properties of a decision scheme in terms of its error rate.

C. Properties

The three properties that we are interested in studying are

robustness, optimality and monotonicity. A decision scheme

that is robust, optimal and monotonic has the highest proba-

bility of not being manipulated and does not degrade in quality

unexpectedly. These are the properties we require for secure-

decision making. Note that the focus on these three properties

does mean that we do not always obtain the same degree of

accuracy in some scenarios.

Robustness means resistance to being manipulated. We do

not want to assume any strategy for providing feedback to de-

fine robustness. Instead, we consider all possible distributions

within the relevant attack spaces. Robustness in a context Δ
is then determined by the maximal error rate:

E(D) = maxβ (Err(D ,Δ, β)) (2)

We can now define robustness:

Definition 6 (ε-robustness). Given a value ε, a set of sources
S and a distribution Δ of realisations, a decision scheme is
ε-robust when for all distributions β of feedback:

Err(D ,Δ, β) ≤ ε.

Equivalently, we can say E(D) ≤ ε. However, an even

simpler computation of robustness – that only reasons about

realisations – can be provided:

Theorem 2. If a decision scheme D is ε-robust, then∑
r∈R\D̂

Δ(r) ≤ ε.

Proof. It suffices to prove that E(D) =
∑

r∈R\D̂ Δ(r). We

first simplify the inner sum in Equation 1. If r is non-

manipulable (r ∈ D̂) (Definition 4), then �f : f∈a(c, r) ∧
D(f) �=c, and

∑
f∈a(c,r)∧D(f)�=c β(r, c)(f)=0. Contrarily, if r

is (r �∈ D̂), then ∃f : f∈a(c, r) ∧ D(f) �=c. Select a point

distribution β(r, c) = 1 for that value f . Then, trivially,∑
f∈a(c,r)∧D(f)�=c β(r, c)(f)=1. Hence, this choice of β sat-

isfies Err(D , r, β) =
∑

r∈R\D̂ Δ(r). As there is no way to

increase a probability beyond 1, this choice is maximal.

By reasoning purely about the realisations, we can reach

conclusions about whether or not we can be manipulated,

without having to reason about the possible strategies that

the attackers might employ. Given the fact that trust systems

make deductions explicitly using the specific feedback, it is

encouraging that we can prove that this is not necessary,

simplifying the problem domain significantly.

For a sufficiently large ε, many decision schemes will be

ε-robust. In general, we are interested in selecting a decision

scheme that can be claimed to be robust with a minimal ε, or

E(D); i.e. the scheme that has maximal robustness. This idea

is captured by the optimality property:

Definition 7 (Optimality). For a given distribution Δ of
realisations, D is optimal when for all D ′, E(D) ≤ E(D ′).

Or, equivalently, an ε-robust scheme D is optimal if there

does not exist a scheme D ′ which is ε′-robust and ε′<ε.
The last property is monotonicity. Monotonicity requires

that adding a source of information to the feedback does

not decrease robustness. As mentioned before, a different

number of sources means a different decision context. We are,

therefore, comparing two different decision schemes, that arise

from the same decision mechanism:
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Definition 8 (Monotonicity). A decision mechanism is mono-
tonic, when for all pairs of decision schemes D1 (using
sources S1) and D2 (using sources S2), if S1 ⊆ S2, then
E(D1) ≥ E(D2).

Or, equivalently, for every ε, if D1 is ε-robust then D2 is

also ε-robust. Using more sources does not harm robustness.

III. MAJORITY RULE

Majority rule is a principle applied for a variety of reasons.

If the decision being made affects everyone involved, then

fairness is a big reason to apply majority rule. In the case that

a user wants to make a decision that involves his own security,

fairness towards the sources is unlikely to be a consideration.

Nevertheless, majority rule occasionally pops up as a decision

scheme in these scenarios too. As we demonstrate in this

section, it turns out that majority rule can be the optimal way

to make robust decisions under the right circumstances.

The feedback reporting scenarios in this section are simple

scenarios where all sources are treated as interchangeable and

independent (e.g., when it is difficult to characterise individual

sources). Then, all m sources have some fixed probability p
of being honest; so Δ(r) = p|r| ·(1−p)m−|r| = δm,p. In these

(simple) scenarios, majority rule is optimal.

Consider the decision scheme Mm,p, which outputs the

decision that more than m/2 sources provided as feedback.

In case no such feedback exist it follows the feedback from

the source 0 ∈ S . Formally:

Definition 9 (Majority Rule Decision Scheme). If there is a
decision d s.t. |{s ∈ S|fs = d}| > m/2, then the majority rule

decision scheme has Mm,p(f) = d. Otherwise Mm,p(f) = f0.

Our focus is typically on the decision scheme, but we

may use the symbol M to denote the majority rule decision
mechanism, which selects the appropriate decision scheme

Mm,p based on context m and p.

Observe that if Alice’s feedback is x, Bob and Charlie’s

is y and Dave and Elsa’s is z, then we decide x, as Alice

is the tie-breaker because she is the first source (source 0).

This sounds counter-intuitive, but it is one of the optimal

ways of deciding (as we prove later). However, if we look

at this situation through the lens of realisations, we can see

that whatever the truth is, at least 3 sources are malicious.

These three sources could have simply provided the same fake

feedback, and have obtained a majority, thus manipulating the

decision scheme. Whatever the realisation is that lead to the

feedback, the realisation is manipulable under the majority

rule decision scheme. So, although the majority rule scheme is

dependent on the actual feedback, the analysis of the decision

scheme is simpler when done through the realisations.

Recall that every decision scheme has an associated set of

non-manipulable realisations. The corresponding set of non-

manipulable realisations for the majority rule decision scheme

is straightforward: a realisation r is in M̂m,p, when more than

half of the sources are honest, or if exactly half the sources

are honest and s0 is honest:

Lemma 1. M̂m,p = {r ∈ R | |r| > m/2∨(|r| = m/2∧0 ∈ r)}
Proof. Honest sources always report the correct decision.

When |r| > m/2, the correct decision would be the majority

in the received feedback. When |r| = m/2, we trusts the first

source, and we make correct decision if he is honest.

A. Properties of Majority Rule

The robustness of majority rule can be expressed using the

cumulative binomial distribution Fbin(k;m, p) (the binomial

distribution is fbin(k;m, p)). Via Definition 6:

Theorem 3. If p > 1/2, then Mm,p is ε-robust for:

ε ≥
{
Fbin(

m−1
2 ;m, p) m mod 2 �=0

Fbin(
m
2 −1;m, p) + 1

2fbin(
m
2 ;m, p) m mod 2=0

Proof. The probability of getting at most k honest sources

within m sources is Fbin(k;m, p). Lemma 1 states that strictly

over half the sources being honest in a realisation is sufficient

to be non-manipulable. If the number of sources is odd, then it

is only possible to be manipulated when the honest sources are

in the minority, i.e. k < m
2 , with probability: Fbin(

m−1
2 ;m, p).

If the number of sources is even, then another possibility being

manipulated is in case of a tie. But even then, there is at least

a 50% chance that the realisation is non-manipulable, since

the first source is in the correct block in half the equiprobable

permutations. This is why we must add 1/2fbin(
m
2 ;m, p).

An intuition why M is optimal under any possible values

of m, p is that, since p > 1/2, a realisation r where a majority

is honest is always more probable than its complement r. For

realisations r that have exactly the same amount of honest

and malicious sources, their complements r are equiprobable.

Simply selecting an arbitrary half of these realisations is

therefore optimal; we select the half where s0 is honest

(leaving the half where s0 is malicious). Formally:

Theorem 4. Given m sources with p ≥ 1/2, Mm,p is optimal.

Proof. M̂m,p includes exactly a half of all the possible

realizations, which is the maximum amount of realisations,

according to Corollary 1. It contains all the realisations r
where honest sources outnumber the malicious ones, and vice

versa for the complement r. So δm,p(r) = p|r|(1− p)m−|r| >
(1− p)|r|pm−|r| = δm,p(r). It may contain realisations where

honest sources are equal in number to malicious ones, in which

case δm,p(r) = δm,p(r). Either way δm,p(r) ≥ δm,p(r), so

M̂m,p never contains the smaller of the pair.

Below, we apply a Monte Carlo simulation to demonstrate

how the error rate (probability of making incorrect decisions)

of Mm,p changes with different values of honesty p and the

number of sources m. m sources are selected from a large

pool with a fraction p of honest sources. Honest sources will

rate the correct decisions, but malicious sources rate according

to the coordinated attack: all attackers provide the same lie.

The majority rule scheme simply follows the majority, and

the fraction of incorrect decisions is graphed in Fig. 1. Not
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(a) Per probability of honesty. (b) Per number of sources.

Fig. 1: Effect of parameters p and m on error rate of Mm,p.

surprisingly, the graphs are virtually indistinguishable from

the analytical results.

In Fig. 1a, we consider scenarios with 3 (dash-dotted), 13
(dashed), 51 (dotted), 201 (solid black), or 1001 (solid gray)

sources providing feedback. The x-axis depicts the probability

that sources are honest. In every scenario, the error rate rapidly

declines initially, and then asymptotically decreases to 0. In

Fig. 1b, we consider scenarios with sources with different

levels of trustworthiness: adequate (0.55, dash-dotted), mod-

erate (0.6, dashed), somewhat (0.7, dotted), standard (0.85,

solid black) and high (0.97, solid gray). Here, the x-axis

depicts the amount of sources giving feedback. This graph

also rapidly declines until asymptotically decreasing to 0, but

with a staircase pattern. The staircase pattern is not an artifact,

as proven later in Lemma 2.

Fig. 1 shows that with p values over 1/2 and the coordinated

attack, the error rate of Mm,p tends to decrease with more

sources.

Monotonicity is the property that better robustness (lower

maximal error rate – E) can be obtained, if more sources are

available. It turns out that there is a disparity between even

and odd numbers of sources: For even m, the E for m sources

and m − 1 sources is the same, but going from m to m + 1
the E goes down.

We use the following property of the binomial distribution:

Proposition 1.
Fbin(k;m+1, p) = Fbin(k−1;m, p) + (1−p)fbin(k;m, p)

Proof. It follows from the following equality of regularised in-

complete beta functions: Ix(a, b+1) = Ix(a, b)+
xa(1−x)b

bB(a,b) [5],

and the fact that Fbin(k,m, p) = I1−p(m− k, k + 1):
Fbin(k;m+1, p) = I1−p(m− k + 1, k + 1) = I1−p(m− k +

1, k) + (1−p)m−k+1pk

k
(m−k)!(k−1)!

m!

= I1−p(m− k+ 1, k) + (1− p)pk(1−
p)m−k m!

(m−k)!k! = Fbin(k−1;m, p)+(1−p)fbin(k;m, p).

Lemma 2. Given m is even, E(Mm,p) = E(Mm−1,p).

Proof. E(Mm,p) = Fbin(
m
2 −1;m, p) + 1

2fbin(
m
2 ;m, p).

E(Mm−1,p) = Fbin(
m
2 −1;m−1, p). Let B =

1
2fbin(

m
2 ;m, p), A = Fbin(

m
2 − 1;m, p).

Based on Proposition 1, A = Fbin(
m
2 −2;m−1, p) +

(1−p) · fbin(m2 −1;m − 1, p). As 1
2

(
m
m
2

)
=

(
m− 1
m
2 − 1

)
,

B =

(
m−1
m
2 −1

)
p

m
2 (1 − p)

m
2 =pfbin(

m
2 −1;m − 1, p). Hence,

A + B = Fbin(
m
2 −2;m−1, p) + (1−p)fbin(m2 −1;m −

1, p) + pfbin(
m
2 −1;m − 1, p) = Fbin(

m
2 − 1;m−1, p) =

E(Mm−1,p).

Intuitively, if one chooses a majority amongst an even

number of sources, then that majority is at least 2 larger than

any other option, and removing a single source would not

change the decision. In case of a tie, removing an source will

have a 50% chance of swaying the result in either option’s

favor.

Lemma 3. Given m is even, E(Mm,p) > E(Mm+1,p).

Proof. E(Mm,p) = Fbin(
m
2 −1;m, p) + 1

2fbin(
m
2 ;m, p).

E(Mm+1,p) = Fbin(
m
2 ;m+1, p) = Fbin(

m
2 −1;m, p) +

(1−p)fbin(m2 ;m, p) (Proposition 1). Since p > 1/2, (1−p) <
1/2, proving the theorem.

Together the two lemmas trivially prove the monotonicity

of decision mechanism M :

Theorem 5. For sets of sources S1 ⊆ S2 of cardinality m
and m′, E(Mm,p) > E(Mm′,p).

All the properties have been proven under the assumption

that p > 1/2. If p ≤ 1/2, then attackers have a higher probability

of achieving a majority than the honest sources. Majority rule

is hardly robust in that case, as ε ≥ 1/2, no matter how many

sources are used. The probability of attackers achieving a

majority actually increases as the number of sources increases,

so majority rule is also not monotonic for p < 1/2. Majority

rule is also not optimal when p < 1/2. If the decision is binary,

then the optimal decision scheme is to simply pick a decision

at random, to have exactly 1/2 probability of deciding correctly.

IV. MOST PLAUSIBLE REALISATIONS

In the previous section, we studied some simplified scenar-

ios, where all sources have a same probability of honesty. In

the proposed Majority Rule decision scheme Mm,p, all sources

are treated the same in decision making. Sometimes, we may

have some specific knowledge about each source and be able

to evaluate their probability of honesty individually, e.g., by

evaluating witness credibility [6] (see Section VII). sources

with different probabilities of honesty should have different

effects on decision making. Intuitively, a decision should be

more inclined to feedback from a more honest source.

Say, Alice is more trustworthy than Bob and Charlie, and

Alice’s feedback is 0, but Bob and Charlie both say 1. How

much more trustworthy does Alice need to be to make it

so that the decision scheme should pick 0? Typically, the

focus would be on determining the probabilities of 0 and

1 being the right decisions, given the feedback. However,

these probabilities depend on the strategies of the attackers,

which may change after we implement our decision scheme.

As before, our approach is to reason about the realisations of

honesty, rather than the actual feedback.
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In this section, each source has a certain probability to be

honest p0, . . . , pm−1 = p. The assumption that the proba-

bilities are independent remains. This means that Δ(r) =∏
s∈r ps ·

∏
s∈r(1− ps) = δm,p.

The Most Plausible Realisations decision scheme Rm,p, is

designed to be optimal when dealing with independent sources

each with their own probability of being honest. Our argument

that the most plausible realisations decision scheme works is

purely based on the robustness and optimality of the scheme

(see Section IV-A). The motivation given below is just to

provide an intuition. It uses the notion of plausibility.

Suppose we have three sources providing feedback f =
(fa, fb, fc). Alice says 0 (fa = 0), whereas Bob and Charlie

say 1 (fb = fc = 1). If 0 is the correct decision, then

Alice reported the truth while the others lied. We use product

pa·(1−pb)·(1−pc) to capture the plausibility that 0 is the

truth. The formula represents the (prior) probability of the

realisation r where Alice is honest, and Bob and Charlie

are not. This realisation r is the most probable realisation

such that f ∈ a(0, r), and as such, the most plausible

explanation. Similarly, let product (1 − pa)·pb·pc denote the

plausibility that 1 is the truth. The most plausible realisation

is, therefore, the realisation with the highest product. So if

pa·(1−pb)·(1−pc) > (1 − pa)·pb·pc, the scheme selects 0;

and if pa·(1−pb)·(1−pc) < (1− pa)·pb·pc, it selects 1.

Again, sources that have a p-value below 1/2 are not helpful.

The decision scheme will simply ignore those sources. Hence,

pi : pi < 1/2 will not occur in the formula of the computation

for plausibility, and we assume ∃s ∈ S : ps ≥ 1/2.

Definition 10 (Plausibility). The plausibility of d ∈ Q being
the correct decision, given feedback f is defined as:

g(f , d) =
∏

s∈S : fs=d,ps≥1/2

ps ·
∏

s∈S : fs �=d,ps≥1/2

(1− ps)

The decision scheme selects the most plausible decision.

If no decision is the most plausible, we follow source 0.

Note that, as with majority rule, in the case of a tie, any

non-manipulable tie-breaker will do. There is no advantage in

selecting “smart” tie-breakers, as they are equal in robustness

at best, as the choice of following 0 is an optimal one:

Definition 11 (Most Plausible Realisations Decision Scheme).

Rm,p(f) =

{
argmaxd∈Q g(f , d) if defined
f0 otherwise.

Similarly as in Definition 9, m,p are parameters of a

decision scheme that decides the context. We let R represent

a family of such decision schemes, called the most plausible
realisation decision mechanism.

A typical way of using sources is to aggregate them as

a weighted sum, where the weight is determined by the

trustworthiness of the source. Definition 11 can be restated

as a weighted sum:

Lemma 4. Let w(ps) = max(log( ps
1−ps

), 0).

Rm,p(f) =

{
argmaxd∈Q

∑
s : fs=d w(ps) if defined

f0 otherwise.

Proof. The argmax of a function and its logarithm are the

same, as logarithm is increasing. Together with g(f , d) ∝
g(f ,d)∏

s∈S(1−ps)
, it suffices to show that log

(
g(f ,d)∏

s∈S(1−ps)

)
=

log
(∏

s∈S : fs=d,ps≥1/2

(
ps

1−ps

)
·∏s∈S : fs �=d,ps≥1/2

(
1−ps
1−ps

))
∝∑

s : fs=d,ps≥1/2 w(p(s)) =
∑

s : fs=d w(p(s)).

A. Properties of Most Plausible Realisations

In the context where sources have different probabilities of

being honest, majority rule is no longer typically optimal. The

decision scheme introduced in this section – most plausible

realisations – is optimal, as shown in this section. It is also

monotonic, and has a simple formula computing its robustness:

Theorem 6. Rm,p is ε-robust for:

ε ≥
∑

r∈R|δm,p(r)≥δm,p(r)

δm,p(r)

Proof. Honest sources report c. According to Definition 10,

given a realization r, if attackers want to maximize the plausi-

bility g(f , d) of an option d, d �=c, then they all need to report it.

And argmaxf∈a(c,r) g(f , d) = δm,p(r). The plausibility of the

honest option is g(f , c)=δm,p(r). Now if δm,p(r) < δm,p(r),
then it means no dishonest option can be more plausible

than the correct decision in the entire attack space. And the

correct decision will always be chosen. Hence, all realizations

r satisfying this inequality are non-manipulable and they sum

up to 1− E(Rm,p) (Theorem 2).

The most plausible realisation decision scheme is optimal.

No scheme is more robust, when they are given the same set

of sources which are independently honest.

Theorem 7. Given m sources with p as the probability of
being honest, Rm,p is optimal.

Proof. First, |R̂m,p| = 1/2|R| follows from Corollary 1.

From ∀R∈R : A(R)

(
|R| ≤ |R̂m,p|

)
, it follows |R \ R̂m,p| is

minimal. |R \ R̂m,p| equals E(Rm,p).

Below, we prove that decision mechanism R is monotonic.

Theorem 8. Let p = p0, . . . , pm−1 and p′ = p0, . . . pm. If
pm > 1/2, then E(Rm,p) > E(Rm+1,p′). If pm ≤ 1/2, then
E(Rm,p) = E(Rm+1,p′).

Proof. Observe δm,p(r) = pm ·δm,p(r)+(1−pm) ·δm,p(r) =
δm+1,p′(r ∪ {m}) + δm+1,p′(r).
Therefore, the sum

∑
r∈R|δm,p(r)≥δm,p(r)

δm,p(r) equals∑
r∈R|δm,p(r)≥δm,p(r)

(δm+1,p′(r)+δm+1,p′(r∪{m})). Every

realisation or its complement is in the sum. Via Theorem 7,

that sum is at least
∑

r∈R′|δm+1,p′ (r)≥δm+1,p′ (r)
δm+1,p′(r)
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(a) Coordinated attack.
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(b) Devious attack.
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(c) Random attack.

0 0.05 0.1 0.15 0.2 0.25
Variance

0

0.05

0.1

0.15

0.2

0.25

0.3

Er
ro

r r
at

e

(d) Worst-case attack.

Fig. 2: Graphs depicting the sensitivity of ε to the quality of the estimate.

V. ANALYSIS

We have introduced two decision mechanisms that have a

form of provable robustness: Majority rule (M ) and Most

Plausible Realisation (R). In the analysis, we used a prob-

ability distribution Δ over the possible ways in which people

are honest or malicious. For the first mechanism, we assumed

that all sources were equally likely to be honest, and analysed

the formal properties under that assumption. For the second

mechanism, we assumed that all sources had individual in-

dependent probability to be honest, and analysed the formal

properties under that assumption.

An interesting finding is that monotonicity by itself is insuf-

ficient to deduce that we can achieve arbitrarily low values for

ε (see Fig. 5b). Another interesting, but not unexpected, result

is that usually an attack where all malicious sources agree

on the same lie is often the worst-case attack. However, in

cases where sources are notoriously untrustworthy, this attack

is ineffective. Finally, if we use trust-based values as estimates

for the p-values involved, then we usually get a good ap-

proximation. But there seems to be a phase-shift where worse

approximations suddenly become unreliable. The simulations

show us interesting nuances that the aforementioned proofs

does not.

A. Numerical Analysis

Fig. 2 illustrates optimality. There are four graphs, corre-

sponding to four different attacks, and each graph contains

four lines, corresponding to four decision schemes. The x-

axis denotes the standard deviation of the individual honesty

values p, and the y-axis the error rate. Lower lines, therefore,

correspond to better decisions.

The four decision schemes that we depict contain Mm,p

(dotted) and Rm,p (solid), but also two example decision

schemes: probability weighted sum (P , dashed) and trust-

distrusted weighted sum (T , dash-dotted). Both decision

schemes are based on straightforward approaches to aggre-

gating information from sources with a certain trust value (the

related approaches are discussed in Section VII). In the case

of P , we simply sum the p-values of the sources reporting

a certain value, and pick the highest. In the case of T , we

convert the probability p, to a trust-distrust value in [−1, 1],
by taking 2 ·p−1. These trust-distrust values are summed, and

the highest value wins. So if the result is a1 votes A and a2,

a3 vote B, with p1 = 0.9, p2 = 0.7, p3 = 0.4, then P picks B,

since 0.9 < 0.7+0.4, but T picks A, since 0.8 > 0.4+−0.2.

If ai reports A and pi is small, then in P , ri = A makes

the decision A slightly more likely, but in T , it will actually

reduce the likelihood that A is the decision.

The three attacks we depict are Fig. 2a: coordinated, where

all attackers always report the same lie; Fig. 2b: devious, where

all trusted attackers report the same lie but untrusted attackers

report the truth; Fig. 2c: random, where all attackers randomly

lie; And Fig. 2d, we apply whichever attack that yields the

highest error rate for the scheme.

Each of the simulations uses 100, 000 runs per data point,

11 sources with average p-value 0.6. The choice of a relatively

small set of sources with relatively low honesty is to exagger-

ate the effect that specific attacks have on specific decision

schemes. The p value for each individual is picked from a

normal distribution with mean 0.6 and standard deviation at

the x-axes. y-axis depicts the total rate of deciding incorrectly.

In Fig. 2a, we see that Rm,p typically does not actually have

the lowest error rate under the coordinated attack. An attacker

known to be untrustworthy will lie, meaning the decision

scheme could improve its decisions by doing the opposite.

The T scheme does this, and marginally outperforms Rm,p.

However, a smart attacker would observe the decision scheme

that is being used, and alter its attack strategy in response.

By switching to the devious attack, Fig. 2b, the performance

of T severely degrades, since untrustworthy attackers success-

fully manipulate the decision scheme by reporting the truth,

which T interprets as a lie. In P , the report of an untrust-

worthy attacker is simply discounted proportionally. Since an

untrustworthy attacker always tells the truth (either because

he is honest, or because he is devious), a positive weight for

their vote helps decrease the error rate. In majority rule, the

report of an untrustworthy attacker is not even discounted, and

its positive impact on the error rate is therefore even greater.

Again, if either of these two decision schemes is implemented,

then the attacker can simply apply the coordinated attack,

where these two schemes do not perform well.

It is no coincidence, therefore, that the graph where the

attacker chooses the worst-case attack based on the decision

scheme (Fig. 2d), that the graph of P is similar to the one in

Fig. 2a, and the graphs of T and Mm,p similar to those in

Fig. 2b. The choices of Rm,p are independent of the actions
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(a) Per precision of estimate.
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(b) Per bias of estimate.

Fig. 3: Effect of parameter estimate on error rate of M .

of an untrustworthy source, so its graphs are actually the same

in Figures 2a, 2b and 2d. As predicted by Theorem 7, its error

rate is the lowest under the worst-case attack.

Finally, we see that the overall error rate in the random

attack (Fig. 2c) is vastly lower than the error rate in any other

attacks. The attacker is wasting potential by spreading lies

over 4 different options, which is why it is much less likely

that the decision scheme will err. The reason why T and

Rm,p are unimodal, is because they tend to favour trustworthy

individuals over blocks of relatively untrustworthy sources. As

the standard deviation goes up, the probability that there is a

trustworthy individual goes up – and 10% of people with a p-

value of 0.9 lie. But as the standard deviation continues to go

up, the probability of having multiple trustworthy individuals

goes up, counteracting the occasional trusted attacker. Note

that the random attack, as a consequence, is not particularly

appropriate to use as a basis for comparison.

B. Robustness under Estimated Honesty

To determine whether to follow the majority and how much

robustness (ε) we can get, we need to know the probability

that an source is honest (p), and also whether that p>1/2.
The probability that an arbitrary unknown source is honest, is

equal to the frequency of honest sources within the population

of sources. It is fair to assume that by performing statistical

analysis, the system can obtain a reasonable approximation

of p. Obtaining such an estimate is out of the scope of this

paper. However, our approach is only useful, if it is not overly

sensitive to errors in the approximation of p.

In Fig. 3, we show the findings of two Monte Carlo

simulations with 100, 000 runs. In Fig. 3a, we plot the change

of error rate going from precise estimations of p to imprecise

estimations. Whereas, in Fig. 3b, we plot the change of

error rate going from underestimating p to overestimating

p. The solid lines are: m = 201, p = 0.55; dotted are:

m = 51, p = 0.6; dashed are: m = 13, p = 0.7; and dash-

dotted are: m = 3, p = 0.85.

Fig. 3a models the precision of the estimations, by letting

the probability p of honesty be selected from a normal

distribution whose mean is the estimated p value. The standard

deviation of the normal distribution increases along the x-

axis. The assumption here is that the method to obtain an

estimate is not biased towards overestimating or underestimat-
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(a) Precision of trust opinions.
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(b) Bias of trust models.

Fig. 4: Effect of parameter estimate on error rate of Rm,p

ing, meaning the mean of the normal distribution is equal to

the estimated p value. As the SD increases, the quality of our

estimate degrades, and we see that the error rate goes up. This

effect is particularly pronounced when the p value is low (e.g.

for the solid line), because it becomes increasing probable that

the honest sources are actually outnumbered.

Fig. 3b models the effect of consistently

over/underestimating p. The x-axis shows how much

higher the actual probability of honesty is, compared to our

estimate. On the left side, we have negative x-values, meaning

the actual probability that an sources is honest is lower than

our estimate. The parameters used for the different shape

lines is the same as in Fig. 3a. The graphs match parts of

those found in Fig. 1a, which is unsurprising, considering

that the probability that the majority is right is completely

determined by m and p. The most important observation

here, is that underestimating p puts one in a situation where

the error rate can only be lower than expected.

Trust opinions come in many formats, trust opinions may

not be probabilities, or trust opinions may be defined by a

network of probabilities. In Subjective Logic [7], trust opinions

are an example of the former, where a quantity of uncertainty

is added. SALE POMDP [8], is an example of the latter,

where trust opinions are parameter estimations of partially

observable Markov decision processes. In both models, and in

fact most trust models in general, we can obtain a value that

represents the probability that an source is honest in a specific

situation. Since we are not interested in the mechanism behind

the trust model, and we want to talk about trust models with

generality, we simply refer to the pi-value that represents the

model’s predicted probability of honesty of the source ai as

the trustworthiness of ai.

Using simulations, we can investigate what happens if the

value of p that is used by the decision scheme (i.e. the trust

opinion) is different from the actual probability that an source

is honest. Each of the Monte Carlo simulations uses 100, 000
runs for every datapoint. The value of n = 5, unless stated

otherwise. Its value typically is not important (see Fig. 6).

Throughout the discussion, we use “trustworthiness” or “trust

opinion” to refer to what the decision scheme believes the

value of p is; and the actual value of p is referred to simply

as the probability that the source is honest.

In Fig. 4 the trustworthiness of the individual sources
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(b) A limit on error rate.

Fig. 5: Two unrelated graphs with unexpected results.

should be different, but we do not want to enforce any

particular values. Therefore, the individual trustworthiness of

each source is chosen from a normal distribution with mean

p, and standard deviation 0.08. In both graphs, the actual

probability of honesty differs from the trustworthiness in some

way. The solid lines are: m = 201, p = 0.55; dotted are:

m = 51, p = 0.6; dashed are: m = 13, p = 0.7; and dash-

dotted are: m = 3, p = 0.85.

Fig. 4a models the precision of the individual trust opin-

ions with a normal distribution. The actual probability that

sources are honest in a simulation run, is a sample from

this distribution. The assumption here is that the method to

obtain an estimate is not biased towards overestimating or

underestimating, meaning the mean of the normal distribution

is equal to the estimated p value. The standard deviation of the

normal distribution is depicted on the x-axis, with the correct

estimate on the left hand side. For the first three lines, the

graphs are flat. The trust opinions are allowed to be poor

estimates (e.g. p = 0.6 ± 0.08), and it will not affect the

quality of the decision scheme. The fourth line, on the other

hand, has a minute increase. The error rate goes up slightly,

because there is a reasonable probability that an source has

a probability of being honest larger than 0.5, but the trust

opinion is below 0.5, and the source is ignored in the decision

scheme.

Fig. 4b models the effect of a biased estimate, where the

trust opinions may over/underestimate the average p-value.

The average probability of honesty is selected from a normal

distribution with the mean being the average trustworthiness,

and the standard deviation is on the x-axis. This models the

possibility that the whole process of obtaining trust opinions

is biased, and optimistic or pessimistic. For high p values, the

bias has some effect, but even with a standard deviation of

5 percent points, the error rate only goes up about a percent

point, for the graphs with p = 0.7 and p = 0.85. For low p
values, the bias can have a large effect. The reason is that, for

p = 0.55 and a standard deviation of 0.06, the possibility

that the majority of the raters are actually malicious (but

with positive trustworthiness) less than a standard deviation

away. A situation where the trustworthiness is positive, but the

probability of honesty is smaller than 1/2 is disastrous for our

scheme. For security critical purposes, therefore, it is important

to ensure such a situation is highly improbable.

2 4 6 8 10 12 14 16 18 20
Amount of Feedback Options

0

0.05

0.1

0.15

0.2

0.25

Er
ro

r r
at

e

(a) Attacks on Mm,p and Rm,p.

2 4 6 8 10 12 14 16 18 20

Amount of Feedback Options

0

0.05

0.1

0.15

0.2

0.25

E
rr

or
 r

at
e

(b) Per size of coalition.

Fig. 6: Effect of increasing the options for feedback.

In Fig. 5a, the trust opinion is formed based on the actual

probability of honesty, and the simulation is run with that

probability of honesty (but the decision scheme uses the trust

opinion). The results corroborate those from Fig. 4a. The

scenario is as follows: There are 4 users, a special source

whose p value varies, two sources with p = 0.6 and one source

with p = 0.55. The simulation performs a multitude of runs for

every true p value with increments of 0.05. Each run computes

the estimated p value (which comes from a normal distribution

with standard deviation 0.1), and if the decision scheme

decides (in)correctly, this is counted for the estimated p value.

The x markers are placed at places where the decisions are

counted. The dotted line is the theoretical prediction, if the

trust values were always equal to the probability of honest.

We can see that the decision scheme performs exceptionally

close to the theoretical maximum, despite an error of 0.1 on

our trust opinion being just one standard deviation.

It would seem logical that any ε-robustness can be reached,

simply by pumping p and m. Figures 1b show that increasing

m will lower the error rate asymptotically to 0. However, in

both graphs the (expected) value for p is kept constant. There

are realistic scenarios one can think of, where this is not the

case. Often, users simply want to minimise the amount of

feedback they need to gather, and an easy way is to start by

requesting feedback from trustworthy sources first. But that

implies that the next sources on the list to provide feedback

will be less trustworthy!

In Fig. 5b, we draw the error rate, as increasingly less

trustworthy sources are added to the list. As sources with a

p value below 1/2 are ignored, we ignore these values in the

simulation too. So the decreasingly trustworthy sources will

still have p values over 1/2. The sequences of p values of

new sources are (solid) 1
2 + 3

m+12 and (dashed) 1
2 + 2

m+7 ,

which start at 0.731 and 0.750, and asymptotically decrease

to 0.500. We see the error rates have asymptotes at 0.19 and

0.20, respectively.

Finally, in Fig. 6, we look at the number of options for

feedback. So far, all simulations used n = 5. And the reason

is that, under the coordinated attack, the value of n does

not matter. The reason is that the attacker only ever picks

1 other value. For Rm,p, the coordinated attack is the attack

that maximises the error rate, so this attack was used in the

simulations. Fig. 6a depicts the fact that n does not matter
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under the coordinated attack.

In Fig. 6a, the coordinated attack on Rm,p is solid, the

random attack on Rm,p is dashed, the coordinated attack on

Mm,p is dotted and the random attack on Mm,p is dash-

dotted. The value of n has no impact on the error rate

under coordinated attacks. But for random attacks, the error

rate rapidly declines. As attackers spread their answers over

different lies, the true value will stand out.

In Fig. 6b, we introduce a generalisation of the coordinated

attack, where there is a coalition of attackers providing the

same answer, and non-coalition members lie randomly. The

probability of membership of the coalition is 1 (solid), 0.6
(dash-dotted), 0.4 (dashed) and 0 (dotted). The decrease of

error rate is not linear w.r.t. the size of the coalition.

VI. DISCUSSION

In this paper, we build a foundation for making decisions

while resisting manipulation from malicious sources in a prob-

abilistic way. Our results are derived based on the assumptions

of an idealistic world. In the following, we discuss the practical

implication of our assumptions. We start with the strong

assumption of honesty and then other assumptions.

Our goal is to reason more effectively about information

from potentially malicious sources. The idea is to reason

about realisations and design a decision scheme; rather to

decide based on concrete feedback in an ad-hoc way. The

majority rule and most plausible realisations decision schemes

demonstrate feasibility in an academic setting (where ad-hoc

decisions are not). There are applications where our assump-

tions are reasonable, as we argue in this section. However,

for many applications, domain-specific assumptions may be

necessary. We argue, in this section, that these domain-specific

assumptions do not typically form a hinder for building a

robust decision mechanism based on realisations.

A. Models of Honesty

The robustness, optimality and monotonicity of Mm,p and

Rm,p have been formally defined based on the strong as-

sumption of honesty. Recall that the strong assumption of

honesty is that honest sources’ feedback is equivalent to the

correct decision. In this section, we consider the assumption

of honesty in three classes of applications i.e., those where it

is reasonable, those where it works as a modelling trick, and

those where a weaker assumption is more appropriate. For the

last case, we also look at what changes may be required.

Trusted third parties in security protocols are an example

where the strong assumption of honesty is typically reasonable.

Such a protocol prescribes the response (feedback) of the

trusted third party, and it prescribes how the response should

be used. For example, it is reasonable to assume that if a

certificate authority is honest, then the link that their certificate

suggests between a public key and a name is genuine. Looking

through the lens of our approach, robustness of the public

key infrastructure supporting the Web is obtained by having

extremely high p values. Compromised certificate authorities

are seldom trusted by browsers in default settings; DigiNotar

[9] being a notable exception. The Web of Trust – introduced

to support Pretty Good Privacy [10] – is an example of a public

key infrastructure without certificate authorities. Instead, other

users sign certificates linking public keys to identities; they

know the person uses the public key via an offline personal

connection. An honest participant is a participant who actually

verifies what they sign, and is unlikely to mistakenly link a

person with a wrong/different public key.

There are applications where the link between correct

feedback and the right decision is straightforward, but honest

sources sufficiently often fail to provide the correct feedback

for the assumption of honesty to be a realistic idealisation.

For example, network nodes sending routing messages may

unwittingly send incorrect information (e.g., due to malfunc-

tioning), or copyright protection using image recognition may

fail to recognise (or spuriously recognise) infringement. A

subtle change in semantics may be sufficient to be able to

apply our results here. We can let the probability p mean

“honest and accurate” and 1 − p “malicious or mistaken”. In

the case of a node on a network, we can consider a node to

have probability p to provide accurate information about the

network, and a probability 1− p of being malicious, mistaken

or mislead. Unlike a malicious source, a mistaken source does

not have an associated attack space, but selects a specific

value (or distribution) from the attack space. It follows from

Definition 4 that replacing a malicious source by a mistaken

one in a realisation will not make it manipulable. Hence,

the results on robustness and monotonicity properties remain

applicable. However, optimality may not be, as eliminating

possibilities in the attack space may give rise to a better way

of deciding (see example at the end of this section).

There are many domain-specific assumptions about honesty

that we can make for given applications. For malware report-

ing, if an app is updated, older honest feedback only refers

to the previous version. The more updates there are since

the feedback, the more likely that the honest feedback no

longer corresponds to the correct decision. But also, feedback

that an app is safe is more likely to become mistaken than

feedback that an app is malicious. In vehicular networks, an

understanding of how traffic works needs to be built in. Some

traffic information can be quickly outdated (e.g., collisions,

speed traps), and some can be persistent (e.g., a new bridge

or speed radar). Using the reported speeds of the GPS of road

users can be a smart way to determine whether there is heavy

traffic. A general way to aggregate such information, is have

a stochastic relation between the correct decision and honest

feedback (i.e. a probability of reporting a certain thing). Our

model would need to be extended with one more probability

distribution γ, determining the probabilities of honest feedback

in a certain situation. Robustness is then:∑
r∈R

∑
f∈a(c,r)∧D(f)�=c

Δ(r) · β(r, c)(f) · γ(r, c)(f)

To illustrate this further, assume we have light sensors that

can distinguish red, green and blue. Assume the probability

of a sensor being malicious is 25%, being mistaken is 35%,
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and being correct is 40%. We can use the modelling trick of

letting p = 0.4, and obtain a negative result: we cannot achieve

meaningful robustness, since p < 1/2. However, we happen to

know – for the sake of the example – that the sensors’ mistakes

are predictable: it always misreports red as green, green as

blue, and blue as red. Rather than using the majority rule, the

decision scheme could be to identify the least reported color,

and select red/green/blue if it is blue/red/green, respectively.

This rule results in the right decision for realisations where

malicious sources are the smallest group – which is quite

plausible, and increasingly plausible as we add more sensors.

Therefore, this decision scheme clearly outperforms majority

rule with p = 0.4, hence our earlier claim that this approach

does not preserve optimality.

B. Realisation-based Decisions

Secure secret sharing [11] is an example where an assump-

tion similar to the strong assumption of honesty does apply. In

(t, n) secret sharing, there are n participants that communicate

with each other, and, if at least t participants are honest, then

they eventually know the shared secret. For an honest partici-

pant, t−1 out of the n−1 remaining others need to be honest.

In scenarios where secret sharing is applied routinely (e.g.

distributed pseudo random number generation [12]) a lower

bound probability of successful secret sharing is required. In-

terestingly, the success of secure secret sharing protocols does

not hinge on the attack space not containing misleading values,

but on it being computationally difficult to find misleading

values in the enormous attack space. This means that even

Theorem 1 does not apply to secret sharing. Nevertheless, as

demonstrated in [12], reasoning about realisations remains an

effective way of accomplishing this. Reasoning based on real-

isations is also applied to anonymity networks like TOR [13].

An important question is whether reasoning about realisa-

tions is also a useful endeavor when the probability of honesty

of sources is not independent. In a Sybil attack, an attacker

controls multiple sources, and uses them in a coordinated way.

An aspect is that malicious sources’ feedback is coordinated,

and this aspect is covered by our model. Another aspect of the

Sybil attack, is that the attacker tries to ensure that multiple

sources are malicious. If the sources are selected by the

decision maker, then this may or may not be possible. But if

the sources offer their information to the decision maker, then

it is trivial to ensure all Sybils are included, and independence

does not hold. To capture Sybil attacks in these cases, we must

go beyond choices for Δ where p-values are independent.

One way to deal with dependent p values, is to use over

approximation, which our simulations suggest is safe. A single

source is independent by definition. Introducing a second node,

we have the probabilities P (s2 ∈ R|s1 ∈ R) and P (s2 ∈
R|s1 �∈ R), which are not necessarily equal. However, we

can safely select p2 as the minimum of these values, ensuring

that if the robustness is computed with independent p1 and p2,

then it is an overestimate. This strategy is not optimal.

None of the definitions and theorems in Section II use

the notion that sources are independent, and are defined for

general distributions of realisations Δ. A brute-force approach

could go through all attainable sets of realisations and find

the one where honesty states of sources are most probable.

Unfortunately, the number of attainable sets of realisations

grows exponentially. More study is required to determine

whether finding the optimal decision scheme is computation-

ally feasible, or alternatively, whether effective heuristics exist

to get near optimal decision schemes.

The techniques used in this paper can be used to prove dif-

ferent properties and theorems, if the assumptions are changed

appropriately. We hope that our approach helps develop more

formal and robust ways of making trust-based decisions.

VII. RELATED WORK

The problem of malicious feedback (a.k.a unfair/fake rat-

ings) has been popularly studied in application and research

domains such as e-commerce [14]–[20], web service [21],

[22], trust and reputation systems [23]–[25], multi-agent sys-

tems [26]–[28] and recommendation systems [21], [29]. In

this section, we present related works dealing with malicious

feedback and decision making under it.

Trust forms the foundation for information sharing. For

example, feedback from more trustworthy peers are usually

considered more reliable. In the literature, filtering (or dis-

counting) feedback based on its providers’ honesty (a.k.a

advisor honesty/witness trust) is a popular way of treating

malicious feedback [26].

There are various factors to measure honesty of feedback

sources. One of them is similarity between feedback and the

self experience of a decision maker, the use of which can

be seen in early works such as [14], [26], [30] and also

recent ones [20], [27], [31]. In [14], [20], [31], clustering

algorithms are applied to distinguish malicious sources from

honest ones. Feedback identified as unfair would be filtered

out. For example, Liu et al. propose to cluster feedback, and

sources whose feedback belongs to the same cluster with the

decision maker would be considered reliable [31]. In [27],

Weng et al. propose to use the statistical correlation between

the history feedback of a source and the decision maker’s

experience, to determine the credibility of the source. Only

feedback from sources whose credibility is higher than an

advisee’s own confidence is aggregated, by weighted average,

where the weights depend on credibility.

Besides similarity, some other criteria (e.g., feedback

timestap, social relation) are also used to distinguish malicious

sources. Both Yang et al. [23], Liu and Sun [32] propose to

detect suspicious time intervals where attacks are more likely,

and highly suspicious feedback would be abandoned. In [19],

a source is considered malicious if he has reviewed two or

more products targeted by crowdsourcing requests in a short

while. It is assumed in [29] that similarities between malicious

sources are higher than that between honest ones. In [20], the

correlation among feedback criteria is considered e.g., high

score for quality and low score for service time may occur
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simultaneously for an honest source, while such correlation is

assumed not true for an attacker.

In [28], to determine the degree of importance and reliability

of feedback in multi-agent systems, Sabater and Sierra propose

to exploit social relations among agents. For instance, if an

advisor is found to have high level of cooperation with the

agent he provides feedback, then that feedback is suspected

of being biased and his social trust is assigned low. In [16], to

detect fraud online reviews, Akoglu et al. build a network for

users, reviews and products, and propose a network classifica-

tion algorithm to label attackers and fake reviews. It is assumed

that attackers would more probably provide positive (negative)

review for bad (good) products compared with honest sources.

This assumption is also applied in [18], where detecting fake

review is also formulated as a network-based classification

problem, but compared with [16], more metadata such as

review texts, timestamp, relational data are considered.

Our decision scheme also relies on probability of honesty

of sources. A crucial difference between our approach and

the aforementioned is that there is no need to detect or filter

out malicious feedback before aggregation. We have already

proved that it is fallacious to discount or filtering feedback that

deviate from the majority or from the first-hand evidence [33].

Filtering out deviated feedback may cause confirmation bias.

In the existing approaches, there are often assumptions

about the characteristics of attacks, which make them reactive.

For example, attackers are characterized as providing unfairly

highly low (bad-mouthing attacks) or high (ballot-stuffing

attacks) ratings are considered in [14], [16], [18], [21]. Such

characterization restricts attacker behaviour to specific as-

sumed types, ignoring other possibilities. In practice, attackers

are usually adaptive: updating their strategies regarding the

changes in the decision scheme or in the system. As a result,

assumptions about strategies are incompatible with robustness.

Therefore, to achieve robustness, we must have a proactive

position on strategies, allowing them to be of arbitrary form.

In our model, we treat honesty of sources as given, as we

focus on how to exploit these parameters in a way that it

can lead us to provably accurate decisions. Hence, how to

accurately evaluate source honesty is out of the scope of this

work. In the interest of having a simple model, we assume that

honest users would simply report the truth, while in practise it

is more complicated. For example, as it is pointed out in [34],

even if a user is honest, his feedback can be biased in multiple

ways. It would be interesting to extend our decision scheme to

cover situations where bias from honest sources is considered.

VIII. CONCLUSION

We investigated how to provably make correct decisions

with high probability, using potentially malicious feedback.

Our model assumed that feedback can be modeled as discrete

options, one of which is reported by honest sources. The

influence the feedback has on our decisions is determined by

the (perceived) probability that an source is honest.

We defined two decision mechanisms: Majority Rule and

Most Plausible Realisations. We defined three properties for

a desired decision scheme based on unreliable feedback: ro-

bustness, monotonicity, and optimality. Regarding robustness,

we proved that for both the decision mechanisms, the proba-

bility of making incorrect decisions is bound to a very small

threshold, regards of what attackers report. The robustness of

both the schemes monotonically increases with the number

of sources whose honesty degree is over a half. Given a

feedback scenario, the robustness of both the schemes is

optimal, meaning there’s no scheme with better robustness.

We rely on knowledge about the honesty of sources, which

might be inaccurate in practise. Hence, we run simulations to

test how sensitive the decision schemes are to the deviation

that estimated trustworthiness has from the actual probability

of honesty. We found that if our estimate is imprecise, but not

biased, then it has no effect on robustness; and if it is imprecise

and biased, it has limited effect. An exception is when sources

that are probably malicious are considered trustworthy, in

which case robustness is quickly out the window.

Using simulations, we also provided insight into how attacks

and decision schemes relate. A decision scheme that attempts

to exploit certain attack strategies is vulnerable. The two pre-

sented optimal decision schemes ignore untrustworthy sources

completely as a result.

This work aims to improve the robustness of decision

making under unreliable information sources. The robustness

of such decision making is crucial especially when it is for

security domains. An incorrect decision can put a system under

threat. Besides the concrete schemes that we formulated, the

core contribution is the demonstration and application of a

novel technique to reason about manipulation. We introduced

the notion of realisations, which made it possible to investi-

gate whether one is manipulable, without studying the actual

manipulative behaviour. Large summations of combinations of

feedback that affect the actual decision could be cancelled out

of the formula, by applying the idea of realisations.

Besides the obtained formal results, this work serves as a

proof-of-concept for an alternative way of considering trust

in the security domain. Rather than focussing on making the

right decision with some given feedback, our approach takes a

step back and asks under which circumstances do we want to

make the right decision. Typically, we want to make the right

decision under the most probable circumstances.

In this paper, we introduce two fairly simple schemes. We

believe that the technique can be extended to more complex

scenarios, as we address in the discussion section. In particular,

the weak assumption of honesty should be sufficient to arrive

at similar conclusions, and independency of sources being

honest may not be necessary to obtain positive results either.

An aspect that we have not yet studied is when sources provide

feedback about multiple things. The next step is to apply the

technique to an existing system providing us with the right

parameters.
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