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ABSTRACT
Preference data is a form of dyadic data, with measurements associ-
ated with pairs of elements arising from two discrete sets of objects.
These are users and items, as well as their interactions, e.g., ratings.
We are interested in learning representations for both sets of ob-
jects, i.e., users and items, to predict unknown pairwise interactions.
Motivated by the recent successes of deep latent variable models,
we propose Bilateral Variational Autoencoder (BiVAE), which arises
from a combination of a generative model of dyadic data with two
inference models, user- and item-based, parameterized by neural
networks. Interestingly, our model can take the form of a Bayesian
variational autoencoder either on the user or item side. As opposed
to the vanilla VAEmodel, BiVAE is “bilateral”, in that users and items
are treated similarly, making it more apt for two-way or dyadic data.
While theoretically sound, we formally show that, similarly to VAE,
our model might suffer from an over-regularized latent space. This
issue, known as posterior collapse in the VAE literature, may appear
due to assuming an over-simplified prior (isotropic Gaussian) over
the latent space. Hence, we further propose a mitigation of this issue
by introducing constrained adaptive prior (CAP) for learning user-
and item-dependent prior distributions. Empirical results on sev-
eral real-world datasets show that the proposed model outperforms
conventional VAE and other comparative collaborative filtering
models in terms of item recommendation. Moreover, the proposed
CAP further boosts the performance of BiVAE. An implementation
of BiVAE is available on Cornac recommender library.
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1 INTRODUCTION
Preference data in collaborative filtering (CF) typically consists
of a set of users, a set of items, and a set of interactions, e.g., rat-
ings, clicks, purchases between some user-item pairs. Prevalent

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM ’21, March 8–12, 2021, Virtual Event, Israel
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8297-7/21/03. . . $15.00
https://doi.org/10.1145/3437963.3441759

and pervasive, it is found in many user-oriented applications in
e-commerce and social media. The goal of representation learning
[2] is to capture and encode latent patterns of observed data that
can prove useful in downstream tasks, e.g., clustering, prediction,
visualisation. In the case of preference data, it is to learn suitable
representations that would help in recommending items to users.

Preference data is quintessentially dyadic data. These are mea-
surements associated with pairs of outcomes arising from cate-
gorical random variables [16]. Naturally we seek representations
for both sides of dyadic data (users and items) whose combina-
tion would be capable of explaining user-item affinities. To tackle
this objective, latent factor or matrix factorization models are pre-
dominant in the context of CF [11, 17, 23, 32, 40]. The latter owe
their success mainly to their simplicity, efficiency, effectiveness, and
extensibility— one can easily combine them, for instance, to incorpo-
rate side information [28, 35]. Nevertheless, this category of models
is also known to suffer from a limited modeling capacity as it can
only capture linear patterns both in the data and latent spaces. To
go beyond this limitation, there has recently been a surge of interest
in using non-linear neural-based approaches [14, 26, 41, 48, 51].

Although these models have shown promising improvements
over traditional factorization models in many cases, most of them
may turn out to be challenging to train on sparse CF data due
to their complexity combined with their deterministic nature. In
fact, contrary to the data (e.g., images) arising in domains such as
computer vision where deep neural architectures are successful,
preference data is usually sparse. That is, the numbers of users and
items are large—ranging from tens of thousands to millions—while
the observed dyads are relatively few, often less than 1% out of all
possible interactions, posing serious difficulties for the estimation
and generalization of deep neural networks.

Notably, Variational Autoencoder (VAE) model [22] has been
recently applied to CF with strong performance improvements
over several competitive approaches [26]. One plausible explana-
tion for the good results achieved by VAE on the CF task is its
probabilistic nature. Indeed, the key difference of this model with
neural networks is that VAE does not seek to learn deterministic
representations, but rather learns distributions over these represen-
tations, thereby allowing it to account for uncertainty in the latent
space. The latter property is particularly beneficial when dealing
with sparse data where few observations are available. Despite its
remarkable performance, VAE was originally designed for vector
based-data, and thus is not in complete fidelity to the two-way na-
ture of dyadic data, i.e., only users are explicitly represented, while
items are treated as features in a vector space of users. In conse-
quence of this mismatch between VAE and the two-way nature of
preference data, it is not clear how one would extend such model
on the item side in a principled way, for example to represent side
information such as item textual descriptions, images, etc.
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As remedy to the above drawback, we propose Bilateral Varia-
tional Autoencoder (BiVAE) – our first contribution. It consists of a
generative model of user-item interactions (or dyads), and a pair of
inference models (user- and item-based respectively) parameterized
usingmultilayer neural networks, all combined together in a unified
framework to auto-encode dyadic preference data. Interestingly, Bi-
VAE can be expressed as a Bayesian variational autoencoder either
on the user or item side. As opposed to the vanilla VAE, the proposed
BiVAE is “bilateral” in that it treats users and items symmetrically,
making it more apt for two-way or dyadic data. In particular, BiVAE
can capture uncertainty on both sides of dyadic data, which would
improve its robustness and performance on sparse preference data,
compared to classical one-sided variational autoencoders.

Inherited from the variational autoencoders family is an issue of
over-regularized latent space, known in the literature as posterior
collapse, i.e., the posterior is set equal to the prior. This phenome-
non is largely due to assuming an over-simplified prior – isotropic
Gaussian – over the latent space. Its occurrence causes the model to
use only some part of its capacity, which may lead to underfitting
or even uninformative representations. In this work, we further
propose a mitigation of this issue by adopting adaptive user- and
item-dependent prior distributions – our second contribution. To fit
BiVAE to observations, we derive a scalable stochastic alternating
optimization procedure intertwining the optimization of a user-
and an item-based objective. As the third contribution, we conduct
extensive experiments on several real-world datasets, showing that
the proposed model outperforms strong CF models, including VAE,
in terms of item recommendation. Moreover, we empirically demon-
strate that the proposed priors further boost the performance of
BiVAE and alleviate the posterior collapse phenomenon.

2 RELATEDWORK
Our contributions lie in the intersection of several research topics,
including latent factor models, neural networks, and variational
autoencoders for collaborative filtering.

Latent Factor Models. Matrix factorization (MF) models are
extensively studied [11, 23, 40, 42] in collaborative filtering. Existing
variants differ in several ways, including the assumptions on the
latent and data spaces (e.g., Gaussian [40] or Poisson [9, 11]), the
nature of training objective (pointwise (scoring) loss [17, 40] or
pairwise (ranking) loss [32]), etc. The proposed model BiVAE, can
be viewed as a generalization of MF models. That is, beginning from
our formulation and making some restrictive assumptions one can
recover instances of probabilistic MF [9, 11, 40] (see Section 3.3). In
this work, we focus on the pointwise approach for learning.

Neural Networks for Collaborative Filtering. Several works
have considered using neural networks in CF. For instance, while
Sedhain et al. [41], who rely on standard (deterministic) autoen-
coders, point out that one could model either side of CF data, they
consider two different models, namely user-based and item-based
autoencoders. Our work is different from two perspectives. First,
we consider a probabilistic approach to autoencoders. Second, our
model BiVAE auto-encodes users and items simultaneously under
a unified objective, while in [41], the user and item’s autoencoders
are independent and separate models. Along the same line, [48] uses
a user-based denoising autoencoder (DAE), and further extends

DAE with user-specific embeddings by introducing an additional
input node. More recently, [14, 46] introduce a neural architecture
for CF, which can be viewed as a non-linear extension of matrix
factorization. They also explicitly model both users and items, and
explore different ways of combining their representations to explain
observations, including the widely used scalar product, multilayer
perceptron, and the combination of both. In our experiments, we in-
clude [14] as a baseline. There are also methods that rely on neural
network to represent auxiliary data [30, 47], but these approaches
still rely on standard MF to model user-item interactions.

VAE for Collaborative Filtering. Despite its success in data
generation and representation, VAE [22] receive relatively scant at-
tention in the CF literature. A recent work of Liang et al. [26] ignites
interest on VAE for CF1, by demonstrating performance improve-
ments over competitive baselines. Concurrently to [26], Lee et al.
[24] also consider the VAE framework for CF, but the latter focus on
conditional and joint VAE formulation to incorporate user auxiliary
data. Karamanolakis et al. [19] also rely on VAE for personalized
recommendation and further explore user-dependant priors. More
recently, Kim and Suh [20] investigate VAE with the VampPrior
[45]. Lobel et al. [27] propose an actor-critic reinforcement learning
method to train VAE to approximately maximize a ranking-based
metric. Shenbin et al. [43] explore different regularization strategies
to improve VAE for collaborative filtering. These works differ from
ours; they still adopt the original formulation of VAE, which is
asymmetric and unfaithful to the two-way nature of dyadic data,
i.e., only users are explicitly represented, while items are treated as
features in a vector space of users. In principle, some of the above
methods (e.g., [27, 43]) can also be applied to the proposed BiVAE
model for further improvements, which we leave to future work.

Posterior Collapse in VAE Models. Significant efforts have
been expended on alleviating the posterior collapse issue, which
may affect VAE in practice [1, 8]. These include annealing the
problematic KL term in the variational lower bound [6, 26, 44],
weakening the decoder to force a reliance on the latent represen-
tations [6, 49], replacing the KL term by another regularizer, e.g.,
adversarial one [29, 50], or adopting rich priors [45, 50]. We follow
the latter line of efforts and act on the priors to mitigate the poste-
rior collapse issue. Differently from previous work using a shared
prior across data points, we consider heterogeneous, i.e., user- and
item-dependent priors, that can adapt during training. In particular
we build such prior using external features, extracted from available
user and item side information. In the context of one-sided VAE,
Karamanolakis et al. [19] also explore the use of heterogeneous user
priors built from external user features. However, in their case the
priors are held fixed during learning. Moreover, while they make a
mention that such priors may reduce the effect of posterior collapse,
they have not reported any experimental verification on this aspect.

3 METHODOLOGY
We introduce a new hierarchical generative model of dyads (user-
item interactions) and along with it the corresponding user and
item inference models, parameterized using neural networks. When
combined together, the generative and inference models give rise
to a variational autoencoder either on the user or item side.
1Note that some works have considered VAE to represent auxiliary data [25, 36], but
not to model user-item interactions. In this work, we are interested in the latter.



3.1 Bilateral Variational Autoencoder
The data that we seek to learn from is the user-item preference
matrix, of size𝑈 × 𝐼 , denoted R = (𝑟𝑢𝑖 ), where 𝑟𝑢𝑖 is the interaction,
e.g., integer rating, between user 𝑢 and item 𝑖 . We use the notation
r𝑢∗ to refer to the row in R corresponding to user 𝑢. Similarly, r∗𝑖
refers to the 𝑖th column of R. The latent variables are the per user
and item representations denoted respectively 𝜽𝑢 , 𝜷𝑖 ∈ R𝐾 .

Generative Model of Dyads. Figure 1 (middle) depicts our
generative model in plate notations. The latent variables are drawn
from prior distributions.Without loss of generality, we use Gaussian
priors with diagonal covariance matrices. We further follow the
common practice and adopt the standard multivariate isotropic
Gaussian as the prior over all user/item latent variables. That is,
𝑝 (𝜽𝑢 ) = N(0, I) and 𝑝 (𝜷𝑖 ) = N(0, I), ∀𝑖, 𝑢.

Conditional on the latent variables, the observations are drawn
from a univariate exponential family,

𝑝 (𝑟𝑢𝑖 |𝜽𝑢 , 𝜷𝑖 ) = EXPFAM(𝑟𝑢𝑖 ;𝜂 (𝜽𝑢 ; 𝜷𝑖 ;𝜔)) (1)
= ℎ(𝑟𝑢𝑖 ) exp{𝜂 (𝜽𝑢 ; 𝜷𝑖 ;𝜔)𝑟𝑢𝑖 − 𝑎(𝜂 (𝜽𝑢 ; 𝜷𝑖 ;𝜔))}

where ℎ(·), 𝜂 (·) and 𝑎(·) denote respectively the base measure,
natural parameter and log-normalizer of the exponential family [3,
7]. For simplicity, we have assumed that 𝑟𝑢𝑖 is the sufficient statistic
by itself. This form of the exponential family still encompassesmany
popular univariate distributions, including the Poisson, Bernoulli,
Gaussian with unit variance, Gamma with fixed shape parameter,
etc. Therefore, our framework can accommodate various types of
preference data, such as counts, binary, continuous, etc. We further
parameterize the conditional likelihood in such a way that,

E(𝑟𝑢𝑖 |𝜽𝑢 , 𝜷𝑖 ) =
𝑑𝑎(𝜂)
𝑑𝜂

= 𝑔𝜔 (𝜽𝑢 ; 𝜷𝑖 ) (2)

where 𝑔𝜔 (·) is some differentiable function (e.g., inner product,
neural network, etc.) parameterized by 𝜔 , combining the latent
representations to output the mean of the observation 𝑟𝑢𝑖 .

As a concrete example, consider the Poisson distribution, which
we use in our experiment,

𝑝 (𝑟𝑢𝑖 |𝜽𝑢 , 𝜷𝑖 ) =
1
𝑟𝑢𝑖 !

exp{𝑟𝑢𝑖 log𝑔𝜔 (𝜽𝑢 ; 𝜷𝑖 ) − 𝑔𝜔 (𝜽𝑢 ; 𝜷𝑖 )}. (3)

We notice that ℎ(·) = 1/(𝑟𝑢𝑖 !), 𝜂 (·) = log𝑔𝜔 (𝜽𝑢 ; 𝜷𝑖 ), and the log-
normalizer 𝑎(𝜂) = exp𝜂 (·) = 𝑔𝜔 (𝜽𝑢 ; 𝜷𝑖 ).

Given some R, the goal is to find the values of the parameters 𝜔
that would most likely have generated the observations, and to infer
the posterior over the latent variables 𝑝 (𝜽1:𝑈 , 𝜷1:𝐼 |R). The latter
will allow us to make predictions about unknown preferences and
form recommendations. However, the posterior and likelihood are
intractable and thereby, exact inference and learning are infeasible.
We therefore resort to variational Bayes (VB) [4, 18], a popular and
efficient approach to deal with complex probabilistic models.

Inference Model. The starting point of VB is to introduce
a tractable inference model 𝑞, governed by a set of variational
parameters 𝜈 , which will be used as a proxy for the true but in-
tractable posterior [3]. We choose a variational distribution that
breaks the coupling between 𝛽 and 𝜃—a main source of intractabil-
ity in our model, i.e., 𝑞(𝜽1:𝑈 , 𝜷1:𝐼 |R) = 𝑞(𝜽1:𝑈 |R)𝑞(𝜷1:𝐼 |R), with
𝑞(𝜽1:𝑈 |R) =

∏
𝑢 𝑞(𝜽𝑢 |r𝑢∗), and 𝑞(𝜷1:𝐼 |R) =

∏
𝑖 𝑞(𝜷𝑖 |r∗𝑖 ). In our

experiments, without loss of generality, we adopt factors of the
following form:

𝑞(𝜽𝑢 |r𝑢∗) = N(�̃�
𝜓
(r𝑢∗), �̃�𝜓 (r𝑢∗)), 𝑞(𝜷𝑖 |r∗𝑖 ) = N(�̃�

𝜙
(r∗𝑖 ), �̃�𝜙 (r∗𝑖 )) .

where 𝜈 = {𝜙,𝜓 }, �̃� (·) and �̃� (·) are vector-valued functions – we
use multilayer perceptrons (MLPs) in this work – parameterized by
𝜙/𝜓 , outputting respectively the mean and covariance parameters
of the variational distributions.

With 𝑞 in place, we proceed with approximate inference and
learning by optimizing the Evidence Lower BOund (ELBO), w.r.t.
the model 𝜔 and variational 𝜈 parameters, given in our case by,

L =
∑
𝑢,𝑖

E𝑞 (𝜽𝑢 |r𝑢∗)E𝑞 (𝜷𝑖 |r∗𝑖 ) [log𝑝 (𝑟𝑢𝑖 |𝜽𝑢 , 𝜷𝑖 )]

−
∑
𝑢

KL(𝑞(𝜽𝑢 |r𝑢∗) | |𝑝 (𝜽𝑢 )) −
∑
𝑖

KL(𝑞(𝜷𝑖 |r∗𝑖 ) | |𝑝 (𝜷𝑖 )) . (4)

As we shall see shortly, this objective is closely related to that of
Variational Autoencoders (VAE) [22] either on the user or item side.
For this reason, we refer to the model arising from the combination
of the above generative and inference models, 𝑝 and 𝑞 respectively,
as Bilateral Variational Autoencoder (BiVAE).

3.2 Constrained Adaptive Priors (CAP)
While the objective (4) is theoretically sound, optimizing it in prac-
tice may result in over-simplified representations for users and
items. This is due to the KL terms encouraging the posteriors to
forget observations R by matching them to the same simple prior
distribution. This is a known issue in the VAE literature [6, 8], of-
ten referred to as posterior collapse issue [31]. In the following, we
characterize this phenomenon formally to gain more insights that
motivate our solution, i.e., the use of constrained adaptive priors.

Consider Proposition 1 extending the scope of the result of Hoff-
man and Johnson [15] to BiVAE for dyadic data. The proof is at
the end of this section. Eqs. (5) and (6) make clear the effect of the
ELBO’s KL terms on the latent variables. Byminimizing the latter di-
vergences, we are also minimizing the mutual information between
the latent representations and the identity of each user/item.
Proposition 1 Let 𝑞(𝑢, 𝑖) = 1

𝑈×𝐼 denote the empirical distribu-
tion over user-item pairs, and 𝑞(𝑢) = 1

𝑈
, 𝑞(𝑖) = 1

𝐼
the correspond-

ing marginals. Define, 𝑝 (𝜽 ) ≜ 𝑝 (𝜽𝑢 ), 𝑝 (𝜷) ≜ 𝑝 (𝜷𝑖 ), 𝑞(𝜽 |𝑟𝑢∗) ≜
𝑞(𝜽𝑢 |𝑟𝑢∗), 𝑞(𝜷 |𝑟∗𝑖 ) ≜ 𝑞(𝜷𝑖 |𝑟∗𝑖 ), and the user, item aggregated pos-
teriors 𝑞(𝜽 ) = 1

𝑈

∑𝑈
𝑢=1 𝑞(𝜽 |r𝑢∗), 𝑞(𝜷) =

1
𝐼

∑𝐼
𝑖=1 𝑞(𝜷 |r∗𝑖 ). Then, the

sums over the KL terms in the ELBO (4) can be expressed as follows,∑
𝑢

KL(𝑞(𝜽𝑢 |r𝑢∗) | |𝑝 (𝜽𝑢 )) = 𝑈 · [KL(𝑞(𝜽 ) | |𝑝 (𝜽 )) + I𝑞 (𝜽 , 𝑢)], (5)∑
𝑖

KL(𝑞(𝜷𝑖 |r∗𝑖 ) | |𝑝 (𝜷𝑖 )) = 𝐼 · [KL(𝑞(𝜷) | |𝑝 (𝜷)) + I𝑞 (𝜷, 𝑖)], (6)

where I𝑞 (𝜽 , 𝑢) is the mutual information of 𝜽 and 𝑢 w.r.t. 𝑞(𝜽 , 𝑢),
whose marginals are the 𝑞(𝜽 ) and 𝑞(𝑢) defined above. Similarly,
I𝑞 (𝜷, 𝑖) stands for the mutual information of 𝜷 and 𝑖 w.r.t. 𝑞(𝜷, 𝑖).

In other words, the KL regularizers encourage the latent space to
be independent from users and items. One easy way to achieve
this is to set the posteriors equal to the prior, corresponding to the
extreme scenario of posterior collapse. If this happens, it will cause
the model not to use all its expressive capacity, or even lead to
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Figure 1: Graphical representations of VAE (left), BiVAE (middle), and BiVAE with Constrained Adaptive Priors (right).

useless representations for subsequent tasks such as personalized
recommendation which we focus on.

To mitigate this potential issue, we propose to lower the effect of
the KL regularization by adopting user- and item-dependant priors,
which can adapt during learning. One might be tempted to choose
priors that are expressive enough to perfectly match the posteriors,
and thereby cancel the KL terms in the ELBO. However, such an
extreme choice is not desirable either, as we will end up mainly op-
timizing the conditional likelihood 𝑝 (𝑟𝑢𝑖 |𝜽𝑢 , 𝜷𝑢 ), which would lead
to overfitting. To avoid falling in the latter case, we rather propose
relatively weak priors (i.e., constrained on a priori knowledge), the
only parameters adapted during learning are shared either across
users and items. We further restrict the covariance matrix to be the
identity for all priors, so as to reflect low confidence about prefer-
ences, as well as encourage the posteriors to spread their mass to
capture uncertainty. Formally assume the following priors,

𝑝 (𝜽𝑢 ) = N(T𝝃𝑢 , I), 𝑝 (𝜷𝑖 ) = N(B𝝀𝑖 , I), (7)

where 𝝃𝑢 ∈ R𝑘
′
and 𝝀𝑖 ∈ R𝑘

′′
denote user- and item-specific fixed

hyperparameters, while T and B of size (𝐾 ×𝐾 ′) and (𝐾 ×𝐾 ′′) are
free learnable continuous parameters. The hyperparameters 𝝃 and
𝝀 represent some prior knowledge about users and items reflecting
their affinities. In this work, we rely on side information to compute
them, for more details see Section 4. The graphical model of BiVAE
augmented with these adaptive priors, is given in Figure 1 (right).

Proof. For brevity we prove eq. (5) for the user-based term only.

KL(𝑞(𝜽 ) | |𝑝 (𝜽 )) + I𝑞 (𝜽 , 𝑢) = E𝑞 (𝜽 ) [log𝑞(𝜽 ) − log𝑝 (𝜽 )]
+ E𝑞 (𝜽 ,𝑢) [log𝑞(𝜽 |𝑢) + log𝑞(𝑢) − log𝑞(𝜽 ) − log𝑞(𝑢)]

𝑎
= E𝑞 (𝑢)𝑞 (𝜽 |𝑢) [log𝑞(𝜽 |𝑢) − log𝑝 (𝜽 )]
𝑏
=
∑
𝑢

1
𝑈

E𝑞 (𝜽 |𝑢) [log𝑞(𝜽 |𝑢) − log 𝑝 (𝜽 )], (8)

where we have canceled some terms and rearranged the remaining
one in 𝑎, and taken the expectation over 𝑞(𝑢) in 𝑏. Using the fact
that,𝑞(𝜽 |𝑢) =

∫
𝑞(𝜽 |r)𝑞(r|𝑢)𝑑r =

∫
𝑞(𝜽 |r)𝛿 (r−r𝑢∗)𝑑r = 𝑞(𝜽 |r𝑢∗),

with 𝛿 (·) denoting a Dirac distribution, noting that the notations
𝑝 (𝜽 ), 𝑝 (𝜽𝑢 ) and 𝑞(𝜽 |r𝑢∗), 𝑞(𝜽𝑢 |r𝑢∗) are by definition equivalent
and refer to a same prior, posterior respectively, and multiplying
(8) by𝑈 completes the proof. ■

3.3 Connections to Existing Work
Matrix Factorization. The model we propose can be viewed

as a generalization of different types of Matrix Factorization (MF)
models. For instance, we can recover Probabilistic Gaussian MF
(PMF) [40] from BiVAE, by choosing the exponential family in (1)

to be a Gaussian, setting 𝑔𝜔 (𝜽𝑢 , 𝜷𝑖 ) = 𝜽⊤𝑢 𝜷𝑖 , and substituting free
user and item variational parameters for the inference networks.
As another example, we can obtain Bayesian Poisson Factoriza-
tion [9, 11] with Gaussian latent factors, by assuming a Poisson
likelihood, parameterizing the variation distribution without in-
ference networks, and letting 𝑔𝜔 (𝜽𝑢 , 𝜷𝑖 ) to be some non-negative
function of 𝜽⊤𝑢 𝜷𝑖 . We include [11] and the latter as our baselines in
the experiment.

Variational Autoencoder. As mentioned earlier, BiVAE corre-
sponds to a Bayesian variational autoencoder [22], over users (resp.,
items) in which case the latent variables 𝜷1:𝐼 (resp., 𝜽1:𝑈 ) play the
role of global parameters shared across users (resp., items). This
can be noted by rewriting the ELBO as follows,

L𝑢 =
∑
𝑢

E𝑞 (𝜽𝑢 |r𝑢∗)E𝑞 (𝜷1:𝐼 |R) [log𝑝 (r𝑢∗ |𝜽𝑢 , 𝜷1:𝐼 )]

−
∑
𝑢

KL(𝑞(𝜽𝑢 |·) | |𝑝 (𝜽𝑢 )) − KL(𝑞(𝜷1:𝐼 |·) | |𝑝 (𝜷1:𝐼 )), (9)

where 𝑝 (r𝑢∗ |𝜽𝑢 , 𝜷1:𝐼 ) =
∏
𝑖 𝑝 (r𝑢𝑖 |𝜽𝑢 , 𝜷𝑖 ). A similar expression of

the ELBO holds for the items,

L𝑖 =
∑
𝑖

E𝑞 (𝜷𝑖 |r∗𝑖 )E𝑞 (𝜽1:𝑈 |R) [log 𝑝 (r∗𝑖 |𝜽1:𝑈 , 𝜷𝑖 )]

−
∑
𝑖

KL(𝑞(𝜷𝑖 |·) | |𝑝 (𝜷𝑖 )) − KL(𝑞(𝜽1:𝑈 |·) | |𝑝 (𝜽1:𝑈 )), (10)

where 𝑝 (r∗𝑖 |𝜽1:𝑈 , 𝜷𝑖 ) =
∏
𝑢 𝑝 (r𝑢𝑖 |𝜽𝑢 , 𝜷𝑖 ). As we shall see shortly,

the above allows us to derive an efficient stochastic alternating
procedure to fit BiVAE to observations, which intertwines the opti-
mization of a user- and item-based VAEs.

Empirical Bayes. In statistics, Empirical Bayes (EB) refers to
an inference method where the prior distribution is estimated from
observations. Under the parametric EB scenario, we usually perform
point estimate of a parameter 𝛼 of a prior distribution 𝑝 (𝜽𝑢 |𝛼) by
maximizing the the corresponding marginal likelihood 𝑝 (r𝑢∗ |𝛼)
(or its approximation). This is reminiscent of our approach with
adaptive priors, where we learn the prior parameters T and B from
data by maximizing the ELBO. One key difference though is that we
still hold some hyperparameters fixed to avoid overfitting as argued
earlier. Hence, one can see our using adaptive prior as a form of
EB treatment for BiVAE. Interestingly, since EB can be viewed as
an approximation to a full Bayes approach, using adaptive prior
constitutes a basis for a full variational Bayes treatment of BiVAE.

3.4 Optimization
In practice, we rely on stochastic optimization to fit BiVAE to obser-
vations. While the KL terms in the ELBO are available analytically,
the expectations over the conditional log-likelihood are intractable



and thereby, the direct optimization of (4) is not possible. To over-
come this difficulty, we rely on the reparameterization trick [22, 33]
and build an unbiased Monte Carlo estimator of (4), which yields:

L̃ =
∑
𝑢,𝑖

log 𝑝 (𝑟𝑢𝑖 |𝜽𝑢 , 𝜷𝑖 ) −
∑
𝑢

KL(𝑞(𝜽𝑢 |r𝑢∗) | |𝑝 (𝜽𝑢 ))

−
∑
𝑖

KL(𝑞(𝜷𝑖 |r∗𝑖 ) | |𝑝 (𝜷𝑖 )) (11)

where 𝜽𝑢 = T (𝝐, �̃�) = �̃�
𝜓
(r𝑢∗) + �̃�

𝜓
(r𝑢∗) ⊙ 𝝐 , with 𝝐 ∼ N(0, I).

Similarly, 𝜷𝑖 = T (𝝐, �̃�) = �̃�
𝜙
(r∗𝑖 ) + �̃�

𝜙
(r∗𝑖 ) ⊙ 𝝐 , with 𝝐 ∼ N(0, I).

Now all the quantities involved in (11) are tractable. However, per-
forming unbiased stochastic optimization over the above objective
is not convenient, due to the mixing between 𝑟𝑢𝑖 , r𝑢∗ and r∗𝑖 . To
overcome this difficulty and ease subsampling of observations, we
propose to exploit the two-way nature of our model and advocate
alternate optimization in a Gauss-Seidel fashion. Precisely, we or-
ganize BiVAE parameters into two blocks consisting of user-related
and item-related parameters respectively, then alternate the opti-
mization of each block while holding the other one fixed.

While item related parameters remain unchanged, BiVAE’s learn-
ing problem boils down to optimizing the following objective w.r.t.
user-specific parameters,

L̃𝑢 =
∑
𝑢

[
log 𝑝 (r𝑢∗ |𝜽𝑢 , 𝜷1:𝐼 ) − KL(𝑞(𝜽𝑢 |r𝑢∗) | |𝑝 (𝜽𝑢 ))

]
, (12)

where 𝑝 (r𝑢∗ |𝜽𝑢 , 𝜷1:𝐼 ) =
∏
𝑖 𝑝 (𝑟𝑢𝑖 |𝜽𝑢 , 𝜷𝑖 ), and we have dropped

constant terms. Analogously, holding user-related parameters fixed
gives rise to the following item-based objective up to a constant,

L̃𝑖 =
∑
𝑖

[
log𝑝 (r∗𝑖 |𝜷𝑖 , 𝜽1:𝑈 ) − KL(𝑞(𝜷𝑖 |r∗𝑖 ) | |𝑝 (𝜷𝑖 ))

]
, (13)

with 𝑝 (r∗𝑖 |𝜽1:𝑈 , 𝜷𝑖 ) =
∏
𝑢 𝑝 (𝑟𝑢𝑖 |𝜽𝑢 , 𝜷𝑖 ). Note that the above objec-

tives (12) and (13) are not conflicting; the maximization of either of
them corresponds to the maximization of BiVAE’s ELBO (11).

In practice, we rely on stochastic gradient ascent and alternate
the maximization of (12) and (13) w.r.t. user- and item- specific
parameters, respectively. We evaluate the different gradients using
automatic differentiation, and we further scale them using ADAM
[21]. To nearly optimize the ELBO with respect to each block’s pa-
rameters before moving to the next one, we take several stochastic
gradient steps over each objective. Algorithm 1 summarizes our
block stochastic optimization procedure.

Complexity Analysis. The computational bottleneck of Algo-
rithm 1 is with the forward/backward passes – essentially matrix
operations – of the neural networks 𝑔𝜔 (·), 𝝁 (·) and 𝝈 (·) used to
parameterize the different distributions. Assuming network archi-
tectures with only one hidden layer, the complexity of one optimiza-
tion epoch over the user and item objectives is O(𝑈 · 𝐼 ·𝐾 + 𝐼 ·𝑈 ·𝐾).
Hence, the asymptotic time complexity of one epoch of Algorithm 1
is O(𝑈 · 𝐼 ·𝐾), which is the same as the standard VAE. By leveraging
sparse matrix multiplication, the above complexity can be reduced
to O(𝑁 · 𝐾), with 𝑁 denoting the number of non-zeros entries in
the preference matrix R, in practice 𝑁 ≪ 𝐼 ·𝑈 . Moreover, the two
loops (user-based and item-based optimization) in Algorithm 1 are
independent and can be parallelized.

Algorithm 1 Block Stochastic Optimization for BiVAE

Input: R, 𝝃 , 𝝀, 𝑔𝜔 , �̃�𝜓 , �̃�𝜓 , �̃�𝜙 , �̃�𝜙 . m: mini-batch size.

Output: 𝜔 , 𝜙 ,𝜓 .
repeat

User-based objective (12) optimization
Sample {r∗1, . . . , r∗𝐼 } from observations.
Sample {𝜷1, . . . , 𝜷𝐼 } from posterior 𝑞(𝜷 |r).
Sample {r1∗, . . . , r𝑚∗} from observations.
Sample {𝜽1, . . . , 𝜽𝑚} from posterior 𝑞(𝜽 |r).
Update 𝜔 ,𝜓 by taking a gradient ascent step.
Item-based objective (13) optimization
Sample {r1∗, . . . , r𝑈 ∗} from observations.
Sample {𝜽1, . . . , 𝜽𝑈 } from posterior 𝑞(𝜽 |r).
Sample {r∗1, . . . , r∗𝑚} from observations.
Sample {𝜷1, . . . , 𝜷𝑚} from posterior 𝑞(𝜷 |r).
Update 𝜔 , 𝜙 by taking a gradient ascent step.

until convergence

4 EXPERIMENTS
In this section we evaluate the performance of the proposed BiVAE
model. We are interested in the following experimental objectives:
(i) investigating the performance of BiVAE as compared to VAE and
other competitive collaborative filtering models, and (ii) examining
the effect of the proposed constrained adaptive priors (CAP) on
recommendation and determining whether it can alleviate posterior
collapse in BiVAE.

4.1 Setup
Datasets. We use a total of seven publicly available benchmark

datasets exhibiting various characteristics. Table 1 provides the sta-
tistics of the different datasets, after preprocessing if applicable. For
all datasets, we binarize the integer ratings by treating all available
user-item interactions as positive feedback.

These include threeMovieLens 2 datasets of varying sizes, namely
ML-100K, ML-1M, and ML-20M. In the literature, the former two
datasets are considered to be relatively dense, as every user has at
least 20 ratings.

We also experiment with several datasets including side in-
formation that we can leverage to compute our adaptive priors.
Three are from Amazon.com covering various product categories,
namely Office, Clothing, and Sports, which are made available by
He and McAuley [13]. In addition to user-item interactions, these
datasets come with user review texts (#docs) as well as item re-
lations/network (#i-rels) in the form of Also-Viewed information,
which we leverage to compute the hyperparameters 𝝃 and 𝝀 of
our constrained adaptive priors. The last dataset is Epinions 3, con-
taining a user social network (#u-rels), which we exploit to build
adaptive user-dependent priors. We retain only users and items
with at least five ratings.

Comparative Baselines. We benchmark the proposed BiVAE
model with comparable collaborative filtering models:

2https://grouplens.org/datasets/movielens
3https://snap.stanford.edu/data/soc-Epinions1.html

https://grouplens.org/datasets/movielens
https://snap.stanford.edu/data/soc-Epinions1.html


Table 1: Data Statistics

Dataset #users #items #feedback density #docs #u-rels #i-rels
ML-100K 943 1,682 100,000 6.30% - - -
ML-1M 6,040 3,706 1,000,209 4.47% - - -
ML-20M 138,493 26,744 20,000,263 0.54% - - -
Office 4,855 2,359 51,453 0.45% 51,453 - 28,190
Clothing 39,145 22,275 272,765 0.03% 272,765 - 235,894
Sports 72,464 26,640 439,650 0.02% 439,650 - 602,624
Epinions 23,247 59,451 553,354 0.04% - 374,009 -

• HPF (Hierarchical Poisson Factorization) [11] combines Gamma
latent factors with Poisson likelihood. HPF has shown strong
performance compared to other popular MF-based models.

• Gauss-PF (Gaussian-Poisson Factorization) is anMF-basedmodel
combining Gaussian latent factors with a Poisson likelihood. This
form of MF arises as a special case from the proposed BiVAE as
described in Section 3.3.

• NeuMF (Neural Matrix Factorization) [14]. This approach re-
lies on both neural networks, MLPs, and scalar product to com-
bine user and item embeddings and map them to preferences. It
has shown promising improvements over competitive similarity-
based as well as factorization-based approaches.

• VAE (Variational Autoencoders for Collaborative Filtering) [26]
has recently shown strong performance on the item recommen-
dation task. As discussed in the paper, BiVAE is more adequate
for modeling dyadic data, such as CF data, than VAE. Hence, we
consider VAE as the main baseline to assess our contributions.

EvaluationMetrics. We assess the item recommendation accu-
racy on the held-out test set with two standardmeasures,NDCG and
Recall, for top-𝑀 recommendation [5, 38]. We have varied the value
of𝑀 = 10, 20, 50 and observed similar trends. As representative, we
report the results at𝑀 = 50 due to space limitation.

Experimental Settings. For all the datasets, we randomly split
observed preferences as follows, 80% for training set, 10% for val-
idation set, and 10% for test set. We use Normalized Discounted
Cumulative Gain (NDCG) to tune the different models based on the
held-out validation sets. The number of latent dimensions 𝐾 for
user and item representations/factors is set to 20 for parity among
comparative methods. We do not observe significant change when
we go beyond that size. For the autoencoder family, we rely on
multilayer perceptrons (MLPs) to parameterize the inference and
generative models. In a pilot study, we explore MLPs with 0, 1, 2,
and 3 hidden layers, finally retaining 1-hidden layer with 40 di-
mensions (2 × 𝐾 ) for the inference models, and 0-hidden layer for
the decoders. We find that going deeper does not improve perfor-
mance, while introducing additional overhead in terms of tuning
and computational time. This confirms the findings of Liang et al.
[26], who also arrived at the same settings. We retain Tanh as a non-
linear activation function at every hidden layer, which we found
to offer better performance than when using ReLU function. Since
we focus on binary data, the outputs of the different decoders are
passed through Sigmoid function. The search spaces are respec-
tively: {1𝑒−4, . . . , 1𝑒−1} with multiples of 10 for learning rate, and
{100, . . . , 500} with steps of 100 for number of epochs. Batch size is
set to 128 for all methods optimized using Adam.

4.2 Comparisons with Baselines
Table 2 reports the performance of the different competing models
across all datasets and metrics. BiVAE adopts a Poisson likelihood
by default, unless stated otherwise. For VAE, in addition to a multi-
nomial likelihood (VAE-Mult), which has been recommended in
[26], we also report results with a Poisson likelihood (VAE-Poiss) for
a fair comparison with BiVAE. Moreover, we conducted two-tailed
paired t-tests to assess the statistical significance of the results. The
main observations from the above table are summarized as follows.

BiVAE consistently outperforms the comparative baselines. From
Table 2 we observe that BiVAE achieves the highest performance
among all the methods. In particular, BiVAE’s improvements over
VAE are statistically significant in almost all cases, except on Epin-
ions in terms of Recallwhere BiVAE and VAE are tight. These results
provide positive support for the importance of our formulation tak-
ing into account the dyadic or two-way nature of preference data.

BiVAE is robust regarding likelihood choices. As mentioned earlier,
we assume binary feedback. However so far we adopt a Poisson
likelihood for BiVAE, a choice which is motivated by the success
of this likelihood in the context of CF even under binary feedback
scenarios [11]. Nevertheless, a Bernoulli likelihood would be more
natural in such scenario, and we propose therefore to investigate
this alternative. Table 3 summarizes the results of VAE and BiVAE
with the two likelihoods. For both models, we observe the two like-
lihoods are very competitive. Moreover, we notice that regardless
of the likelihood, BiVAE still outperforms VAE, and the results are
consistent across likelihood types.

4.3 Effects of Priors
As discussed in Section 3.2 and in the VAE literature [45], the com-
mon practice of using a Standard Gaussian (SG) prior may cause
the model to learn a latent space that does not use all its expressive
capacity. We also observe this phenomenon with BiVAE as we shall
see shortly. This motivates us to investigate an alternative choice
for the priors, namely the Constrained Adaptive Prior (CAP) intro-
duced in Section 3.2. In the subsequent experiments, we focus on
assessing the impact of CAP on BiVAE’s performance.

We compute CAP’s hyperparameters 𝝃 and 𝝀 a priori from side
information using VAE. Hence, for the following experiments we
only consider datasets which come with user/item side informa-
tion, namely Office, Clothing, Sports, and Epinions. For the first
three datasets, we have access to user review texts, as well as item
network extracted from the Also-Viewed information. For every
user we concatenate all his reviews associated with training data
into one document4, we then rely on VAE to represent the user
documents with 20-dimensional embeddings, which are used as
our fixed hyperparameters 𝝃𝑢 . We follow the same procedure to
compute the hyperparameters 𝝀𝑖 from the item network. Similarly,
for Epinions dataset, we compute 𝝃 from adjacency matrix of the
user social network. No item side information is available for Epin-
ions. Note that, when side information is not available for a given
user/item we simply use the standard Gaussian as the prior.

Table 4 depicts the performance of BiVAE under the SG and
CAP priors. Focusing on item recommendation, the proposed CAP
priors consistently improve the recommendation accuracy (NDCG
4We use a binary bag-of-word representations.



Table 2: Quantitative results. The notation * indicates that the improvement over the best VAEmodel (VAE-Poiss or VAE-Mult)
are statistically significant (p-value < 0.01). NeuMF failed to scale to ML-20M, thus results are not available for this case.

Method
ML-100K ML-1M ML-20M Office Clothing Sports Epinions

NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall
HPF 0.1837 0.3573 0.1379 0.2399 0.1382 0.2612 0.0514 0.1468 0.0084 0.0240 0.0157 0.0437 0.0365 0.0891
Gauss-PF 0.1918 0.3822 0.1395 0.2424 0.1559 0.2968 0.0637 0.1776 0.0172 0.0461 0.0179 0.0482 0.0231 0.0536
NeuMF 0.1803 0.3704 0.1408 0.2554 N/A N/A 0.0630 0.1750 0.0179 0.0523 0.0202 0.0594 0.0403 0.1005
VAE-Mult 0.1838 0.3614 0.1466 0.2624 0.1561 0.3050 0.0593 0.1946 0.0230 0.0714 0.0365 0.1074 0.0473 0.1213
VAE-Poiss 0.1877 0.3749 0.1447 0.2666 0.1553 0.2987 0.0634 0.1894 0.0250 0.0729 0.0366 0.1077 0.0487 0.1218
BiVAE 0.1947* 0.3843* 0.1539* 0.2809* 0.1602* 0.3106* 0.0700* 0.2012* 0.0284* 0.0794* 0.0386* 0.1100* 0.0498* 0.1219

Table 3: Comparison of VAE and BiVAE with Bernoulli (Bern) and Poisson (Poiss) likelihood functions.

Method
ML-100K ML-1M ML-20M Office Clothing Sports Epinions

NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall
VAE-Bern 0.1875 0.3709 0.1475 0.2629 0.1534 0.2947 0.0598 0.1845 0.0262 0.0754 0.0382 0.1082 0.0445 0.1146
VAE-Poiss 0.1877 0.3749 0.1447 0.2666 0.1553 0.2987 0.0634 0.1894 0.0250 0.0729 0.0366 0.1077 0.0487 0.1218
BiVAE-Bern 0.1890 0.3778 0.1499 0.2766 0.1589 0.3095 0.0699 0.1997 0.0286 0.0798 0.0380 0.1086 0.0499 0.1243
BiVAE-Poiss 0.1947 0.3843 0.1539 0.2809 0.1602 0.3106 0.0700 0.2012 0.0284 0.0794 0.0386 0.1100 0.0498 0.1219

Table 4: Comparison of the performance of BiVAE under dif-
ferent priors. For NDCG and Recall, the notation * indicates
statistically significant improvements (p-values < 0.01).

Dataset Prior Metric Active Units
NDCG Recall 𝜃 (user) 𝛽 (item)

Office SG 0.0700 0.2012 10 10
CAP 0.0736* 0.2078* 14 13

Clothing SG 0.0284 0.0794 8 9
CAP 0.0313* 0.0894* 10 10

Sports SG 0.0356 0.1100 10 9
CAP 0.0410* 0.1184* 11 10

Epinions SG 0.0498 0.1219 8 8
CAP 0.0505* 0.1223 8 8

and Recall) across all datasets. These improvements are statistically
significant, as measured by two-tailed paired t-tests, except in terms
of Recall on Epinions. One possible explanation for that could be
the lack of availability of side information on Epinions as we do
not have access to item side information while social information
is only available for about half of the users (density is 0.069%).

4.4 Assessing Posterior Collapse
We now analyze latent variable collapse in BiVAE and examining
whether using CAP alleviates this issue.

4.4.1 Latent Variable Activity. Measuring latent variable collapse
is a challenging task. Here we follow the same approach as in
[8] and assess the “activity” of every user and every item latent
dimension 𝜃𝑘 , 𝛽𝑘 using the statistic 𝑎𝜃

𝑘
= Cov𝑝 (r𝑢 ) (E𝑞 (𝜽 |r𝑢 ) [𝜃𝑘 ]).

For items, we define 𝑎𝛽
𝑘
analogously. The above statistic measures

the variance of the expectation of the latent dimension 𝜃𝑘 (resp.,
𝛽𝑘 ) across users (resp., items). Hence, if a dimension 𝜃𝑘 /𝛽𝑘 encodes
useful information, we expect it to vary across users/items, i.e., 𝑎𝜃

𝑘
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Figure 2: Distribution of the statistic log𝑎𝜃/𝛽 under the two
types of priors SG and CAP (higher box is more active).

would be relatively high. Figure 2 shows the distributions –in the
form of boxplots– of log𝑎𝜃

𝑘
and log𝑎𝛽

𝑘
, with 𝑘 ∈ {1, . . . , 20}, under

the two types of priors, namely SG and CAP. We notice a global
trend of increase (higher box and median) in the variance 𝑎𝑘 of the
latent dimensions when using CAP. In other words, CAP induces
greater activity and more informative priors.

4.4.2 Number of Active Units (AU). We also observe that the dis-
tribution of 𝑎𝑘 (for both users and items) is bi-modal, with widely
separated modes as illustrated by Figure 3 on various datasets. This
pattern shows that there are two natural clusters of latent dimen-
sions. In particular, one group seems to have low variances 𝑎𝑘 sug-
gesting that these dimensions have collapsed to their prior means.
Based on this observation we can define the number of Active Units
(AU) of 𝜽 and 𝜷 as follows [8, 10]: AU𝜃/𝛽 =

∑
𝑘 1[𝑎𝜃/𝛽

𝑘
> 𝑡ℎ] .We

set 𝑡ℎ = 10−3 as the evident bi-modality pattern in Figure 3 suggests
that AU is not very sensitive to this threshold.
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Figure 3: Histogram of log𝑎𝜃/𝛽 under the two types of pri-
ors SG and CAP. The dash lines indicate cutoff threshold 𝑡ℎ
separating active and inactive units.

The numbers of active units or dimensions for both the user
and item latent representations are depicted in Table 4 (right side),
under different prior choices. In all cases we observe that AU is
substantially lower (≤ 14) than the total number of latent dimen-
sions (20). Using CAP results in more active latent dimensions in
most situations, except on Epinions. Recall for the latter dataset, the
CAP priors are leveraged by only about half of users, the ones for
which we have access to their social network. These results show
that CAP effectively lessens the posterior collapse issue. As this
correlates positively with the improvements in recommendation
accuracy (as measured by NDCG and Recall), we argue that using
CAP priors allows BiVAE to learn richer latent spaces.

Table 5: BiVAE performance under different priors. The no-
tation * indicates statistically significant improvements (p-
values < 0.01) over the second best priors.

Dataset Metric Mog VampPrior HPrior CAP

Office NDCG 0.0714 0.0712 0.0703 0.0736*
Recall 0.2030 0.2018 0.2033 0.2078*

Clothing NDCG 0.0271 0.0261 0.0301 0.0313*
Recall 0.0792 0.0737 0.0882 0.0894

Sports NDCG 0.0364 0.0363 0.0394 0.0410*
Recall 0.1031 0.1026 0.1145 0.1184*

Epinions NDCG 0.0486 0.0456 0.0490 0.0505*
Recall 0.1173 0.1134 0.1201 0.1223

4.4.3 Alternative Priors. In addition to improving upon the Stan-
dard Gaussian (SG) prior, CAP offers competitive performance com-
pared to other types of priors, most of which have been introduced
recently to tackle posterior collapse. In particular, we consider the
MoG (Mixture of Gaussians) prior [45], the VampPrior (Variational
Mixture of Posteriors Prior) [45], which forms a rich prior distribu-
tion by mixing the variational posteriors using learnable pseudo
inputs, and the HPrior (Heterogeneous Prior) [19] using fixed user-
and item-dependent priors estimated from side information.

We set all the covariance matrices to the identity, for uncertainty
purposes as discussed in Section 3.2. For VampPrior andMoG, we set
the number of mixture components to 20, higher numbers result in
decreased performances. As we focus on binary data, for VampPrior
the pseudo inputs are constrained to lie in [0, 1] using the Sigmoid.

The results are depicted in Table 5,CAP consistently outperforms
the other priors across all datasets. These result reveal that learning
priors solely from sparse user-item interactions may be challenging,
as reflected by the lower performance ofMoG and VampPrior. Please
refer to the analysis in Section 3.2 for more insights on this aspect.
Additional user/item features are promising, HPrior outperforms
the other baselines in many cases. CAP further improves upon
HPrior by adapting the user/item features, thus mitigating potential
mismatches between external features and user-item signals.

5 CONCLUSION
We present BiVAE, a new variational autoencoder tailored for
dyadic data, where observations consist of measurements asso-
ciated with two sets of objects, e.g., users, items and corresponding
ratings. It combines a generative model of dyads with two inference
models parameterized using neural networks, to autoencode users
and items under a unified framework. Interestingly, it can take the
form of a Bayesian VAE either on user or item side. We provide
strong theoretical foundations for the proposed model and discuss
the connections to other existing work. We further propose a simple
way to mitigate posterior collapse, by using constrained adaptive
priors (CAP). Extensive experiments on seven real-world datasets
show that BiVAE achieves significant improvements over a number
of approaches, including conventional VAE, which has recently
proven strong performance on item recommendation. Future work
could be investigating other ways of building informative priors,
applying BiVAE to other types of dyadic data such as document-
word matrices, and other tasks such as co-clustering [12, 34, 37].
BiVAE’s implementation is available on Cornac [39].
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