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Exploring Cross-Modality Utilization in
Recommender Systems

Quoc-Tuan Truong, Aghiles Salah, Thanh-Binh Tran, Jingyao Guo, Hady W. Lauw

Abstract—Multimodal recommender systems alleviate the sparsity of historical user-item interactions. They are commonly catalogued
based on the type of auxiliary data (modality) they leverage, such as preference data plus user-network (social), user/item texts
(textual), or item images (visual) respectively. One consequence of this categorization is the tendency for virtual walls to arise between
modalities. For instance, a study involving images would compare to only baselines ostensibly designed for images. However, a closer
look at existing models’ statistical assumptions about any one modality would reveal that many could work just as well with other
modalities. Therefore, we pursue a systematic investigation into several research questions: which modality one should rely on,
whether a model designed for one modality may work with another, which model to use for a given modality. We conduct
cross-modality and cross-model comparisons and analyses, yielding insightful results pointing to interesting future research directions
for multimodal recommender systems.

Index Terms—Multimodal Recommender Systems, Multimodality, Cross Modality

F

1 MULTIMODAL RECOMMENDER SYSTEMS

Modern online applications, such as e-commerce websites
and online sharing platforms, rely heavily on recommender
systems to guide their users in browsing the myriad of op-
tions offered to them. The goal is to provide every user with
a relatively short list of items according to her preferences.

There are various approaches to recommender systems.
The predominant model-based approach associates each
user and item with a vector representation in some la-
tent space so as to reflect affinities between both sets of
objects—the closer the user’s and item’s representations, the
higher the affinity. To learn these representations, classical
approaches rely on historical behavioral data (or preference
data), such as ratings, clicks, purchases, etc.

Preference data however tends to be very sparse, i.e.,
only few user-item interactions are observed, often less than
1% out of all possible interactions. This arises naturally in
practice due to the large number of users and items, yet
most users may have had the opportunity to interact with
relatively few items. Similarly, the vast majority of items are
in the long tail. Moreover, in a dynamic system, new user
or item appears continually. With very few observations in
place, it is difficult to learn a prediction model accurately.

One promising direction to alleviate the sparsity is to
leverage auxiliary data, i.e., information beyond user-item
interactions that can supplement the lack of preference
signals. Examples of auxiliary data, also referred to as
modalities, include product descriptions in text, product
images, related items, etc., which often hold a clue on
how users consume items. Subsequently, we use multimodal
recommender systems to broadly refer to models relying on
other modalities – in addition to preference information – to
infer either user representations or item representations.

1.1 Present Siloization Along Modality Lines

Over the last decade or so, considerable efforts have been
expended by the community to develop multimodal rec-
ommender systems. As a result, significant advances have
been made in terms of architectures and solutions to incor-
porate auxiliary information into recommender systems [1].
An interesting phenomenon is how these advances in the
literature tend to develop in streams along modality lines.

For instance, a stream of textual recommender models
incorporates item information such as product descriptions,
reviews, or article content [2], [3], [4], [5], [6]. In turn, deep
learning advances in computer vision, and the availability
of pretrained image models, facilitate a stream of visual
recommender models, capable of leveraging perceptual sig-
nals from product images to explain user-item affinities
[7], [8], [9]. Meanwhile, a stream of graph recommender
models make use of social interactions, e.g., friendship or
trust relationships, to better explain user preferences [10],
[11], [12]. Analogously, other contributions have considered
item relatedness – the graph of item-to-item connections – to
extend a user’s preferences to other items of similar aspect
thereby alleviating the sparsity issue [9], [13], [14].

This apparent siloization along modality lines presumes
virtual walls among different modalities such as texts, im-
ages, or graphs. A model ostensibly designed for images,
e.g., [8], would experiment with only the image modality,
and compare to other models also purportedly designed
for images. In turn, a text-based model, e.g., [6], would be
compared to another text-based model, e.g., [4], similarly
with user graph [12]. This would have been fine if indeed
there are impermeable partitions between these modalities.
However, as we investigate in this article, there would be
benefits in using a model for a modality different from the
one it was originally designed for.
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1.2 Investigating Cross-Modality Utilization
One key observation is that most multimodal recommenda-
tion algorithms are innately machine learning models that fit
the preference data, aided by the auxiliary data as features
in some form. While the raw representations of modalities
may differ, the eventual representations used in the learning
process may have commonalities in form (textual product
description may be represented as term vectors, related
items as a vector of adjacent graph neighbors, etc.). Indeed,
if we peel off the layer of pre-processing steps specific to
a modality, we find that, for most models, the underlying
representation can accommodate other modalities.

Motivated by this insight, we set out to investigate sev-
eral research questions surrounding the different modalities.
Our scope is the three modalities most frequently used with
preference data, namely: text, image, and graph.

• RQ#1: As there are increasingly more datasets with mul-
tiple modalities, which modality should one rely on? A
rich dataset may have multiple modalities available.
For instance, in addition to preference data, a dataset
may have product descriptions, product photos, as
well as graph of co-purchased products.

• RQ#2: Could a model designed for one modality (e.g., text)
potentially perform better with another modality (e.g.,
images)? This is an intriguing, yet under-explored
issue. We hypothesize that the answer may well
be positive, as modalities could be differentially in-
formative. If affirmative, this would motivate the
development of a model’s capacity to inter-operate
with various modalities.

• RQ#3: In face of the multiplicity of models for a given
modality (e.g., text), should we consider a model which is
designed for a different modality? Conventionally, one
would look into only models designed for the same
modality. We postulate that one should look beyond
and consider models designed for other modalities
as well.

Contribution and Scope Our primary contribution is
a systematic analysis on the comparative values of the
modality behind models, as well as the cross-modality uti-
lization of a model for a modality different than the one it
was originally designed for. The research questions above
offer significant value of practical and academic impact.
Their answers would inform whether we should continue
perceiving and developing multimodal recommender sys-
tems in separate modality streams, or we should approach
multimodality in a holistic and inter-operable manner. It is
worth noting that our scope revolves around substituting
one modality for another, thus widening the usability of
current models. It is not our intention to make a statement
about a specific algorithm or model, nor to propose yet
another specific model. Moreover, while we would touch
on the issue of joining modalities simultaneously, we would
keep a fuller study of that issue to future work.

2 EXPERIMENTAL SETUP

To investigate the research questions outlined in Section 1.2
systematically, we conduct a series of experiments involving
comparisons across modalities as well as across models.

TABLE 1
Data statistics.

Dataset #users #items #ratings #docs #imgs #rels
Cellphones 3,383 2,170 9,214 2,170 2,170 2,012
Clothing 5,377 3,393 13,689 3,393 3,393 9,198
Electronics 55,930 30,074 212,863 30,074 30,074 63,242
MoviesTV 28,566 10,116 196,277 10,116 10,116 19,763
Office 24,232 13,520 99,255 13,520 13,520 206,719
Tools 19902 12,522 58,419 12,522 12,522 44,509

2.1 Datasets
The primary consideration is for the datasets to have user-
item preferences (e.g., ratings) as well as the three modalities
in scope. We rely on six Amazon datasets [7], [8], [15],
which contain three auxiliary data modalities: product tex-
tual descriptions, images, and a symmetric product graph
extracted from the Also-Viewed information. We pre-process
each dataset so as to keep only those items for which
the above three modalities are available simultaneously.
For sufficient statistics, we retain users with at least three
observed ratings, and items with at least two interactions.

The sizes of the resulting datasets are summarized in Ta-
ble 1, including the number of users (#users), items (#items),
ratings (#ratings), item text documents (#docs), item image
features (#imgs), and relations (#rels) or the number of edges
per graph. For each dataset, we randomly select 80% of
the observed user-item interactions as training data and the
remaining 20% as test data.

2.2 Models
We include several representative recommender models
spanning various modalities, covering rating prediction as
well as ranking objectives. Where possible, we keep the
variants comparable (e.g., sharing some underlying base
model). The selection of representatives is not fixated on
which model is currently state-of-the-art as that changes
dynamically and it is not our intent to argue on behalf of
specific models. Rather, the selection convenes comparable
and well-validated models for the purpose of speaking on
the metapoint involving the modalities behind the models.

Two are models originally designed for augmenting
preference data with text information.

• CDL: Collaborative Deep Learning [4] composes ma-
trix factorization, to model user preferences, and
stacked denoising autoencoder (SDAE), to represent
item textual descriptions.

• CDR: Collaborative Deep Raking [16] is analogous
to CDL, with a ranking loss instead of a Gaussian
likelihood.

Two are models originally designed for augmenting
preference data with visual information.

• VMF: Visual Matrix Factorization [9] leverages item
visual features to explain user preferences.

• VBPR: Visual Bayesian Personalized Ranking [8] em-
ploys a ranking loss for learning preferences.

The final model is originally designed for augmenting
preference data with graph information.

• MCF: Matrix Co-Factorization [9] exploits relation-
ships among products (item graph). It composes
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two matrix factorization models with shared item
factors to jointly factorize user-item and item-item
interaction matrices.

In addition, as a reference point to assess the contribu-
tion of auxiliary data, for every model we include its variant
(Base) [17], [18], [19] relying on only preference data (sans
auxiliary data). Implementations of the above models are
available in the Cornac1 recommendation framework [20].

2.2.1 Cross-Modality Utilization
Originally, each of the above models assumes a specific
modality. One of the research questions (RQ#2) calls for
experiments where a model is used with a different modal-
ity. This is feasible, because the statistical assumptions and
architectures of these models allow them to work with any
of the modalities in our scope, as elaborated below.

• Text models with visual or graph data. CDL and CDR
model jointly the user-item preferences and item
textual information. The latter is organized into a
document-word matrix X, where the ith row xi

of this matrix, corresponding to item i, is a binary
vector indicating the words occurring in the item’s
textual description. Items visual information (im-
ages) are also represented by a matrix V, whose
row vi corresponds to the image of the ith item.
Analogously the item graph is represented by its
adjacency matrix C indicating which items are con-
nected. Hence, to use CDL and CDR with visual
(resp. graph) modality we substitute the visual fea-
ture matrix V (resp. adjacency matrix C) for the
document-word one X.

• Visual models with text or graph information. The visual
models assume a vector-based representation of per-
ceptual information. Hence, we follow an analogous
strategy as with the text models to use VBPR and
VMF with text and graph auxiliary data.

• Leveraging text/visual information using MCF. In addi-
tion to user-item interactions, MCF integrates item-
to-item relationships (item graph) represented by
an adjacency matrix C = (cij), where cij = 1 if
items i and j are related, and cij = 0 otherwise. To
leverage item textual information with MCF, every
item is associated with a binary bag-of-word vector
indicating the words appearing in its description.
We then use the cosine to measure the similarity
between these vectors and build a nearest neighbor
graph of items, i.e., cij = 1 if j belongs to the set
of nearest neighbors of i, and cij = 0 otherwise.
We follow the same approach in the case of visual
information, where every item is associated with its
image represented as an n-dimensional vector. In
all our experiments, we set the number of nearest
neighbors to 5. We found that beyond five neighbors,
we only gain slight improvement at the cost of more
intensive computations.

2.2.2 Model Hyper-Parameter Settings
All the above models include two main types of hyper-
parameters: a number of factors K or dimension of the

1. https://cornac.preferred.ai

latent space, and a set of regularization parameters. For
the former we experiment with different values of K,
ranging from 10 to 100 with steps of 10, and report the
best performance for every model. For the regularization
parameters, we start with the values originally recom-
mended by the authors of each model, and further con-
duct a pilot study, where we explore values in the set
{0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000}, to select the final
values for these hyper-parameters.

For the learnable parameters, e.g., user and item rep-
resentations, we use the same random initial point for all
models where it is possible.

2.3 Evaluation Measures
We focus on Top-N recommendation and adopt two widely
used evaluation measures in this context, namely Recall@N
and NDCG@N (Normalized Discount Cumulative Gain).
Both measures vary from 0.0 to 1.0 (higher is better). Impor-
tantly, none of the above models optimizes these measures,
making them good external measures for cross-model com-
parisons.

3 RESULT ANALYSES

Figures 1 and 2 report the results of every model across all
modalities, datasets and measures. We clarify that prefer-
ence data is omnipresent. In these figures we use Base to
refer to scenario in which we only rely on preference data,
without use of any auxiliary data. In this case, every model
collapses to its preference or collaborative component.

3.1 Is Auxiliary Data Useful?
First, we make a few general observations that help validate
the utility of auxiliary data for multimodal recommenders.

In most cases, the Base model performs worse than the
model augmented by auxiliary data of any modality of
interest. Interestingly, the outperformance does not depend
on pairing up a model with its original modality. For in-
stance, though CDL was originally designed for text, its
performance with image or graph still outperforms the
Base model substantially. This result holds regardless the
modality type a model is used with, thereby emphasizing
the importance of cross-modal utilization of models.

We now turn to the three research questions first outlined
in Section 1.2 and seek deeper insights from the results.

3.2 Which Modality Should One Rely On?
To investigate this question (RQ#1), Table 2 summarizes
the results from Figures 1 and 2 by reporting the best
performing modality for each dataset-model pair.

Based on this table, in most cases, it seems that graph
provides the strongest information, followed by text and
then images. Recall that in our experiment graph comes
from the Also-Viewed products information, i.e., products that
tend to be browsed within the same session. By nature,
this information can encode contextual relationships among
items regarding various aspects such as visual appearance,
specification, compatibility, etc. Some of these aspects, e.g.,
compatibility, are hard to capture based on textual and
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Fig. 1. Recall@50 performance achieved by every model for each modality, across datasets.
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Fig. 2. NDCG@50 performance achieved by every model for each modality, across datasets.

visual features. For instance, a t-shirt and a matching pair of
jeans are related to one another and likely to be consumed
together, yet they have different visual and textual features.
Between two other modalities, text tends to help more
than images in most cases, even when visual appearance is
important (Clothing). This suggests that text often carries
more information than product image features.

On Cellphones, the behaviour is slightly different in
terms of NDCG. Here, graph is even more sparse (only

few relations are available), which could explain the low
improvement in recommendation performance, while text
seems to carry more information.

Note that the best-performing modality is not the same
for all datasets. Thus, the answer to this research question is
largely data-dependent, which is reasonable because modal-
ities may be differentially informative.
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TABLE 2
Best-performing modality with Recall@50 and NDCG@50, for each

model (with their originally designed modality) across datasets.

Dataset CDL
(text)

CDR
(text)

VMF
(image)

VBPR
(image)

MCF
(graph)

R
ec

al
l@

50

Cellphones graph†? text graph†? text†? graph?

Clothing graph†? graph†? graph†? image? graph?

Electronics text? text? graph†? graph†? graph?

MoviesTV image† graph†? graph†? text†? graph?

Office graph†? text graph†? graph†? graph?

Tools graph†? image†? graph†? graph†? graph?

N
D

C
G

@
50

Cellphones graph†? text graph†? text†? text
Clothing graph†? text? graph†? image? graph?

Electronics image†? text? graph†? graph†? graph?

MoviesTV image† graph†? graph†? text†? image†?

Office graph†? text graph†? graph†? graph?

Tools graph†? graph†? graph†? graph†? graph?

† statistically significant as compared to the original modality (paired
t-test with p-value < 0.05).

? statistically significant as compared to all other modalities (paired
t-test with p-value < 0.05).

3.3 Can a Model Designed for One Modality Perform
Better with Another Modality?
This (RQ#2) is an interesting question because it opens up
new possibilities. Table 2 indicates, for every model and
dataset, under which modality it achieves its best perfor-
mance. A priori, one would surmise that a model would
perform the best with the modality it had originally been
designed for (parenthesized in the table heading). Evidently,
these tables show otherwise. With few exceptions (e.g.,
VBPR on Clothing, CDR on Electronics), the general ten-
dency is that the best performing modality may not be the
one a model was originally designed for. This emphasizes
the importance of cross-modal utilization of models.

3.4 Given a Modality, Should we Consider a Model De-
signed for a Different Modality?
To explore this (RQ#3), we revisit Figures 1 and 2. This time
controlling for a modality (e.g., image in red), we compare
across models. For instance, on Office dataset, the best-
performing model for image is CDL. This is intriguing for
two reasons. First, the conventional approach is to consider
only image-based models. Yet, here on several datasets, CDL
(originally designed for text) is actually the best-performing
model when using images. Second, the best-performing
model for a given modality is still data-dependent. This fur-
ther highlights the importance of cross-modal exploration
for each model.

4 CONCLUSION AND PERSPECTIVES

The investigation into research questions surrounding mul-
timodality in recommender systems throws out surprising,
yet insightful lessons. For one, in searching for solutions as
well as baselines, researchers and practitioners alike should
reach across the modality ‘walls’ to consider models that
may well have been designed for a different modality. For
another, we should encourage a more holistic and unified
perspective of multimodality, so as to develop and evaluate
a model based on its inter-operability across modalities.
This is of interest as the modality that a given model is

TABLE 3
Performance of CDL (K = 100) with Recall@50 and NDCG@50, under
various modalities as well as their combination (simple concatenation).

Dataset Text Image Graph Combination

R
ec

al
l@

50

Cellphones 0.2858 0.2748 0.3001 0.3016
Clothing 0.2150 0.2081 0.2377 0.2714
Electronics 0.0516 0.0500 0.0493 0.0529
MoviesTV 0.2564 0.2589 0.2593 0.2746
Office 0.1312 0.1296 0.1362 0.1428
Tools 0.1299 0.1241 0.1377 0.1283

N
D

C
G

@
50

Cellphones 0.1251 0.1179 0.1542 0.1290
Clothing 0.1191 0.1106 0.1398 0.1119
Electronics 0.0158 0.0157 0.0157 0.0201
MoviesTV 0.0902 0.0910 0.0913 0.1004
Office 0.0469 0.0479 0.0513 0.0615
Tools 0.0431 0.0448 0.0468 0.0438

designed for may not always be available nor always the
best-performing one as our experiment shows.

Moreover, our empirical findings point to interesting
future research directions for multimodal recommender
systems. For instance, since our results show that there is
no such clear modality that is always better to rely on in
all cases, it would be edifying to consider the integration
of multiple modalities simultaneously. As a motivating in-
stance, Table 3 reports the outcome of a preliminary ex-
periment, where we fit CDL using the three modalities of
interests as well as their combination. For the latter case,
corresponding to the column combined in the above table, for
every item we simply concatenate the vector representations
of all the modalities of text, image and graph. For balance, fea-
ture values of each modality are scaled to lie in range [0, 1],
before concatenation. Interestingly, even this naive approach
to integration yields performance improvement over each
individual modality on most datasets. In some cases (e.g.,
Tools) combined is better than text and/or image but stands
behind graph. Hence, a promising question worth a further
look in the future is how multiple modalities can be inte-
grated in a coordinated manner, throwing more light into
whether more modalities are always better, and whether
there is a systematic approach for combining modalities.
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