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A Unified Framework for Sparse Online Learning

PEILIN ZHAO, Tencent AI Lab

DAYONG WANG, PathAI

PENGCHENG WU, DeepIR

STEVEN C. H. HOI, Singapore Management University

The amount of data in our society has been exploding in the era of big data. This article aims to address several
open challenges in big data stream classification. Many existing studies in data mining literature follow the
batch learning setting, which suffers from low efficiency and poor scalability. To tackle these challenges, we
investigate a unified online learning framework for the big data stream classification task. Different from
the existing online data stream classification techniques, we propose a unified Sparse Online Classification
(SOC) framework. Based on SOC, we derive a second-order online learning algorithm and a cost-sensitive
sparse online learning algorithm, which could successfully handle online anomaly detection tasks with the
extremely unbalanced class distribution. As the performance evaluation, we analyze the theoretical bounds of
the proposed algorithms and conduct an extensive set of experiments. The encouraging experimental results
demonstrate the efficacy of the proposed algorithms over the state-of-the-art techniques on multiple data
stream classification tasks.

CCS Concepts: « Computing methodologies — Machine learning;

Additional Key Words and Phrases: Online learning, sparse learning, classification, cost-sensitive learning

1 INTRODUCTION

In the era of big data, the amount of data in our society has been exploding, which has raised
many opportunities and challenges for data analytic/mining research. In this article, we aim to
tackle the emerging real-world big data stream classification problem, e.g., web-scale spam email
classification. The big data stream classification task has the following five “high” characteristics:

High volume: one has to deal with a huge amount of existing training data, in millions
or even billion scales.
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High velocity: new data inputs arrive sequentially and rapidly, e.g., around 182.9 billion
emails are sent all over the worldwide in one day according to the email statistic report,
released by the Radicati Group [25].

High dimensionality: there are many features, e.g., for the spam email classification
task, the length of the vocabulary list can go up from 10,000 to 50,000 or even to million
scales.

High sparsity: in the high-dimensional feature, many elements are zero. Hence the frac-
tion of active features is relatively small, e.g., according to the spam email classification
study [35], accuracy saturates with dozens of features out of tens of thousands of features.
High class-imbalance: in many real-world applications, some class considerably dom-
inates the others, e.g., for spam email classification, the number of non-spam emails is
much larger than the number of spam emails.

These five characteristics present enormous challenges for big data stream classification tasks
when using conventional data stream classification techniques. In general, the conventional al-
gorithms are batch-learning based, which suffers a series of critical drawbacks: (i). They need a
large memory capacity to cache examples. (ii). It is expensive to train/retrain the classification
model over the entire dataset. (iii). They need all training instances available in advance, which is
unpractical in many real-world data stream applications where data instances come rapidly in a
sequential manner.

The online learning algorithm is a promising way to tackle those challenges, which conducts
incremental training with streaming data in a sequential manner. Typically, an online learning
algorithm processes one receiving instance at a time and makes a minor update repeatedly. The
online algorithms are more efficient and comfortable, comparing with the batch learning algo-
rithms, to re-train any existing model with new receiving data instances.

In literature, a large variety of online learning algorithms have been proposed, including the
first-order algorithms [7, 26] and the second-order algorithms [3, 5, 27]. However, traditional online
learning algorithms are limited for high-dimensional data, since they usually will learn non-sparse
models, which suffer from low efficiency and take expensive computational costs for both training
and test phases. Hence, sparse online learning (SOL) [19] is proposed to tackle this problem by
using the sparsity penalty regularizer.

In this article, we introduce a unified framework of SOL for solving large-scale high-dimensional
data stream classification.! We demonstrate that using the proposed framework, we can easily de-
rive an existing first-order sparse online classification algorithm and further derive a new second-
order algorithm. We provide a theoretical analysis of the proposed algorithm and conduct an ex-
tensive set of experiments. All evaluation results show that the proposed algorithm can achieve
state-of-the-art performance. We organize the rest of this article as follows: Section 2 reviews re-
lated works; Section 3 drives the problem formulation; Section 4 presents the unified framework;
and Section 5 discusses the experimental results. Our main contributions are summarized as fol-
lows:

—We propose a unified online learning framework, which can easily derive first-order and
second-order algorithms.
—We provide a series of theoretical analyses, e.g., general regret and mistake bounds.

10ur preliminary work on this topic appeared in IEEE International Conference on Data Mining (ICDM), 2014 [30]. Ade-
quate new contributions have been augmented into this article, including but not limited to (i) providing comprehensive
theoretical bound analysis for the unified SOL framework, (ii) driving cost-sensitive algorithm, and (iii) doing additional
experiments to demonstrate the performances of the proposed new algorithms.



—We evaluate the proposed algorithms on several high-dimensional and large-scale bench-
mark databases, in which we achieved the state-of-the-art performances.

2 RELATED WORK
2.1 Online Learning

Online learning represents a family of efficient and scalable machine learning algorithms [16].
Unlike batch learning methods that suffer from expensive re-training cost, online learning works
sequentially by performing highly efficient (typically constant) updates for each new training data,
making it highly scalable for data stream classification. In literature, various techniques [6, 7, 9,
10, 26, 31, 39] have been proposed for online learning. The well-known first-order online learning
algorithms include Perceptron [14, 26], Passive-Aggressive (PA) algorithms [7], and the like.

One well-known method is the Perceptron algorithm [14, 26], which updates the model by
adding a new example as a support vector with some constant weight. Recently, a series of so-
phisticated online learning algorithms have been proposed by following the criterion of maxi-
mum margin learning principle [7, 15, 18]. One popular algorithm is the PA algorithm [7], which
evolves a classifier by suffering less loss on the current instance without moving far from the
previous function.

In recent years, researchers frequently use convex optimization tools for the design of efficient
online learning algorithms. Furthermore, most of previously proposed efficient online algorithms
can be jointly analyzed with the following elegant model [28]:

ALGORITHM 1: Online Convex Optimization Scheme

INPUT: A convex set R?.
fort=1,...,T do
predict a vector w; € RY:
receive a convex loss function ¢; : S — R;
suffer loss £;(w;);
end for

Based on the previous framework, we can consider online learning as an algorithmic framework
for convex online learning problem:

min f () = min } £,(w).
t

where f(w) is a convex empirical loss function for the sum of losses over a sequence of observa-
tions. The regret of the algorithm is defined as follows:

T T
Ry = ;mwt) - ngn;mm,

where w is any vector in the convex space R¢. The goal of online learning algorithm is to find
a low regret scheme, in which the regret Rt grows sub-linearly with the number of iteration T.
Thus, when the round number T goes to infinity, the difference between the average loss of the
learner and the average loss of the best learner tends to zero.

Although the general online learning algorithms (e.g., Perceptron and PA) have solid theoretical
guarantees and perform well on many applications, they are limited in several aspects. First, the
general online learning algorithms exploit the full features, which is not suitable for the large-scale
high-dimensional problem. SOL has been extensively studied recently to tackle this limitation. Sec-
ond, the general online learning algorithms only exploit the first-order information, and all features



are adopted the same learning rate. This problem can be addressed by second order online learn-
ing algorithms. Last but not least, the general online learning algorithms are not suitable for the
imbalance input data streams, which can be efficiently solved by the cost-sensitive online learning
algorithms. In the following parts, we will briefly introduce several representative algorithms in
the previous three aspects.

2.2 Sparse Online Learning

SOL [12, 19] aims to learn a sparse linear classifier, which only contains limited size of active fea-
tures. It has been actively studied [12, 29, 32, 34]. There are two groups of solutions for SOL. The
first group study on SOL follows the general idea of subgradient descent with truncation. For ex-
ample, Duchi and Singer propose the FOBOS algorithm [12], which extends the Forward-Backward
Splitting method to solve the SOL problem in the following two phases: (i) an unconstrained sub-
gradient descent step; and (ii) an instantaneous optimization for a trade-off between minimizing
regularization term and keeping close to the result obtained in the first phase. We can solve the
optimization problem in the second phase by adopting simple sofi-thresholding operations that
perform some truncation on the weight vectors. Following a similar scheme, Langford et al. [19]
argued that the truncation in each iteration is too aggressive as each step modifies the coefficients
by only a small amount. They proposed the Truncated Gradient (TG) method, which truncates co-
efficients every K steps when they are less than a predefined threshold of 6. The second group
study on SOL mainly follows the dual averaging method of [24], which can explicitly exploit the
regularization structure in an online setting. For example, One representative work is Regularized
Dual Averaging (RDA) [34], which learns the variables by solving a simple optimization problem
that involves the running average of all past subgradients of the loss functions, not just the subgra-
dient in each iteration. Lee et al. [20] further extend the RDA algorithm by using a more aggressive
truncation threshold and generates significantly more sparse solutions.

2.3 Second-order Online Learning

Second Order Online Learning aims to dynamically incorporate knowledge of observed data in
the earlier iteration to perform more informative gradient-based learning. Unlike first-order al-
gorithms that often adopt the same learning rate for all coordinates, the second-order online
learning algorithms take different distills to the step size employed for each coordinate. Some
new second-order online learning algorithms attempt to incorporate knowledge of the geometry
of the data observed in earlier iterations to perform more effective online updates. For example,
Balakrishnan et al. [2] proposed algorithms for sparse linear classifiers, which requires O(d?) time
and O(d?) space in the worst case. Another family of second-order online learning algorithm is
using confidence-weighted (CW) learning [8, 9, 10, 23, 31], which exploit confidence of weights
when making updates in online learning processes. The second-order algorithms are more accu-
rate and will converge faster. However, they fall short in the following two aspects: (i) they incur
a higher computational cost, especially when dealing with high-dimensional data; and (ii) the
learned weight vectors are dense. Recently, Duchi et al. address the sparsity and the second-order
update in the same framework. They proposed the Adaptive Subgradient method [11] (Ada-RDA),
which adaptively modifies the proximal function at each iteration to incorporate knowledge about
the geometry of the data.

2.4 Cost-Sensitive Online Learning

The cost-sensitive classification has been extensively studied in data mining and machine
learning: for example, the weighted sum of sensitivity and specificity [4], and the weighted
misclassification cost [1, 13]. Although both cost-sensitive classification and online learning



have been studied extensively in data mining and machine learning communities, respectively.
There are only a few works on cost-sensitive online learning. For example, Wang et al. [33]
proposed a family of cost-sensitive online classification framework, which directly optimized two
well-known cost-sensitive measures. Zhao and Hoi [38] tackled the same problem by adopting
the double updating technique and propose Cost-Sensitive Double Updating Online Learning
(CSDUOL). Zhao et al. further adopt adaptive regularization on cost-sensitive online classification
problem [40, 41], which can significantly reduce the regret bound.

For more related work on online learning, please refer to a survey [17], which provides more
details for various online learning algorithms and their applications.

3 SPARSE ONLINE LEARNING FOR DATA STREAM CLASSIFICATION

In this section, we propose a general SOL framework for online data stream classification, then we
derive the regret of the proposed framework, which is used to derive a family of first-order and
second-order sparse online classification algorithms.

3.1 General Sparse Online Learning

Without losing the generality, we consider the SOL algorithm for binary classification problems.
The sparse online classification algorithm generally works in rounds, where one instance x; € R¢
is provided at the ¢-th round and the online algorithm predicts its label as:

i, = sign(w/ x;),
where w; € R? is a linear classifier. Given the prediction ; and the ground truth label y, €
{+1, —1}, the algorithm has a loss ¢;(w;). For example, the following hinge loss:
t:(w) = [1 - y,w'x;];, where [a]; = max(a,0), (1)

is the most popular loss function for binary classification problems. Then, the algorithm updates
the classifier parameters w;. The optimal goal of online learning is to minimize the number of
mistakes. Given a series of -strongly convex functions ®,-1, __ 1, with respect to the norms || - |lo,
and the dual norms || - [lg;, we define a general sparse online classification (SOL) algorithm, as
shown in Algorithm 2:

ALGORITHM 2: General Sparse Online Learning (SOL)

INPUT: sparse parameter A and learning rate 7.
INITIALIZATION: 6; = 0.
fort=1,...,T do
receive x; € RY:
u, = V;(6,);
W; = arg miny %”ut - W||§ + Aellwllys
predict g, = sign(w; x;);
receive y, and suffer £;(w;) = [1 - y,w; x;]4;
if ¢;(w;) > 0 then
Or41 = 0 — eVl (W;);
end if
end for

3.2 Theoretical Bound

In this section, we derive the regret Ry of the general SOL framework in Algorithm 2.



LEMMA 3.1. Let ®; ;—1,..., 1 be a set of 5-strongly convex functions with respect to the norm || - ||o,
and dual norm || - llo;. Let ®o(-) = 0 and x4, ..., x7 be an arbitrary sequence of vectors in R4, As-
suming that Algorithm 2 is adopted using the aforementioned sequence with function ®;, for any w
and any A > 0 we have

2

T T
* >k ’7

Z ne(wy — w) 'z, < D7 (W) + Z [‘I’t(gt) - ®;_,(0;) + %”Zt”é; + nedellzell | (2)

t=1 t=1
where z; = V{;(w;) and n; is the learning rate of t-th iteration.

Proor. First, define A; = ®;(0;11) — ®;_,(0;), then
Z&= (Or+1) = D} (61) = @} (6141) = W 07,1 — Dr(w),

where the final inequality is according to Fenchel’s inequality. Besides,

Ar = @7 (0r41) — D3(0:) + Dy (0;) — @y (0r) < D7 (0r) — @y (0r) — 1 (VDL(6:)) 2, + Z—gllztllé,;.

Second, by combining the above two inequalities, we derive the inequality

2

- Z ’7tW z; — Or(w Z A < Z [df;(@t) - ®;_1(0;) - mu:zt + Z—;HZt”%] s

where u; = V®7(0,). By rearranging the above inequalities, we achieve the inequality

T
me m<%)+2hwn @y (00) + 5 u%{ 3)
t=1

Third, given Algorithm 2, we have

d d
T .
W,z = Z Wi, iZti = Z sign(uy, i) [lus,il = Ae+ze,i
i=1 i=1
= D) Ml =Adelzeal = D) Tuail = Addslzeil
uy,izs,i 20 Uz, iz,i<0
< DL luillzeid+ D (Slugillzeil + Adlzeil)
ur,iZs,i 20 us,i21,i<0
< Z Up,iZs,i + Z (ur,ize,i + Adlzeil) < ujze + Aellze |y (4)
Ur,ize,i 20 ur,iz¢,i<0
Finally, we derive the Lemma 3.1 by combining the above inequalities (3) and (4). ]

Given Lemma 3.1, we derive a general corollary, which provides a upper bound of the regret
suffered by the proposed framework. Given the property of convex function, we achieve a lower
bound of the left-hand side component of inequality (2) based on €;(w;) — {;(w) < (w; — W) z;.

CoROLLARY 1. Based on Lemma 3.1, by assuming € is convex and n; = n, the regret of the proposed
framework (2), Rr, satisfies thefollowing inequality:

T *

A
M-Z&w»mmZ&WK +Z[|mw+Mmm PR

t=1

where A} = ©7(0;) — ©;_,(0;).



Using the proposed general framework and the derived Corollary 1, in the following section,
we derive a series of specified algorithms and provide corresponding regret bounds, respectively.

4 DERIVED ALGORITHMS

In this section, we first demonstrate the RDA algorithm [34] is a specialized case of the proposed
general framework by setting @, (w) = %I|WI|§. Then, we derive a family of algorithms by modify-
ing different components in the proposed general framework. In the following sections, we denote
Ly = I¢¢,(w,)>0) as an indicator function, where I, = 1 if v is true, otherwise I, = 0.

4.1 First Order Algorithm

D;(w) = %||w||§ is a 1-strongly convex function with respect to the norm || - ||, which owns the
dual norm of as itself: & = ;. Adopting this 1-strongly convex function into the proposed SOL
framework, we can directly derive a first-order sparse online learning (FSOL) algorithm, which
is equivalent to the RDA algorithm with soft 1-norm regularization [34], shown in the following
algorithm.

ALGORITHM 3: First Order Sparse Online Learning (FSOL)

INPUT: A, > 0.
INITIALIZATION: 6; = 0.
fort=1,...,T do
receive x; € R4;
w, = sign(6;) © [10:] = A¢]+;
predict g, = sign(w, x;) and receive y; € {-1,1};
suffer £;(w;) = [1 -y, W/ x;]4;
Or41 = 0; + nLsysx,, where Ly = iz, (w,)>0);
end for

THEOREM 2. Let (X1,11), ..., (X7, yr) be a sequence of training examples, where x; € R?, y, €
{—1,+1} and ||x:|1 < X for all t. By setting A; = nA, the regret Rt of Algorithm 3 is bounded as
follows:

2IIWIIZ
T <

NIQ

T T
*g X X
=1 t=1

Proor. Firstly A} = @;(6;) — ®;_,(6;) = 0, then according to corollary (1), we have

1 2 T 1
zllwll n slwll2 7
2 2 2 2 2
Rr < . + ; [E”Ltytxtllz + /1t||Lttht||1] < 7 E Z + Z nAx. O
By setting 1 = —Iwl:__ e achieve Ry < ||wll24/(X? + 2AX)T, which indicates that the re-

Vxzeax)r’
gret of this derived algorithm has an upper bound with the order of O(VT). The same observation
is presented by Xiao et al. [34].

4.2 Second Order Algorithm

Similarly, we can easily derive a second-order algorithm by setting ®;(w) = —WTAtW where A; =
Apq +
and the dual function ||w|| é,; = w'A;'w. By adopting the Woodbury identity, we can incrementally

x,xt

,r > 0and Ay = I. ¥, is 1-strongly convex with respect to the norm ”W”<I>t =w'Aw



. . _ _ A xx] AL
update the inverse of A, with A;! = A}! ﬁ The derived second-order sparse online
t—-1

learning (SSOL) algorithm is shown in Algorlthm 4:

ALGORITHM 4: Second Order Sparse Online Learning (SSOL)
INPUT: 4,7 > 0.
INITIALIZATION: 6; = 0.
fort=1,...,T do
receive X; € Rdl
Al xx] AL
AtI:Al r+x;tA:1t1’
u; = A;let;
w; = sign(uy) © [lue] — A+
predict g, = sign(w] x;) and receive y; € {-1,1};
suffer £;(w;) = [1 - yrw] x;]4;

Or41 = 0 + nL1ysXs;
end for

THEOREM 3. Let (X1,11),..., (X7, yr) be a sequence of examples, where x; € R4, yr € {-1,+1}

and ||x;|l; < X for all t. By setting A; = A/t, the regret Rt of Algorithm 4 is bounded as follows:
T WTXt 2
_ 3w + 2=C)

;< ; r +grdlog((1+)$T)) + AX[log(T) + 1]. (6)

Proor. First,

(X;I—A;EI 0[‘ )2
20r +x; A %) T
According to Corollary 1, we have the following inequality

1 1
A = EejAglet - EGZA;EIH, _—

IwTArw & TAT _ C y
Ry < ZT + Z [nthtA Xy +/1t||Lttht||1] s gz X +XZ’1“
=1 .
Second
T T o
- det(A; ) det(A; 1)
TA g, = 1—- —" )<= 1 —— | = rlog(det(Ar)).
;Xt Sy, rtz_;( et | S r; og det(A) rlog(det(Ar))
Third,
T T 2
Lowl2 + 21 (W'xe)
P 2wl + 255 T rlog(det(Ar)) + AX[log(T) + 1]. )
n

. XX, . . .
Since Ay = I + Y.I_| *>t its eigenvalue y; satisfies

-
T T
XX X
uiS1+trace(Z ! t)— Z | tHZ

t=1

Hence,

d X2 d
det(Ar) = l_[}li < (1 + TT) .
i=1

Finally, the theorem is proved by plugging the above inequality into the inequality (7). ]



According to Theorem 3, comparing with the first-order solution, the regret bound Rr can be
further reduce to the order of O(log(T)) by adopting the second order information.

4.3 Diagonal Algorithm

Although the proposed second-order algorithm in Algorithm 4 can significantly reduce the regret
Rr, it requires the computational complexity with the order of O(d?). In order to reduce the com-
putational complexity to the order of O(d), we propose a diagonal algorithm, which only maintains
a diagonal matrix instead of a full matrix A; as shown in Algorithm 5.2

ALGORITHM 5: Diagonal Second Order Sparse Online Learning

INPUT: A, > 0.
INITIALIZATION: 0; = 0.
fort=1,...,T do

receive x; € RY:

A;l — A;ll _ AL diag(x,x7) AL .

u; = A;let;
w; = sign(u;) © [lus] — A¢]4;
predict §; = sign(w/ x,) and receive y; € {-1,1};
suffer £,(w,) = [1 - g wx(3
Ors1 =01 + nL:yXs;
end for

T A-1
rix; A, Xr

4.4 Cost-Sensitive Algorithm

All aforementioned algorithms are cost-insensitive, which suffer the same loss for misclassified
positive and negative samples. However, in some real-world data stream classification problem, it
is essential to penalize one kind of loss more seriously than others. For example, for online anomaly
detection problem, the distribution of class is extremely imbalanced where abnormal events are
rare, hence the algorithm should suffer more loss when an abnormal samples are misclassified.

In this section, we propose a cost-sensitive sparse online classification algorithm based on our
general framework. Without loss of generality, we assume the positive class is the rare class, which
means that there are more negative examples than positive samples. The online algorithm will suf-
fer a higher loss when a positive sample is misclassified, comparing with misclassifying a negative
sample.

We denote the number of positive samples and negative sample by T, and T_, and denote the
number of false negative and false positive by M, and M_. We denote T = T, + T_ and M = M, +
M_. Instead of using the cost-insensitive metric accuracy = % researchers have proposed a
variety of cost-sensitive metrics. In our framework, we adopt a cost-sensitive metric, named as
weighted sum of sensitivity and speci ficity, to measure the classification performance:

T, — My T_ - M_

sum = psensitivity + p_specificity = p, T + p- T ,
+ _

where py and - (uy + p— = 1,0 < py, p— < 1), are two parameters to balance sensitivity and speci-
ficity. The higher the sum value is, the better the classification performance is. When p1; = y_ = 0.5,
the corresponding sum is known as balanced accuracy [4].

%In the whole article, we use the diagonal second-order SOL algorithm unless otherwise specified.



To maximize sum, we propose a cost-sensitive sparse online classification algorithm following
the existing works from Wang et al. [33, 38]. In particular, we use a modified hinge loss function:

ty(w) = (P]Iy,:l + Hy,:—l)[l - thTXt]+

where p = zt—%, I, is an indicator function. We use balance accuracy as the evaluation metric. In
general, it is difficult to know the real value of T, and T_, hence, we use two parameters c; and c_

to combine the positive and negative losses. The final loss function is reformulated as:
O (w) = ¢ [1 - ythxt]Jr,
where ¢; = ¢; * [y,=1 +c_ xIy,= 1.
Given the above cost-sensitive loss functions, the first-order cost-sensitive sparse online learn-

ing algorithm (CS-FSOL) and second-order cost-sensitive sparse online classification (CS-SSOL)
algorithm are derived as in Algorithms 6 and 7, respectively.

ALGORITHM 6: Cost-Sensitive First Order Sparse Online Learning (CS-FSOL)

INPUT: A, 1, ¢y, c— > 0.
INITIALIZATION: 0; = 0, Aal =T
fort=1,...,T do
receive x; € RY;
w; = sign(6;) © [10:] — A]+;
predict g, = sign(w, x;) and receive y; € {-1,1};
suffer £,(w;) = ¢,[1 — y,w]x,]4, where ¢; = ¢y # [y,=y +c_ # Iy,—_g;
Orr1 = 0 + nesLoysxy;
end for

ALGORITHM 7: Cost-Sensitive Second Order Sparse Online Learning (CS-SSOL)
INPUT: A, 1, ¢y, c— > 0.
INITIALIZATION: 6; = 0, Aal =1L
fort=1,...,T do
receive x; € RY;
A=Al - Ap! diag(x,x)AT!

rx; A7l x,
u, = A;'0,;
w; = sign(u;) O [Jug] = A]4;
predict g, = sign(w, x;) and receive y; € {-1,1};
suffer £,(w;) = ¢,[1 — y,w]x,]4, where ¢; = ¢y # [y,—y +c_ # Iy,—_g;
Or+1 = 0r + nec Ly xy;
end for

5 EXPERIMENTS
5.1 Experimental Setup

In our experiments, we compared the proposed algorithms with the state-of-the-art algorithms.
The methodology details of all compared algorithms are listed in Table 1. Three of them (CS-OGD,
CPA, and PAUM) are non-sparse cost-sensitive online learning algorithms.

In addition to a synthetic dataset, we evaluate these algorithms with several public benchmark
datasets, as shown in Table 2. Using these datasets, we could compare these algorithms in various
aspects, where the number of training samples ranges from thousands to millions, the feature



Table 1. Compared Algorithms

Algorithm First/Second-Order Sparsity

STG [19] First Order Truncate Gradient
FOBOS [12] First Order Truncate Gradient
Ada-FOBOS [11] Second Order Truncate Gradient
Ada-RDA [11] Second Order Dual Averaging
FSOL, Algorithm 3 First Order Dual Averaging
SSOL, Algorithm 5 Second Order Dual Averaging
CS-OGD [33] First Order Non-Sparse

CPA [7] First Order Non-Sparse
PAUM [21] First Order Non-Sparse
CS-FSOL, Algorithm 6  First Order Dual Averaging
CS-SSOL, Algorithm 7 Second Order Dual Averaging

Table 2. List of Real-world Datasets in Our Experiments

DataSet #Train #Test #Feature  #Nonzero Features Sparsity(%) Ty \ T-
AUT 40,000 22,581 20,707 1,969,407 3.07 110.33
PCMAC 1,000 946 7,510 55,470 3.99 1\ 1.00
NEWS 10,000 9,996 1,355,191 5,513,533 29.88 1\1.50
RCV1 781,265 23,149 47,152 59,155,144 8.80 1\1.11
URL 2,000,000 396,130 3,231,961 231,249,028 7.44 1\2.02
WEBSPAM 300,000 50,000 16,071,971 1,118,027,721 95.82 1\0.64
URL2 1,000,000 100,000 3,231,961 114,852,082 44.96 1199

WEBSPAM?2 100,000 10,000 16,071,971 224,201,808 96.19 1199

dimentional ranges from hundreds to over 16-million, and the feature sparsity ranges from 3% to
96%.

We conducted our experiments following the standard online learning setting, where the online
learner received one training example per iteration and updated the model sequentially. For fair-
ness, the same experimental settings are adopted for all the compared algorithms. To identify the
best parameters, For each algorithm and each dataset, we conducted a five-fold cross validation,
with fixing the sparsity regularization parameter A as 0. The searching range of learning rates was
[271,2°,...,2°] and the range of other parameters was [27°,27%, ..., 25]. Using the best-tuned pa-
rameters, each algorithm was evaluated for 5 times with a random permutation of the training
set. All the experiments were conducted using a Linux server with Intel Xeon CPU E5-2620 @
2.00 GHz and 8 GB memory.

5.2 Experiment on Synthetic Dataset

First we evaluated the effectiveness of feature usage with a a synthetic dataset. In the synthetic
dataset, we controlled the percentage of effective features. Following the scheme in [8, 9], we gen-
erated a high-dimensional and high-sparse synthetic dataset with a group of effective features that
were correlated with the class labels and a group of noisy features that were uncorrelated with the
labels.

We generated the synthetic dataset with 100,000 training examples and 10,000 test examples
in 1,000-dimensional feature space. Given an instance, the first 100 features were sampled from a
multivariate Gaussian distribution with diagonal covariance. For each feature, the mean value was
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Fig. 1. Test error rate of sparse online classification on synthetic dataset.

uniformly sampled from —1 to 1 and the corresponding covariance was uniformly sampled from
0.5 to 100. We generated the split plane the same as the mean vector. To introduce noisy feature di-
mensions, we randomly chose 200 dimensions out from the remaining 900 dimensions for each ex-
ample, and sampled the noises from a Gaussian distribution of NV (0, 100). We evaluated all the cost-
insensitive sparse online classification algorithms using the synthetic dataset. Figure 1 presents the
test error rates of all the compared algorithms, and the right figure is a sub-figure of the left one
with sparsity from 80% to 100%. Several observations can be drawn from the experimental results.

First, the test error rates of the truncate gradient based algorithms (STG, FOBOS, and Ada-
FOBOS) increase significantly when the sparsity increases. For the dual averaging based algorithms
(FSOL, Ada-RDA, and SSOL), the test error rates keep stable or even decrease when the sparsity
increases. However, the test error rate of dual averaging based algorithms will increase dramati-
cally when the sparsity is larger than 90%, which is the actual sparsity used for constructing the
synthetic dataset. The result indicates the dual averaging based algorithms can exploit the spar-
sity more effectively in the dataset. Similar observations were also reported in [34] who argued
that the dual averaging based methods took more aggressive truncations and thus could generate
significantly more sparse solutions. Second, the proposed second-order algorithm SSOL achieves
the lowest error rate among all the compared algorithms, especially when the sparsity is high. The
encouraging experimental results show that the proposed SSOL algorithm can effectively exploit
the sparsity.

5.3 Test Error Rate on Large Real Datasets

In this experiment, we compared the proposed algorithms (FSOL and SSOL) with the other cost-
insensitive algorithms on several datasets. Table 2 shows the information of six datasets in details.
These six datasets can be grouped into the following two categories: the first two datasets (AUT
and PCMAQC) are general binary small-scale datasets and the corresponding experimental results
are shown in Figure 2(a) and (b). The other four datasets (NEWS, RCV1, URL, and WEBSPAM)
are large-scale high-dimensional sparse datasets and the corresponding experimental results are
presented in Figure 2(c)—(f). We can draw several observations from these results.

First, we observe most of algorithms can learn an effective sparse classification model with-
out suffering too much loss in accuracy. For example, in Figure 2(d), the performances of all the
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Fig. 2. Test error rate on six datasets. (a)—(b) are two general datasets, (c)-(f) are four large-scale high-
dimensional sparse datasets. The second and forth rows are the sub-figures of the first and the third rows at
high sparsity, respectively.



algorithms are almost stable when sparsity is smaller than 80%. It indicates that all the compared
sparse online classification algorithm can effectively explore the low-level sparsity information.

Second, for each algorithm, we observe that there is a threshold ¢ for sparsity. When sparsity is
smaller than ¢, the performance is almost stable, however, when sparsity is larger than t, the test
error rate will get worse.

Third, the dual averaging based second order algorithms (Ada-RDA and SSOL) consistently out-
perform the other algorithms (STG, FOBOS, FSOL, and Ada-FOBOS), especially at high sparsity. It
indicates that the dual averaging technique and second order updating rules are more helpful to
boost the classification performance.

Finally, when the sparsity is high, the proposed SSOL algorithm consistently outperforms other
compared algorithms on all evaluated datasets. For example, as shown in Figure 2(f), when the
sparsity is 99.8% for the WEBSPAM dataset (the total feature dimensionality is 16,609,143), the
test error rate of SSOL is about 0.3%, which is less than the those of Ada-RDA and Ada-FOBOS,
0.4% and 0.55%.

5.4 Running Time on Large Real Datasets

We evaluated the time costs of various sparse online classification algorithms. Figure 3 presents
the experimental results. We can draw several observations from the results. First, we observe that
when sparsity is low, the time cost is stable in general. When sparsity is high, the time cost of
second other algorithms will slightly increase. One reason may be that when the sparsity is high,
the model might not be informative enough for prediction and make more parameter updates.
Since the second-order algorithms are more complicated than the first-order algorithms, they are
more sensitive to the increasing number of parameter updates.

Second, we can see that the proposed SSOL algorithm runs more efficiently than other second-
order based algorithms (Ada-RDA and Ada-FOBOS). It is even sometimes better than the first order
based algorithm (e.g., FOBOS and STD). However, the first order FSOL algorithm is consistently
faster than the second order SSOL algorithm. In summary, we find that the proposed SSOL algo-
rithm can achieve comparable or better accuracy than the existing second-order algorithms with
less time cost.

5.5 Applications on Online Anomaly Detection

The following two experiments aim to explore the proposed sparse online classification technique
for the online anomaly detection task, i.e., malicious URL detection and web spam detection, where
the class distribution is imbalanced.

5.5.1 Malicious URL Detection. We evaluated the cost-sensitive online learning algorithms for
malicious URL detection task with the benchmark dataset.® The original URL dataset was created
in purpose to have balanced classes. In our experiment, we created a subset (denoted as “ULR2”) by
sampling from the original dataset to make it similar to a realistic distribution scenario where the
number of normal URLs was significantly larger than the number of malicious URLs. Following
the experiment setting in [38], we chose 10,000 positive (malicious) instance and 990,000 negative
(normal) instance. Hence, the ratio T, \ T- = 1\ 99. For test dataset, we collected 100,000 samples
from the original test set with the same ratio. Table 2 shows more details of the unbalanced URL2
dataset.

We compared the proposed CS-FSOL and CS-SSOL with three other cost-sensitive algorithms
(CS-OGD, CPA, and PAUM), as shown in Table 1. Besides, we evaluated all aforementioned

Shttp://sysnet.ucsd.edu/projects/url/.
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Fig. 3. Time cost on four large-scale datasets: NEWS, RCV1, URL, and WEBSPAM.

cost-insensitive algorithms. The experiment results are shown in Figure 4, where CS-OGD, CPA,
and PAUM are non-sparse cost-sensitive online learning algorithms.

Several observations can be drawn from the results. First, all the cost-sensitive algorithms per-
form consistently better than cost-insensitive ones. Second, among all cost-insensitive algorithms,
the second order online learning algorithms are better than the first-order algorithms. Third, the
proposed CS-SSOL algorithm achieves the best performance. In this experiment, given the high-
dimensional feature representation, in general, the output model of CS-SSOL is very sparse, which
demonstrate the efficacy of our framework.

5.5.2  Web Spam Detection. In this experiment, we evaluated the proposed cost-sensitive online
learning algorithms with web spam detection task. We constructed an unbalanced subset of the
original web spam dataset used in Section 5.3. In particular, for the training dataset, we randomly
chose 1,000 positive instances and 99,000 negative instances. Hence, the ratio T \ T_ of the training
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setwas 1\ 99. For test dataset, we collected 10,000 samples from the original test set with the same
positive-negative ratio.

The imbalance web spam dataset is denoted as “WEBSPAM2,” as shown in Table 2. The feature
dimension of WEBSPAM2 dataset (16,071,971) is much higher than the one of URL2 (3,231,961).
Hence the feature representations of WEBSPAM2 dataset are extremely sparse (96.19% versus
44.96%). The anomaly detection task on WEBSPAM2 dataset is very challenging, given the high-
dimensional sparse features and unbalanced data distributions. The experiment settings keep the
same with the Section 5.5.1. The experiment results are shown in Figure 5.

First, the performances of non-sparse cost-sensitive algorithms are very poor. Second, simi-
lar to the previous experiment, the second order online learning algorithms are better than the



first-order ones among all the cost-insensitive/cost-sensitive algorithms. Third, the proposed CS-
SSOL algorithm consistently achieves the best performance, which demonstrates the efficacy of
the proposed technique for real-world data stream classification problems.

6 CONCLUSIONS AND FUTURE WORK

In this article, we propose a framework of sparse online classification for large-scale high-
dimensional data stream classification task. First, we present the proposed framework can eas-
ily derive an existing first-order sparse online classification algorithm as its special case. Using
the proposed framework, we can further derive a new sparse online classification algorithms by
exploiting second-order information. Second, we develop the proposed technique to solve the cost-
sensitive data stream classification problem and explore the applications of online anomaly detec-
tion, including malicious URL detection and web spam detection. Finally, we exhaustively evaluate
the performance of the proposed algorithms on both theoretical and empirical datasets, where the
encouraging experimental results demonstrate that the proposed algorithms can achieve the state-
of-the-art performance in comparison to a large family of existing online learning algorithms.

In the future, we would like also explore SOL for distributed settings, including centralized and
decentralized distributed settings [22, 36, 37].
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