
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2020

DETECTIF: Unified detection and correction of IoT faults in smart DETECTIF: Unified detection and correction of IoT faults in smart

homes homes

Madhumita MALIICK
Indian Institue of Technology, Kharagpur, Rajiv Gandhi School of Intellectual Property Law

Archan MISRA
Singapore Management University, archanm@smu.edu.sg

Niloy GANGULY
Indian Institue of Technology, Kharagpur, Rajiv Gandhi School of Intellectual Property Law

Youngki LEE
Seoul National University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
MALIICK, Madhumita; MISRA, Archan; GANGULY, Niloy; and LEE, Youngki. DETECTIF: Unified detection
and correction of IoT faults in smart homes. (2020). 2020 21st IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks (WoWMoM): Virtual, Cork, August 31 - September 3. 78-87.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5956

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5956&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5956&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

DETECTIF : Unified Detection & Correction of
IoT Faults in Smart Homes

Madhumita Mallick∗, Archan Misra#, Niloy Ganguly∗, Youngki Lee$,
∗Dept. of CSE, Indian Institute of Technology Kharagpur, India, #School of Information Systems, SMU, Singapore,

$Dept. of CSE, SNU, Korea
Email: madhumitamallick@iitkgp.ac.in, archanm@smu.edu.sg, niloy@cse.iitkgp.ac.in, youngkilee@snu.ac.kr

Abstract—This paper tackles the problem of detecting a com-
prehensive set of sensor faults that can occur in IoT-instrumented
smart homes customized to infer Activities of Daily Living
(ADL) from the activation of sensor sets. Specifically, sensors can
suffer faults that (a) span durations that vary between several
seconds to hours, (b) can result in both missing or false-alarm
sensor-events. Previous fault detection approaches are geared
primarily to identify missing faults (absence of sensor readings)
of a permanent (very long-lived) nature, or sporadic false-alarm
events. We propose DetectIF, a fault-detection framework that
detects faults of varying time duration, and identifies both missing
and false-alarm sensor events. DetectIF’s key novelties include
developing rules capturing spatiotemporal correlations among
sensors and augmenting those rules with statistical properties of
such sensor-specific behavior. To test DetectIF under a variety
of fault behavior, we develop a unified fault framework where
the tuning of a couple of parameters allows us to generate and
inject faults of desired type and duration into an underlying
sensor stream. Experiments with such comprehensive fault data
shows that DetectIF achieves 82-95% fault-detection accuracy,
improving precision by a huge amount (33-66%) over compet-
itive, state-of-the-art baselines. Moreover, we demonstrate the
benefits of applying DetectIF on unmodified, benchmark smart
home datasets: it is able to detect additional likely faults that
prior fault detection approaches miss, and thus consequently
achieve an average of 30% higher ADL recognition accuracy
compared to prior state-of-the-art fault detection techniques.

Index Terms—Smart home, IoT sensors, Transient Faults,
Unified Fault Detection, Activities of Daily Living

I. INTRODUCTION

Automatic monitoring of Activities of Daily Living (ADLs)

is a cornerstone for many smart home applications related to

wellness monitoring and elderly care [1], [2]. Such ADL mon-

itoring typically leverages on a variety of deployed IoT devices

(such as passive infrared (PIR) motion/light sensors, cabinet-

mounted contact sensors & cameras). While machine learning-

based techniques for ADL recognition given sensor data have
been widely explored, relatively little attention (e.g., [3], [4])

has been given to the problem of understanding how incorrect

or missing sensor data affects such ADL recognition. Such

impairments in sensor data can occur due to a variety of

factors, such as network failures, sensor hardware failures or

environmental artifacts (e.g., a motion sensor occluded by a

piece of furniture).

In this work, we develop, and demonstrate the benefits from,

an improved and unified fault detection mechanism for such

smart home settings, where sensors are often heterogeneous

and perform event-based reporting (in contrast to conventional
wireless sensor networks or WSNs, where sensors are often

homogeneous and perform value-based reporting). Broadly

speaking, sensor failures can manifest in distinct ways, cat-

egorized by either duration or type:
• Duration: Faults can have potentially three types of
durability: (a) permanent, often due to hardware dam-
age, where the sensor stops functioning irreversibly; (b)

sporadic or random, which often manifests itself in sin-
gleton outlier values for value-based sensors (e.g., a room

thermostat that suddenly reports a single data point as

“100◦C” while otherwise reporting values of 22-24◦C); or
(c) transient, where the fault usually persists for moderate
durations (e.g., a few minutes to several hours) and is

caused by some external or human artifacts.

• Type: Broadly, the fault type can be either (a) missing,
where the sensor does not report an event when it should,

or (b) false-alarm, where the sensor fires incorrectly, even
in the absence of an actual underlying event.

Past work on fault detection in such environments has

focused primarily on permanent, missing faults–i.e., scenarios
typically characterized by a hardware failure and a consequent

absence of any firings/reports from the faulty sensor. However,

empirical evidence suggests that false-alarm events, especially
of a transient nature, are not uncommon in smart homes [5],
[6]. For example, [7] described how motion sensors have

faulty activations due to the presence of bright sunlight re-

flecting off walls– this phenomenon is clearly transient (e.g.,

occurring only during the afternoons) and may have seasonal

variations as well (e.g., occurring only during summers).

Similarly, humans can inadvertently put an obstruction (such

as glass) in front of the sensor, accidentally dislodge the sensor

or even move a sensor-equipped furniture item [8], thereby

causing a sensor to behave erroneously for a while.

Our proposed approach, called DetectIF1, is designed to
find and isolate both missing and false-alarm faults (of vary-

ing duration) in a unified manner, and thereby significantly

improve the accuracy of sensor-based ADL recognition. De-
tectIF is based on two key insights: (a) Similar to Idea [3],

1Detection of IoT Faults

78

2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM)

978-1-7281-7374-0/20/$31.00 ©2020 IEEE
DOI 10.1109/WoWMoM49955.2020.00028

we exploit the fact that each individual ADL is associated

with a spatiotemporal activation pattern of multiple distinct
sensors, implying that an individual sensor failure is likely to

manifest as an anomalous pattern of collective sensor behavior.
However, unlike Idea, failure in DetectIF does not mean just
missing sensor readings, but also incorporates possible false-

alarm faults. (b) We note that different ADLs are characterized

not just by the activation of multiple event-based sensors,

but also by distinctive temporal properties (e.g., number of
ON/OFF transitions) of individual sensor events. Accordingly,

DetectIF incorporates an additional set of such statistical tem-
poral features to help identify a broader range of anomalies.
Our key contribution is the development of an Activity-

Weighted approach to help DetectIF detect multiple classes of
faults in heterogeneous IoT deployments. The approach works

by mining a set of high-confidence, high-support association

rules from historical patterns of ADL-induced sensor activa-

tion, and then determining when the test data, for a given

ADL segment, deviates significantly from the mined patterns.

To cater for the variety of faults, DetectIF association rules are
augmented to include several key statistical temporal features

about a sensor’s reporting pattern. The Activity-Weighted

approach computes the deviation scores for each ADL label

separately, even though the inferred activity labels for each

segment itself are estimated from the underlying noisy data

and can thus be erroneous.

A key obstacle to our work is the lack of empirically-

derived, generic fault models that span a wide variety of

sensor failures. Accordingly, we first meticulously design a

unified fault model, that can parametrically capture a wide

variety of failure types, and evaluate DetectIF by suitably

injecting synthetic faults into multiple existing smart home

datasets. We demonstrate that the Activity-Weighted DetectIF
can identify such faults with an accuracy ranging between

82-95% (across the datasets), as well as isolate the fault

duration fairly precisely (Intersection-over-Union (IoU) val-

ues of 69%-91%). We also show that DetectIF outperforms

previously-proposed competitive baselines [3], [6], achieving

large improvements in precision (33 - 66%) and recall (20

- 40%) in fault detection across a wide variation (20 sec-60

min) in fault duration Secondly, we apply DetectIF on the

unmodified smart home datasets to identify additional likely
faults that past approaches fail to isolate (e.g., transient faults)

and quantify the performance gain. We show that DetectIF
helps identify significant additional unique sensor faults than

previously diagnosed, and consequently helps improve state-

of-the-art ADL recognition accuracy by as much as 42% over

the unmodified data (and, on average, average by 30% over

prior competitive baselines).

II. BACKGROUND & PRELIMINARIES

We first summarize the various datasets used to subse-

quently evaluate our techniques and outline the different types

of faulty behavior that a sensor may manifest.

A. Dataset

Our work uses benchmark datasets (which include times-

tamped ground truth labels for the relevant ADLs) from 7

smart homes which have been widely utilized in prior smart

home-related research, including 5 single-resident facilities

and 2 multi-resident (2 occupants) homes. Table I summarizes

the salient characteristics of these datasets. The first three

datasets {kA, kB, kC} [9] are single resident homes with
only binary-valued, event-driven sensors that generate output

only when the sensor value changes state. The sensors include
passive infrared (PIR) sensors attached to lights/wall/ceilings

to detect motion, contact sensors (reed switches) on cabinets

and doors to detect their usage, and float sensors to measure

the flush of the toilet. The next four datasets collectively

captured the interleaved ADLs from the Washington State

University’s CASAS smart home project [10], including (a)

two single-resident houses (labeled as Ar and Ml) equipped

with both event-driven (such as motion & door sensors) and

non-binary, value-based sensors (temperature), and (b) two (T1

and T2) two-resident facilities. T1 & T2 had similar sensors as

AR & Ml, as well as additional binary contact sensors attached

to cupboards and various items, and value-based sensors that

measure and report consumption of water & electricity.

Label Name #
User

Dur.
(days)

ADL
(# Activity)

Sensor
(# Event)

kA KasterenA [9] 1 25 16 (283) 14 (2006)

kB KasterenB [9] 1 15 25 (172) 27 (22595)

kC KasterenC [9] 1 19 27 (254) 23 (39861)

Ar Aruba [10] 1 219 11 (6477) 39 (805268)

Ml Milan [10] 1 82 15 (2310) 33 (288498)

T1 Twor9-10 [10] 2 249 25 (3745) 100 (711421)

T2 TworSmr [10] 2 63 8 (1016) 100 (366075)

TABLE I: Summary of the 7 smart home Datasets (single

and two-user) – their duration, number of unique ADLs

and activities performed by the user (s), number of sensors

deployed and sensor activations (Events) recorded.

Fig. 1: Sample sensor readings in different activity segments

B. Observations

From the datasets, we see a typical pattern of ADL-driven
sensor activation: when a resident performs an activity, her
movement and object interactions cause multiple sensors to
generate binary/numeric values. For example, motion and door

sensors generate binary values when a door is opened, while

value-based sensors (e.g., temperature and power sensors)

generate numeric values continually. Figure 1 illustrates how

various sensors are triggered during three distinct activity

segments (Cook Breakfast, Eat Breakfast, and Eat Dinner),

79

along with the corresponding manually-annotated ground truth

ADL history. We see that every sensor reading is associated

with a timestamp, a sensor ID, and a corresponding value.

Moreover, note that the same sensor can be triggered more than

once in an activity segment (e.g., “M006” was activated twice

during the single instance of the Cook Breakfast ADL). The
duration of the ADLs performed by users also exhibits a wide

variation. While most activities last between 6-10 minutes

(median), the minimum ADL duration is often in seconds

(for ADLs such as Get Drink, Personal Hygiene), while the
maximum duration can extend to several hours, for ADLs such

as Leave House, Sleeping.

C. Unified Fault Model

We aim to build a unified failure detection framework, that

can detect both missing and false-alarm faults, of varying

durations. Isolated fault models have been proposed before–

e.g., transient fault models in sensors such as shaft encoders

and GPS [11], and sporadic/permanent fault models for binary

smart home sensors [3], [6], [12]. To develop the unified

DetectIF framework, we extend these to create a unified fault
model, which accommodates the different types of failures in

event-based smart home sensors. Moreover, given the lack of

explicitly annotated fault data in the benchmark datasets, such

a model helps us to generate and inject synthetically-generated
faults to quantitatively study DetectIF’s performance.
We maintain a sensor dictionary (set of all sensors oper-

ating in a particular smart home) whereby each sensor si is
represented by a tuple < si, ri, Ti > where ri = {0..1} is
the reliability score of the sensor (higher reliability implies

a better operation) and Ti is the mean failure time. To inject
faults, we first divide the sensor stream into one-minute time

slots. We then choose a parameter n, which represents the
maximum fraction of sensors that can be simultaneously faulty.

At each time slot, we then choose a number k uniformly
at random from {0, 1, . . . , |S|} (|S| is the total number of
sensors), and designate k of the total set of sensors as

‘faulty’. The likelihood of an individual sensor being selected

is proportional to its reliability score, with the fault likelihood

being higher for sensors present (in the original trace) in that

slot compared to sensors absent in the trace–this ensures that

the failure likelihood is more equitably distributed.

A chosen “faulty” sensor is then assumed to remain in

the faulty state for the next ti time slots. The choice of t
igives rise to faults with 3 distinct temporal properties: (a)

Sporadic/Random: here ti = 1, i.e., a sensor fault lasts only
for one single time unit, with faults having no correlation

across different time slots; (b) Transient: in this case, ti is
exponentially distributed with an average value Ti, where
1 ≤ Ti ≤ ∞; and (c) Permanent: In this case, time ti = ∞

,
i.e., once the sensor enters a faulty state, the state will persist

without explicit manual intervention.

D. Three Types of Faults:

A sensor chosen to be faulty for ti time slots can exhibit
two broad fault types: missing or false-alarm. For both binary

and numeric/value-based sensors, missing faults are simulated

by causing the sensor not to fire (or generate a report)

when it should. False-alarm faults are simulated by generating

phantom readings (extremal value in case of numeric sensors)

even though there is no actual underlying event. The faults

can be further classified into two distinct ADL-dependent
types {atypical, spurious}, based on whether the sensor s is a
member (or not) of Ŝi, the set of sensors that are associated

with the corresponding ADL Ai. Thus this results in 3 distinct

fault types (illustrated in Figure 2) elaborated next.

(a) A sensor s ∈ Ŝi is said to exhibit a missing fault if it fails
to report values that should legitimately be present. For

example, a motion sensor may be blocked temporarily

because of an obstruction and may not report any motion

activity within its sensing field.

(b) A sensor s ∈ Ŝi is said to exhibit an atypical (false-alarm)
fault if: (i) s is a sensor that, under normal behavior, fires
at least once during the occurrence of a specific ADL Ai;

however, (ii) the behavior of s is currently inconsistent
with historical data observed during past instances of

activity Ai. For example, consider an ADL “Watch TV”,

where a motion sensor typically activates only during the

start and at the end of the activity. However, because of

bright sunlight reflecting off the opposite wall, the sensor

can report continued motion throughout the activity.
(c) A sensor s /∈ Ŝi is said to exhibit a spurious (false-

alarm) fault if it is activated and reports values, even

though it should not have been present at all during ADL
Ai. For example, a pet animal may trigger a kitchen

door/cupboard sensor, even though the human resident

is performing a “Showering” ADL and is nowhere in the

vicinity of that cupboard.

Fig. 2: Different types of Faults. Assuming S2 is present in the
original activity segment Ai, (a) S2 may be missing (the top) due to
some anomaly, (b) S2 may be present but exhibiting atypical, and
(c) Another sensor S5, which reports but is not associated with Ai

is termed as spurious.

III. DETECTIF: PROFILING NORMAL SENSOR BEHAVIOR

Our fault/anomaly detection approach is based on the as-

sumption that faults manifest abnormal patterns (both missing

and false-alarms), which are inconsistent with prior historical

data. The overall DetectIF approach thus has two distinct

phases: (a) an initial Training phase (which we detail in

this section), where past historical data is mined to build up

profiles/rules of normal sensor behavior, and (b) a subsequent
Online Detection phase (which is explained in Section IV),
where future streams of observed sensor data are analyzed

80

Fig. 3: Overall Architecture of Activity-Weighted DetectIF [illustrated with 2 ADLs].

to identify anomalous deviations from such profiles. Figure 3
illustrates the various steps in DetectIF.
More specifically, inspired by Idea [3], we utilize two

insights: (a) An activity (ADL) usually involves the activation

of multiple sensors. Accordingly, each ADL typically has one

or more patterns of spatiotemporal correlation among multiple

sensors (refer Figure 1); and (b) Given that the underlying

ADL patterns are reasonably consistent (e.g., the number

of ‘fridge open’ events does not vary dramatically across

different ‘Cooking’ ADL instances) the overall spatiotemporal

activation (or reporting) pattern of the associated sensors is

also fairly regular in the absence of faults. Accordingly, the
training phase involves the creation of a set of extended
association rules, using the Frequent Itemset Mining [13]

(FIM) algorithm. We assume that the sensor stream (used

for training) has already been partitioned into distinct ADL

segments using a state-of-the-art event segmentation technique

(such as [14]–[16]).

A. Basic Association Rules

The input to the FIM algorithm consists of a set of segments,
the values the constituent sensors exhibit within that segment,

along with the annotated ground truth labels of the segments

(e.g., ‘Cooking’, ‘Eating’). We partition the segments into

γ ADL-specific master segment sets (one for each of the γ
distinct ADL labels), and FIM is independently applied to each
of these γ segment sets.

Association Rules: Given a specific master segment set, if the
sensors {s1, s2, s3, . . . , si, sj} co-occur in at least one of the
segments, the FIM rules (Rl’s) are written in the following
format:

Rl :: {s1, s2, s3, . . . , si} =⇒ sj :: support : confidence (1)

where s1, s2, . . . , si, sj are the sensors, (s1, s2, . . . , si) and sj
are the antecedents and the consequent respectively. Support
defines the fraction in the training dataset (activities) con-

taining {s1, s2, . . . , si} and sj , while confidence denotes the
conditional probability of sj occurring when s1, s2, . . . , si oc-
curs, confidence= support(X

⋃
Y)

/
support(X), where X =

{s1, s2, . . . , si}, and Y = sj .

B. Augmentation with Statistical Features

Unlike prior anomaly detection approaches, the DetectIF
process computes and creates augmented association rules
that include a few additional statistical features related to the

activation pattern of each sensor.
Statistical Features for Binary (Event) Sensors: If a sensor
(s) is a binary sensor (and s ∈ Rl), then the following values
are computed separately for each ADL segment: (a). sRl

non
&

sRl
noff

, the number of times the sensor s switched to the ON
and OFF states, respectively. (b). sRl

don
& sRl

doff
, the total time

duration (within the ADL segment) for which the sensor was

s in the ON and OFF states, respectively. Subsequently, we

compute the following 6 statistical features (for each sensor

s ∈ |S|), across all the segments in the master segment set:
(i) mean μ and std. dev. σ for the sRl

non
and sRl

noff
features;

(ii) the mode for the duration features (sRl
don

and sRl
doff

). Note

that the mode can be a set of distinct values, in case the
distribution is multi-modal.

Finally, we aggregate these features into a 6-element feature

vector sSF (Rl) (statistical features of s in a Rule Rl):

s
SF (Rl)

=
〈
μ
sRl
non , σ

sRl
non , μ

sRl
noff , σ

sRl
noff ,mode

sRl
don ,mode

sRl
doff

〉 (2)

Statistical Feature for Numeric (Value) Sensors: For value-
based sensors, we determine an appropriate ‘typical’ value

through quantization unlike binary sensors. First, the raw read-

ings are used to compute the standard deviation, which yields

the quantization unit (a bin size B). Subsequently, each sensor
reading (across all segments in the master segment set) is nor-

malized into the range (0, 100) by multiplying the raw value v

by the normalizing factor N(v) = 100∗ (v−min(S))
max(S)−min(S) (where

max(S),min(S) represent the largest and smallest observed
value of S), and then quantizing this normalized value into
one of the B bins through the transformation �N(v)∗B

100 �. The
‘typical value’ sSF (Rl) is then obtained by finding the mode

of this quantized distribution, i.e., sSF (Rl) =
〈
modes

Rl
bin

〉

C. Extended Association Rules

Finally, we augment each of the FIM-derived associa-

tion rules to incorporate these additional statistical features
(sSF (Rl)). The final extended rule is in the form of –

Rl :: {s1, s2, s3, . . . , si} =⇒ sj : support : confidence :

s
SF (Rl)
1 : s

SF (Rl)
2 : . . . : s

SF (Rl)
i : s

SF (Rl)
j

(3)

81

At the end of this training phase, we thus have a set of

extended association rules, one for each of the γ ADL labels.
We designate this set of rules as the master rule set.

IV. DETECTIF : IDENTIFYING & CORRECTING FAULTS

We now detail DetectIF’s mechanism for detecting and

classifying sensor faults into three types {missing, atypical,
spurious}, given a test ADL segment. We use three distinct
types as the atypical and spurious cases result in distinct sensor
cleaning techniques (Section IV-D). The Activity-Weighted
approach of DetectIF assumes that an existing state-of-the-

art activity recognition algorithm (e.g., [17]–[19]) is first used

to provide the probability pi that the segment is associated
with ADL Ai (i = {1, . . . , γ}). Figure 3 illustrates the steps
in our approach, while Algorithm 1 outlines the formal steps.

ALGORITHM 1: DetectIF: Fault Identification and Detection
Data: Sg: A list of test segments of sensor events
Rl: Extended Rulebase in the form of〈
Rl :: {sa, sa+1, . . . , sa+p, sa+p+1, . . . , sq} =⇒ sj : support :

confidence : s
SF (Rl)
a : s

SF (Rl)
a+1 : . . . : s

SF (Rl)
a+p : s

SF (Rl)
a+p+1 : . . . :

s
SF (Rl)
q : s

SF (Rl)
j

〉
//each Ac has its own set of Rl’s ∈ [RLAc].

for i← 0 to |Sg| do
S ← {s1, s2, s3, . . . , sn} //sensors in Sg
AC: List of predicted activities: {Ac1, Ac2, . . . , Acn}
for Ac← 0 to AC do

for Rl← 0 to |RL| do
Rulescore = supportRl ∗ 1/(1− confidenceRl)
If s = consequent(Rl) is Atypical
sAtypscore ← sAtypscore +Rulescore
ElseIf s = consequent(Rl) is Missing
sMissscore ← sMissscore +Rulescore
Else for s← 0 to |S| do

Determine if s ∈ S is Spurious
sSpuscore ← sSpuscore +Rulescore

end
sAtypscore = sAtypscore + sAtypscore ∗ P (Ac),
sMissscore = sMissscore + sMissscore ∗ P (Ac),
sSpuscore = sSpuscore + sSpuscore ∗ P (Ac)

end
end

end

A. Shortlisting [Rl]

Given a test activity segment Sg, we first shortlist a
set of relevant rules [RL] from the given master rule set
associated to the corresponding Activity (Ac), such that for

each rule Rl ∈ [RLAc], antecedents(Rl) ⊆ sensors(Sg)
(the set of sensors in Sg), and Regularity(s, Sg,Rl)= 1;
∀s ∈ antecedents(Rl).

Regularity(s, Sg,Rl): Given an activity segment Sg that

is associated with a shortlisted rule Rl (s ∈ Sg
& s ∈ Rl), the binary-valued regularity score checks

whether the behavior of sensor s during the segment

Sg conforms to its statistical values expressed in a rule
Rl. Assume that the activity segment Sg is given by

{sa, sa+1, · · · sa+i, sa+i+1, · · · , sa+k}, where sa to sa+i are

binary sensors and sa+i+1 to sa+k are numeric sensors. The

statistical features for this test segment can be represented by
{sSF (Sg)

a , s
SF (Sg)
a+1 , · · · sSF (Sg)

a+i , s
SF (Sg)
a+i+1 , · · · , sSg

a+k}.
For a binary sensor s ∈ Sg & s ∈ Rl , we define

Regularity(s, Sg,Rl) = 1 (Regularity=0 otherwise) if,(a) its
total number of ON/OFF switches is within the std. dev. of

the corresponding mean values, AND (b) its total ON/OFF

durations equal to one of the corresponding modes–i.e., if:

(
μ
sRl
non − σ

sRl
non

)
≤ s

Sg
non

≤
(
μ
sRl
non + σ

sRl
non

)
, and

(
μ
sRl
noff − σ

sRl
noff

)
≤ s

Sg
noff

≤
(
μ
sRl
noff + σ

sRl
noff

)
, and

s
Sg
don

∈ mode
sRl
don , and s

Sg
doff

∈ mode
sRl
doff

(4)

Similarly, for a value sensor s ∈ Sg and s ∈ Rl
Regularity(s, Sg,Rl) is 1 if its quantized value corresponds
to one of the modes defined in Equation 2–i.e., modes

Sg
bin ∈

modes
Rl
bin ; else Regularity = 0.

B. Per-Rule Sensor Fault Classification

If Regularity = 0, we infer that the sensor might poten-
tially be faulty and classify it into one of 3 types as follows.

Atypical: For each shortlisted rule Rl, if consequent(Rl)∈
sensors(Sg), and Regularity(consequent(Rl), Sg,Rl)=0, then
consequent(Rl) is classified as exhibiting an atypical fault. In
other words, a sensor is classified as atypical if its usage-
behavior deviates from its regular behavior (as defined in the

rule Rl) while the other ‘correlated’ sensors behave normally,
Its anomaly score (AS) is given by

AS(Rl) = [1/(1− confidenceRl) ∗ supportRl] (5)

–i.e., the deviation is considered more noteworthy if, in the

training master set, (a) the antecedent(Rl) and consequent(Rl)
have occurred more frequently (higher support) or (b) the

likelihood of observing consequent(Rl), given antecedent(Rl)
is higher (higher confidence). If the sensor s exhibits atypical
fault over multiple rules, the anomaly scores are summed up.

Missing: If consequent(Rl)/∈ sensors(Sg) and consequent(Rl)
is not already shortlisted as an atypical fault, then

consequent(Rl) is said to be missing, i.e., if a sensor expected
to be present in the segment Sg is entirely absent, it is

classified as missing. The anomaly score is calculated as before
(using Eq. 5) and summed up over all such matching rules.

Spurious: Finally, a sensor s is classified to be spurious if s ∈
sensors(Sg), but doesn’t occur in the antecedent set of any
of the shortlisted rules [RL] i.e. s /∈ antecedent(Rl), (∀Rl ∈
[RL]) nor in the consequents(RL). In other words, if a sensor is
observed to be present in the test segment but was not observed

concurrently with the other reporting sensors (in the Master

segment set during training), it is likely to be a false-alarm

fault. The anomaly score for all those shortlisted rules is then
added to compute the anomaly score.

Via this process, given a segment Sg and an associated
master segment set (i.e., a set of FIM-based rules for a specific
ADL, obtained by mining the ‘training’ data), DetectIF clas-
sifies a faulty sensor into precisely one of {spurious, atypical,
missing} categories and provides a corresponding anomaly
score.

82

C. Fault Detection via Aggregation Across All Activities

The final declaration of whether a sensor is faulty (and its

fault type) is then based on this overall anomaly score. Each
activity-specific master set (i.e., ∀Ac ∈ [AC]) has an asso-
ciated set of anomalous sensors along with their anomalous

score and category (Atypical/Missing/Spurious). Subsequently,
for a sensor s ∈ Ac, its activity-specific anomaly score is
multiplied (weighted) by the probability of occurrence of Ac,
and summed up across all activity labels to obtain a total

weighted anomaly score. (In case a sensor s observed in the
segment (s ∈ Sg) is classified as potentially atypical for
some ADLs and spurious for others, the final choice between

spurious and atypical is based on the dominant label among

all the ADLs.) Finally, sensors whose weighted score exceed
a pre-defined threshold (the threshold itself determined from

prior data by the shoulder-locating method) are declared to be

faulty.

D. Repairing the Sensor Stream

After identifying the faulty sensor data using DetectIF’s
detection techniques, we additionally repair the underlying
sensor stream as follows:

1) First, we clean spurious faults in a test segment Sg. A
sensor s classified as spurious fault has its events (or
values) removed from the underlying sensor stream.

2) Next, if a sensor s is identified as exhibiting a atypical or
missing fault, we select the extended association rule Rl
with maximum support that has the maximum number

of elements in (sensors(Rl)
⋂
sensors(Sg)), with the

condition s ∈ sensors(Rl). We then replace sensor
events sSg with the likely behavior denoted by sRl from

the extended association rule. In other words, we restore

the behavior of the sensors that undergo atypical or
missing fault in the test segment with their ‘statistically
representative’ parameter values specified in Rl.

In Section VI-C, we shall demonstrate that such DetectIF-
based repairing helps to improve the accuracy of ADL classi-

fication significantly.

V. METRICS & BASELINES

Before proceeding to the experimental results, we first

summarize the key evaluation metrics and algorithms used to

demonstrate the superior performance of DetectIF.

Fault Evaluation Metrics: We use the two standard metrics
precision and recall to evaluate the ability of DetectIF (and its
competing alternatives) to detect the various types (atypical,
spurious, or missing) of sensor faults.

A. Fault Detection Alternatives (Baseline Algorithms)

We shall compare DetectIF against two widely-used, state-
of-the-art fault detection algorithms.

CLEAN [6]: This algorithm is used primarily to detect spo-

radic faults (‘outliers’) in binary sensors. The approach uses

a hierarchical feature space of [timestamp, location, object,

user], over sensor activations, to quantify the similarity be-

tween any two sensors and cluster sensor events, subsequently

declaring smaller-sized clusters as ‘anomalies’. CLEAN also

assigns a greater weight (likelihood of being noisy) to an event

if the sensor (i) has been diagnosed to be faulty recently or

(ii) has historically exhibited higher failure frequency.

Idea [3]: This approach learns the functional redundancies
(correlation) among multiple sensors, and aims to improve the

robustness of ADL detection in the presence of permanent

sensor failures (‘missing’ faults). To identify sensor failures,

Idea assigns a sensor a continually updated rarity score which
reflects deviations from its expected behavior.

B. Activity Detection Algorithms

To demonstrate DetectIF’s ability to improve ADL detection
accuracy, we shall utilize the following 3 most popular, state-

of-the-art activity detection algorithms: (1) Naive Bayes (NBC)
Detector [17], (2) Hidden Markov Model (HMM) Detector
[18], and (3) Frequent Item set Mining (FIM) based De-
tector [3], [19], each of which operates on individual ADL
segments–i.e., over a collection of sensor events delineated
as belonging to a single ADL. Note that DetectIF is a sensor
error-correction mechanism, and is independent of the specific

ADL detection method chosen.

VI. EXPERIMENTAL RESULTS

In this section, we use the dataset described in Section

II (Table I) to evaluate the proposed DetectIF approach for

fault detection. We first inject a unified set of synthetic faults,

using the approach described in Section II-C–i.e., selecting a

maximum of 10% of sensors to be faulty in a single time slot,

equi-probably generating, exponentially-distributed (mean =

Ti, Ti ={1s, 10s, 20s, 40s, 1m, 2m, 5m, 10m, 15m, 20m, 30m,
60m}) spurious or missing faults. Using such synthetically
faulty data, we evaluate DetectIF’s ability to (a) detect the
different types of faults (missing, atypical and spurious) and

(b) delineate the corresponding fault duration, compared to the

respective baseline algorithms. We then show how DetectIF-
based cleaning of faults helps to improve the accuracy of

subsequent ADL classification significantly. We subsequently

apply DetectIF to an existing, unmodified dataset (where there
are no explicit fault annotations) to understand its impact–

i.e., see whether it can identify apparent faults that prior

techniques cannot, and quantify the resulting improvement in

ADL recognition accuracy.

A. Fault Detection Accuracy

While the sensor trace contains a combination of all 3 types

of faults (spurious, missing, and atypical), we analyze the fault

detection performance of each type separately.

1) Detecting spurious faults: Figure 4 reports the precision
of detecting spurious faults averaged across all smart homes,
as a function of the mean fault duration Ti. When Ti is 1, i.e.,
when the fault is sporadic, CLEAN (which explicitly targets

sporadic faults) performs slightly better than our approach

(see inset). However, as the Ti increases, DetectIF begins to

83

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 600 1200 1800 2400 3000 3600

P
re

ci
si

o
n

 (
%

)

Mean Fault Duration τi (seconds)

DetectIF
CLEAN

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 60 120 180 240 300

Fig. 4: Precision of detecting Spurious
fault in all smart home datasets for var-

ious Ti

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 600 1200 1800 2400 3000 3600

R
ec

al
l (

%
)

Mean Fault Duration τi (seconds)

DetectIF
CLEAN

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 60 120 180 240 300

Fig. 5: Recall of detecting Spurious
fault in all smart home datasets for var-

ious Ti

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 600 1200 1800 2400 3000 3600

P
re

ci
si

o
n

/R
ec

al
l (

%
)

Mean Fault Duration τi (seconds)

Precision
Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 60 120 180 240 300

Fig. 6: Precision and Recall of detecting

Atypical fault in all smart home datasets
for various Ti

TABLE II: Precision(Recall): Spurious fault detection across different smart homes (single & double resident) and sensors (binary &
numeric)

Ti =1 sec Ti =60 sec Ti =20 min Ti =60 min
CLEAN DetectIF CLEAN DetectIF CLEAN DetectIF CLEAN DetectIF

kA-kB-kC 0.82(0.4) 0.75(0.4) 0.81(0.45) 0.82(0.6) 0.61(0.85) 0.94(0.9) 0.56(0.68) 0.93(0.92)
Ar-Ml 0.75(0.33) 0.67(0.49) 0.8(0.5) 0.875(0.59) 0.65(0.75) 0.9(0.89) 0.55(0.74) 0.92(0.91)
T1-T2 0.75(0.4) 0.7(0.37) 0.8(0.45) 0.81(0.5) 0.6(0.75) 0.95(0.8) 0.56(0.65) 0.93(0.87)

TABLE III: Precision(Recall): Missing fault detection across different smart homes (single & double resident) and sensors (binary &
numeric)

Ti =1 sec Ti =60 sec Ti =20 min Ti =60 min
Idea DetectIF Idea DetectIF Idea DetectIF Idea DetectIF

kA-kB-kC 0(0) 0.5(0) 0.2(0.25) 0.67(0.5) 0.67(0.75) 0.88(0.78) 0.82(0.81) 0.90(0.82)
Ar-Ml 0(0) 0.55(0) 0.25(0.25) 0.71(0.51) 0.65(0.78) 0.88(0.79) 0.88(0.83) 0.89(0.83)
T1-T2 0(0) 0.42(0.1) 0.2(0.25) 0.69(0.45) 0.67(0.68) 0.83(0.75) 0.82(0.82) 0.85(0.79)

outperform CLEAN. More specifically, our precision stabilizes

for Ti > 10 minutes, while CLEAN’s performance continues
to deteriorate. This is because with a longer fault duration, the

fault-likelihood (weightage) assigned by CLEAN increases,

implying that the sensor continues to be flagged as faulty

(increasing the false-positive rate) even when the transient

failure has ended. Table II plots the precision values separately

for different types of smart homes (single/double resident)

and sensors (binary/binary+numeric). We see that DetectIF
performs significantly well detecting spurious faults in terms
of precision (up to 95%) in all types of smart homes.

Figure 5 shows corresponding averaged recall values, while

Table II details the changes in recall for individual types of

homes (in brackets). We see that DetectIF’s recall grows as Ti
increases, stabilizing above 80% once Ti exceeds 10 minutes.
Overall, DetectIF outperforms CLEAN across a wider range
of failure behavior.

2) Detecting missing faults: Figures 7 and 8 show the

precision and recall results for missing fault detection averaged
over all smart homes. Similarly, the precision (recall) values

for individual smart homes types are reported in Table III.

In this case, we compare our approaches against Idea (which
explicitly targets such faults). DetectIF has both high precision
(∼88%) and high recall (∼80%) as compared to Idea when the
sensor readings are missing for even modestly long durations

(≥ 20 min). DetectIF outperforms Idea, especially when the
faults are sporadic or highly transient (lower values of Ti)—in
an extreme situation, Idea’s precision/recall = 0 when Ti = 1

sec. Indeed, Idea is built to detect permanent missing faults–

accordingly, its performance improves only when the fault

durations are longer (e.g., Ti = 60 min).
In addition to sporadic/transient missing faults, we also

emulate permanent missing faults in our sensor stream by

emulating ti = ∞ (i.e., once failed, the sensor stays faulty

for the rest of the smart home trace) for 5% of the total

sensors. We evaluated DetectIF using data from 3 separate

representative smart homes, comparing it with Idea in terms

of the time to detection. As shown in Figure 9, DetectIF detects
the missing sensor within an average of 15-20 minutes for all

3 environments, whereas Idea takes >1.5 hours on average
to detect such missing sensors. It appears that DetectIF’s
use of additional statistical features allows it to identify such

faults much faster than Idea, which merely utilizes the binary

absence/presence of a sensor during a specific ADL.

3) Detecting atypical faults: As explained in Section II,
we also introduced a third type of fault – atypical, which
has not been considered in prior work. Atypical faults are

essentially those where a sensor that is expected to fire during

an ADL (i.e., is part of that ADL’s rule antecedents) does fire,

but its statistical behavior is abnormal. Such anomalies are
detected due to the additional statistical features employed by

DetectIF, which prior approaches (such as CLEAN or Idea)
fail to detect. Accordingly, we show the precision and recall

results of only DetectIF in Figures 6. In addition, Tables IV
shows the precision (recall) for individual types of homes and

sensors.

84

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 600 1200 1800 2400 3000 3600

P
re

ci
si

o
n

 (
%

)

Mean Fault Duration τi (seconds)

DetectIF
Idea

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 60 120 180 240 300

Fig. 7: Precision of detecting Missing

fault in all smart home datasets

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 600 1200 1800 2400 3000 3600

R
ec

al
l (

%
)

Mean Fault Duration τi (seconds)

DetectIF
Idea

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 60 120 180 240 300

Fig. 8: Recall of detecting Missing fault

in all smart home datasets

 0

 0.5

 1

 1.5

 2

 2.5

kB Ar T1

D
et

ec
ti

o
n

 T
im

e
(H

o
u

r)

Dataset

Idea
DetectIF

Fig. 9: Time taken to detect failed sen-

sors across three smart home datasets

TABLE IV: Precision(Recall): Atypical fault detection across dif-
ferent smart homes (single & double resident) and sensors (binary &
numeric)

Ti =1 sec Ti =60 sec Ti =20 min Ti =60 min
kA-kB-kC 0.5(0.4) 0.77(0.53) 0.98(0.96) 0.95(0.95)

Ar-Ml 0.48(0.4) 0.75(0.6) 0.96(0.93) 0.93(0.92)
T1-T2 0.45(0.35) 0.72(0.45) 0.93(0.76) 0.88(0.8)

As can be seen, both precision and recall improve gradually

as Ti is larger, i.e., our approach improves as the failure
duration increases (fault duration becoming transient rather

than random), and stabilizes in case of permanent faults,

obtaining up to ∼95% precision and ∼93% recall in single

user smart homes (both binary and binary+numeric sensor-

equipped). We note that, the regularity feature plays a vital
role in identifying this type of faults. The reason being it is

able to flag a sensor as faulty (based on the abnormality of

its ON/OFF transitions and duration) even when it is normally

expected to be present in an ADL.

TABLE V: Fault duration IoU score for various fault types
Missing Spurious Atypical

Ti = 40s. 5m. 15m. 40s. 5m. 15m. 40s. 5m. 15m.
Aob 0.52 0.57 0.69 0.74 0.76 0.88 0.63 0.71 0.8
Awt 0.65 0.69 0.77 0.8 0.89 0.91 0.78 0.87 0.89

B. Inferring Fault Duration

Besides evaluating the detection accuracy, we also check

how accurate DetectIF is in delineating the total duration

(i.e., (start, end) times) of such faults. To investigate this,

we conducted experiments where we injected faults with 3

different mean durations (Ti= {40 secs, 5 mins, 15 mins}).
To evaluate the accuracy of duration estimation, we utilize

the IoU (Intersection over Union) score–i.e., the ratio of the

intersection of the predicted and actual fault durations to the

the union of these time intervals.

From Table V, we see that DetectIF perform poorly when

the fault duration is small, and the fault type is missing. A
missing sensor is one that is effectively absent during an entire
ADL segment; accordingly, its fault duration (estimated as

the time from its previous activation till the next activation)

implicitly spans across multiple ADL segments. The estimated

fault duration for missing faults is thus larger than 6-10 mins

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60

D
et

ec
ti

o
n

 A
cc

u
ra

cy
 (

%
)

Duration (minute)

Original data
Noise injected data

Noise removed data(DetectIF)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

NBC

 0 10 20 30 40 50 60

HMM

Fig. 10: ADL accuracy (noisy vs. cleaned data): FIM, NBC

and HMM Activity Detection (the latter two in the inset)

(the typical duration of most ADL segments), resulting in low

IoU for short-lived failures. However, this IoU score increases

as Ti increases. On the other hand, we are able to isolate
atypical and spurious faults much accurately, achieving IoU
values of ∼90% across all fault durations.

C. Impact on ADL Detection

To measure the impact of sensor faults (and the subsequent

repair of such faults) on the ultimate goal of activity detection,

we compared ADL detection accuracy before and after the

application of DetectIF to detect and repair sensor faults (see
Section IV-D). Figure 10 plots the results for the 3 different

ADL detection algorithms described in Section V-B, averaged

over all datasets. The top line in three plots signifies the

activity detection performance in the original data, without

any additional synthetically-injected sensor faults, thus repre-

senting the best possible ADL detection performance.

As we see, initially when Ti < 60 sec., ADL detection is
relatively unaffected, even if the underlying faults (noise) are

not cleaned. In other words, sporadic faults do not cause any
significant impairment to ADL detection accuracy. However,

as the mean fault duration Ti increases, the ADL detection
accuracy degrades significantly (dropping to below 50%).

However, when we apply DetectIF to clean the faults, we see
that all 3 algorithms exhibit significant performance improve-

ment, achieving accuracy that is virtually indistinguishable

from the original sensor stream (the one without any added

synthetic faults).

85

D. Practical Impact on Existing Datasets
We finally extend our experiments to study the effectiveness

of DetectIF on the original datasets–i.e., without injecting any
synthetic failure data. As the original datasets do not have any

explicit fault annotation, we can study this effectiveness only

indirectly, by quantifying the number of (apparent) faults de-

tected and the resulting impact on ADL recognition accuracy.

For conciseness of exposition, we consider the kB (KasterenB)

dataset (which is known to be inherently noisy) and apply De-
tectIF on the unmodified sensor stream to identify additional

likely faults. For comparison, we use prior fault detection

approaches—{CLEAN, Idea}-as competitive baselines.
On manually examining the sensor patterns flagged out as

anomalous by DetectIF, we observe the likely occurrence of
both permanent and transient faults. For example, sensor 28,
which is installed in the kitchen, is constantly ‘on’ during the

last day of data collection. As an another example, on Day 5,

DetectIF detects a missing “Toilet Door” sensor for the “Use
Toilet” activity. On further inspection we find that, the door

was previously closed in the last “Go to Bed” activity, and

reported to be open in the subsequent “Take Shower” activity

20 minutes later, but was apparently undisturbed during the

intervening “Use Toilet” activity!

 0

 20

 40

 60

 80

 100

Brush Teeth Go to
 Bed

Prepare Dinner Get a
 Drink

Prepare Brunch

De
te

ct
io

n
Ac

cu
ra

cy
 (%

)

ADL

(1,0,3)

(0,0,1)

(0,1,4)

(0,0,2)

(1,0,2)

Original
CLEAN

Idea
DetectIF

Fig. 11: ADL Detection Accuracy with/without fault detection

& repair on kB dataset. The triplet on each bar represents the

number of unique sensor faults identified by (CLEAN, Idea,
DetectIF) respectively.

We measure how many such unique sensor faults (spu-

rious+missing) DetectIF is able to identify, comparing this

with CLEAN (which detects only spurious presence) and Idea
(which detects only missing presence). As in Section VI-C,

we also quantify the resulting improvement in ADL detection

after repairing such identified faults. Figure 11 presents the
results for the kB dataset for some hand-picked activities: the

triplet on each bar represents how many unique sensor faults
are identified by (CLEAN, Idea, DetectIF) respectively. We see
that DetectIF is always able to detect a larger number of faults
compared to CLEAN and IDEA, and is able to substantially
improve ADL detection accuracy. More specifically, DetectIF
can improve ADL detection accuracy by up to 42% compared

to that achieved in the absence of any fault detection. Also,

ADL recognition accuracy with DetectIF is, on average, 30%
higher than that achieved with either CLEAN or Idea-based

fault detectors.

VII. RELATED WORK

Fault Detection in Wireless Sensor Networks: The prob-

lem of fault detection has received considerable attention in

wireless sensor networks. Much of this work is restricted

either to purely homogeneous sensor networks or to handling

only numeric sensors [20]–[23]. [24] proposes an ARIMA

based framework to detect transient faults, where significant

deviations from time-series predictions of sensor values are

flagged as potential faults. Alternately, [25] exploit Bayesian

methods, built upon spatiotemporal relationships, to detect

faults. All these solutions do not consider heterogeneous

IoT/sensor deployments, containing a mix of numeric and

event-driven sensors.

Several papers [26]–[28] have applied a packet monitoring

based approach for network-level detection of ‘missing’ faults.

There are a few recent research on data failures of heteroge-

neous sensor networks, albeit without the generality of our

DetectIF approach. [29] deploys special instrumentation for

monitoring sensor platform parameters to detect sensor faults

in an agricultural setting. [11] assumes an abstract sensor

model where multiple sensors measure the same variable, and

the inconsistencies among these measurements are used to

detect transient faults. Obviously, in instrumented smart homes

settings such assumptions do not hold.

Fault Detection in Ambient Assisted Living: As explained in
Section V, CLEAN [6] proposes an outlier detection technique

to detect sporadic and systematic spurious faults, whereas Idea

[3] proposes a permanent missing failure detection method.

In Section VI, we have already compared our results with

both CLEAN and Idea. DICE [4] proposes a sensor fault

detection method based on static modeling of sensor transition

probabilities. While DICE technically detects transient faults,

it can do so only when certain transition rules, based on these

probability models, are violated. Consequently, it often takes

up to 30 minutes to detect and identify a fault. DetectIF, on
the other hand, detects faults independently for each distinct

ADL segment. Moreover, sensor correlations and transitions

often vary dramatically based on activities and time of day.

Hence, without considering the complete range of activation

patterns and their contexts, such static probability models

are likely to be less useful. SMART and 6thsense [12], [30]

perform context-aware fault detection by employing multiple

classifiers, each learning activity labels from different subsets

of sensors and comparing their outputs. The complexity for

constructing the classifier profile grows exponentially with

the number of sensors. Further, both approaches treat the

classifiers as black boxes; thus, they are able only to detect a

single failure at a time.

VIII. CONCLUSION & FUTURE DIRECTIONS

We have presented DetectIF, a novel unified fault detection
approach that can reliably detect a comprehensive set of sensor

faults of various durations (sporadic, transient, permanent) and

types (missing, spurious, atypical). DetectIF builds association
rules for fault detection via spatiotemporal correlation of mul-

tiple sensors and ADL and augments such rules with several

86

features related to the patterns of individual sensor activation.

DetectIF results in significant performance improvement in

real-world smart home benchmark datasets: when tested with

synthetic fault data, it improves the accuracy of sensor fault

detection by ∼30-65%, as well as improves the accuracy of
eventual ADL detection by over 30%. Additionally, applying

DetectIF on existing smart home datasets allows ADL recog-
nition algorithms to achieve 30% higher accuracy, compared

to the use of alternative fault detection techniques. Overall,

DetectIF provides the previously-missing ability to detect

atypical (a category of false-alarms where the anomaly is in
the firing pattern of the sensor) faults; its performance gains
are more pronounced when such faults last for moderately-

long duration (several minutes to hours).

There are, however, several possible future directions for

improvement. At present, DetectIF does not utilize sensor-

specific features (e.g., its mean-time-to-failure, constant off-

sets, or its voltage response [29]) to effectively define a-priori

failure likelihoods; including that in the model (e.g., by adding

a multiplicative term to Equation 5) would be an immediate

future work. Moreover, DetectIF currently detects faults in

an independent, memory-less fashion on each ADL segment.
For faults that are longer in duration or have specific tem-

poral patterns (e.g., periodic every afternoon), incorporating

cross-segment correlation should further improve DetectIF’s
performance. Additionally, it will be useful to combine user

behavior-specific features, and contextually categorize abnor-

mal sensor patterns (e.g. sensor failure due to ambient change,

due to behavior change, or due to a serious health crisis for

instance fall/fire detection) to further enhance the capabilities

of overall smart home assistance system.

IX. ACKNOWLEDGEMENT

We thank Intel (India) for supporting the research through

PhD fellowship program.

REFERENCES

[1] V. Rialle, C. Ollivet, C. Guigui, and C. Herv, “What do family caregivers
of alzheimer’s disease patients desire in smart home technologies?”
Methods of information in medicine, vol. 47, pp. 63–69, 2008.

[2] S. Sikkes, E. De Lange-de Klerk, Y. Pijnenburg, and P. Scheltens, “A
systematic review of instrumental activities of daily living scales in
dementia: room for improvement,” Journal of Neurology, Neurosurgery
& Psychiatry, vol. 80, no. 1, pp. 7–12, 2009.

[3] P. A. Kodeswaran, R. Kokku, S. Sen, and M. Srivatsa, “Idea: A
system for efficient failure management in smart iot environments,” in
Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2016, pp. 43–56.

[4] J. Choi, H. Jeoung, J. Kim, Y. Ko, W. Jung, H. Kim, and J. Kim,
“Detecting and identifying faulty iot devices in smart home with context
extraction,” in 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2018, pp. 610–621.

[5] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair,
S. Zahedi, E. Kohler, G. Pottie, M. Hansen, and M. Srivastava, “Sensor
network data fault types,” ACM Transactions on Sensor Networks
(TOSN), vol. 5, no. 3, p. 25, 2009.

[6] J. Ye, G. Stevenson, and S. Dobson, “Fault detection for binary sensors
in smart home environments,” in Pervasive Computing and Communica-
tions (PerCom), 2015 IEEE International Conference on. IEEE, 2015,
pp. 20–28.

[7] M. Flöck, Activity monitoring and automatic alarm generation in AAL-
enabled homes. Logos Verlag Berlin GmbH, 2010.

[8] S. Munir and J. A. Stankovic, “Failuresense: Detecting sensor failure
using electrical appliances in the home,” in Mobile Ad Hoc and Sensor
Systems (MASS), 2014 IEEE 11th International Conference on. IEEE,
2014, pp. 73–81.

[9] Benchmark datasets; datasets for activity recognitions. [Online].
Available: https://sites.google.com/site/tim0306/datasets

[10] Wsu casas dataset. [Online]. Available:
http://ailab.wsu.edu/casas/datasets/

[11] J. Park, R. Ivanov, J. Weimer, M. Pajic, S. H. Son, and I. Lee, “Security
of cyber-physical systems in the presence of transient sensor faults,”
ACM Transactions on Cyber-Physical Systems, vol. 1, no. 3, p. 15, 2017.

[12] K. Kapitanova, E. Hoque, J. A. Stankovic, K. Whitehouse, and S. H.
Son, “Being smart about failures: assessing repairs in smart homes,” in
Proceedings of the 2012 ACM Conference on Ubiquitous Computing.
ACM, 2012, pp. 51–60.

[13] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in Acm sigmod record, vol. 22,
no. 2. ACM, 1993, pp. 207–216.

[14] A. S. Crandall and D. J. Cook, “Using a hidden markov model
for resident identification,” in 2010 Sixth International Conference on
Intelligent Environments. IEEE, 2010, pp. 74–79.

[15] M. Mallick, P. Kodeswaran, S. Sen, R. Kokku, and N. Ganguly, “Tsfs:
An integrated approach for event segmentation and adl detection in iot
enabled smarthomes,” IEEE Transactions on Mobile Computing, 2018.

[16] N. Roy, A. Misra, and D. Cook, “Infrastructure-assisted smartphone-
based adl recognition in multi-inhabitant smart environments,” in 2013
IEEE International Conference on Pervasive Computing and Communi-
cations (PerCom). IEEE, 2013, pp. 38–46.

[17] T. van Kasteren and B. Krose, “Bayesian activity recognition in res-
idence for elders,” in 3rd IET International Conference on Intelligent
Environments (IE 07), 2010, pp. 209–212.

[18] L. Liao, D. Fox, and H. Kautz, “Location-based activity recognition
using relational markov networks,” in Proc. Int. Joint Conf. Artif. Intell.,
2005.

[19] P. Rashidi, D. Cook, L. Holder, and M. Schmitter-Edgecombe, “Dis-
covering activities to recognize and track in a smart environment,”
Knowledge and Data Engineering, IEEE, vol. 23, pp. 527–539, 2010.

[20] M. Mourad and J.-L. Bertrand-Krajewski, “A method for automatic
validation of long time series of data in urban hydrology,” Water Science
and Technology, vol. 45, no. 4-5, pp. 263–270, 2002.

[21] N. Ramanathan, T. Schoellhammer, E. Kohler, K. Whitehouse, T. Har-
mon, and D. Estrin, “Suelo: human-assisted sensing for exploratory
soil monitoring studies,” in Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems. ACM, 2009, pp. 197–210.

[22] L. Fang and S. Dobson, “Unifying sensor fault detection with energy
conservation,” in International Workshop on Self-Organizing Systems.
Springer, 2013, pp. 176–181.

[23] S. Guo, Z. Zhong, and T. He, “Find: faulty node detection for wire-
less sensor networks,” in Proceedings of the 7th ACM conference on
embedded networked sensor systems. ACM, 2009, pp. 253–266.

[24] A. B. Sharma, L. Golubchik, and R. Govindan, “Sensor faults: Detection
methods and prevalence in real-world datasets,” ACM Transactions on
Sensor Networks (TOSN), vol. 6, no. 3, p. 23, 2010.

[25] K. Ni and G. Pottie, “Bayesian selection of non-faulty sensors,” in
Information Theory, 2007. ISIT 2007. IEEE International Symposium
on. IEEE, 2007, pp. 616–620.

[26] R. N. Duche and N. P. Sarwade, “Sensor node failure detection based
on round trip delay and paths in wsns,” IEEE Sensors journal, vol. 14,
no. 2, pp. 455–464, 2014.

[27] I. C. Paschalidis and Y. Chen, “Statistical anomaly detection with sensor
networks,” ACM Transactions on Sensor Networks (TOSN), vol. 7, no. 2,
p. 17, 2010.

[28] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin,
“Sympathy for the sensor network debugger,” in Proceedings of the
3rd international conference on Embedded networked sensor systems.
ACM, 2005, pp. 255–267.

[29] T. Chakraborty, A. U. Nambi, R. Chandra, R. Sharma, M. Swaminathan,
Z. Kapetanovic, and J. Appavoo, “Fall-curve: A novel primitive for
iot fault detection and isolation,” in Proceedings of the 16th ACM
Conference on Embedded Networked Sensor Systems. ACM, 2018,
pp. 95–107.

[30] A. K. Sikder, H. Aksu, and A. S. Uluagac, “6thsense: A context-aware
sensor-based attack detector for smart devices,” in 26th {USENIX}
Security Symposium ({USENIX} Security 17), 2017, pp. 397–414.

87

	DETECTIF: Unified detection and correction of IoT faults in smart homes
	Citation

	DETECTIF : Unified Detection & Correction of IoT Faults in Smart Homes

