
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2020

Towards generating thread-safe classes automatically Towards generating thread-safe classes automatically

Haichi WANG
Tianjin University

Zan WANG
Tianjin University

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Shuang LIN
Tianjin University

Ayesha SADIQ
Monash University

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
WANG, Haichi; WANG, Zan; SUN, Jun; LIN, Shuang; SADIQ, Ayesha; and LI, Yuan Fang. Towards generating
thread-safe classes automatically. (2020). 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE): Virtual, September 21-25: Proceedings. 943-955.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5946

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5946&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5946&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Haichi WANG, Zan WANG, Jun SUN, Shuang LIN, Ayesha SADIQ, and Yuan Fang LI

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/5946

https://ink.library.smu.edu.sg/sis_research/5946

Towards Generating Thread-Safe Classes Automatically
Haichi Wang

wanghaichi@tju.edu.cn

College of Intelligence and Computing

Tianjin University, China

Zan Wang
wangzan@tju.edu.cn

College of Intelligence and Computing

Tianjin University, China

Jun Sun
junsun@smu.edu.sg

School of Information Systems

Singapore Management University,

Singapore

Shuang Liu*

shuang.liu@tju.edu.cn

College of Intelligence and Computing

Tianjin University, China

Ayesha Sadiq
ayesha.sadiq@monash.edu

Monash University, Australia

Yuan-Fang Li
yuanfang.li@monash.edu

Monash University, Australia

ABSTRACT
The existing concurrency model for Java (or C) requires program-

mers to design and implement thread-safe classes by explicitly ac-

quiring locks and releasing locks. Such a model is error-prone and

is the reason for many concurrency bugs. While there are alternative

models like transactional memory, manually writing locks remains

prevalent in practice. In this work, we propose AutoLock, which

aims to solve the problem by fully automatically generating thread-

safe classes. Given a class which is assumed to be correct with

sequential clients, AutoLock automatically generates a thread-safe

class which is linearizable, and does it in a way without requiring

a specification of the class. AutoLock takes three steps: (1) infer

access annotations (i.e., abstract information on how variables are

accessed and aliased), (2) synthesize a locking policy based on the

access annotations, and (3) consistently implement the locking pol-

icy. AutoLock has been evaluated on a set of benchmark programs

and the results show that AutoLock generates thread-safe classes

effectively and could have prevented existing concurrency bugs.

CCS CONCEPTS
• Software and its engineering → Software maintenance tools;

KEYWORDS
concurrency, thread safe class, locking policy

ACM Reference Format:
Haichi Wang, Zan Wang, Jun Sun, Shuang Liu, Ayesha Sadiq, and Yuan-Fang

Li. 2020. Towards Generating Thread-Safe Classes Automatically. In 35th
IEEE/ACM International Conference on Automated Software Engineering
(ASE ’20), September 21–25, 2020, Virtual Event, Australia. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3324884.3416625

*Shuang Liu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416625

1 INTRODUCTION
Concurrent programs are prevalent these days due to the pervasive

availability of multi-core and many-core systems. Concurrency bugs

are undesirable outcomes that arise when two programs execute

concurrently but do not show up if execute sequentially. They are no-

toriously hard to detect and fix. Existing research mostly focuses on

bug detection, e.g., for data races [1–5], deadlocks [6] and atomicity

bugs [7]. Recently, there have been studies explore to automati-

cally fix concurrency bugs [8–12]. While the studies have shown

impressive performance in some cases, they do not address the fun-

damental problem, which is to develop techniques that are capable

of preventing concurrency bugs systematically in the first place.

The existing concurrency model for Java requires programmers to

design and implement thread-safe classes based on synchronization

primitives like acquiring locks and releasing locks. Such a model is

error-prone and is the reason for many concurrency bugs. In theory, a

programmer should know precisely what specification a thread-safe

class should satisfy; and above all make sure the program works

correctly in a sequential environment. Afterwards, the programmer

needs to derive a locking policy which systematically guarantees

that the specification is satisfied when the program is used in a

concurrent environment, and finally consistently implements the

locking policy throughout the program. This process, however, is

often flawed in practice. First of all, it is impractical to assume

the availability of a full specification. There have been multiple

attempts on getting programmers to write specifications [13–15],

and yet specifications are scarce in practice. Second, systematically

deriving a locking policy requires information on how variables are

accessed, which could be complicated due to complications like

aliasing and instance escaping. Lastly, consistently implementing a

locking policy takes good discipline as well as systematic tracking

of where and how variables are accessed. There have been proposals

on alternative concurrency models which aim to solve the problem,

e.g., transactional memories [16], and yet the Java model remains

very much relevant in practice.

In this work, we aim to prevent concurrency bugs by fully automat-

ing the process of generating thread-safe classes from sequential

programs. That is, given a class which is assumed to be correct in

a sequential environment, we automatically generate a thread-safe

class, and do it in a way without requiring a specification of the class.

Our approach takes three main steps: (1) infer access annotations

through static analysis, (2) synthesize a locking policy based on the

943

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

ASE ’20, September 21–25, 2020, Virtual Event, Australia Wang et al.

access annotations, and (3) consistently and automatically imple-

ment the locking policy. Furthermore, we optimize the generated

class safely (without breaking linearizability [17]) by reducing the

scope of locking. For correctness, we prove that the generated class

is linearizable (modulo some assumptions) to the sequential class

and is always deadlock-free.

Our approach is implemented as a self-contained toolkit called

AutoLock for Java programs, and empirically evaluated on a set of

45 benchmark programs (with a total of 64,447 lines). AutoLock

is evaluated to show that it could have been applied to prevent

known concurrency bugs. Furthermore, AutoLock is efficient, i.e.,

on average, it takes only 0.48 seconds to generate a thread-safe class.

In addition, for 8 data structures from the Java Development Kit, we

compare the thread-safe versions generated by our approach with

the ones crafted by experts of domain to show that our generated

versions are reasonably efficient (and provably correct).

The rest of the paper is organized as follows. Section 2 defines

the research problem. Section 3 presents an overview of our Au-

toLock method. Section 4 describes the access annotation inference

approach. Section 5 and Section 6 present our approach on inferring

and implementing a locking policy based on the inferred access

annotations. Section 7 discusses the evaluation of the proposed tech-

nique for realistic Java programs. Section 8 reviews related work.

Finally, We conclude the proposed technique in Section 9.

2 PROBLEM DEFINITION
We assume that the user-provided sequential class is in the form of a

tuple P = (Var , PubM, PriM) where Var is a finite set of mutable

variables; PubM is a finite set of public methods; and PriM is a finite

set of private methods. Each methodm takes an optional sequence

of input parameters, possibly updates the variables in the class, and

produces certain output. Note that we assume that variables are only

accessed through methods. A method invocation by a thread t is

written as inv(x,m,a∗, t) where x is the name of an object of class P;

m is the method name; a∗ is an optional list of parameter values; and

t is a thread identifier. A response to a method invocation is written

as res(x,m,o, t) where o is the returned value. A method invocation

and a response match if and only if their object names agree, their

method signatures agree, and their thread identifiers agree. When it

is clear from the context, we omit x to save space.

Without loss of generality, we assume that P is sequentially cor-

rect with respect to a specification S, i.e., a single thread which

calls any public method in the class through any object of P in

arbitrary order always satisfies the specification S. Ideally, given

a sequential program P and its specification S (which is satisfied

by P), we aim to construct automatically a program Q such that Q

is thread-safe with respect to S. That is, multiple threads can call

any public method in Q through an object of Q concurrently and

S is always satisfied. As discussed above, it is often infeasible to

obtain S in practice. In this work, we do not assume that S is known

and instead aim to generate Q such that it satisfies three desirable

properties: linearzability, deadlock-freeness and efficiency.

In the following, we formalize our assumptions and then define

the correctness requirements. Without loss of generality, we focus on

a single object obj of the class P. A history of method invocations

on obj is a finite sequence of events π = 〈e1, e2, · · · , en〉 where ei is

either a method invocation or a response. π is sequential if it starts

with an invocation, and every invocation is followed immediately

with the matching response (or the invocation is the last event).

Otherwise, we say it is concurrent. A sequential history has no real

concurrency since the methods’ execution never overlaps. We say

that π is deadlock-free if every invocation in π can be followed by a

matching response eventually. Our assumptions are as follows. For

every sequential history π of P, π satisfies S and π is deadlock-free.

Given an arbitrary (sequential or otherwise) history π , we write

π � t where t is a thread identifier to be the projection of π on t , i.e.,

all those invocation and response concerning thread t are removed.

The following defines a correctness criterion for concurrent programs

which is widely adopted in the community [18].

Definition 2.1 (Linearizability). Given two programs P and Q

which share the same set of public methods, we say Q is linearizable

with respect to P if and only if, for all history π = 〈e1, e2, · · · , en〉
of Q, there exists a sequential history π ′ of P such that

• π � t = π ′ � t for all threads t ; and

• res(m,o, t) precedes inv(m′,a∗, t ′) in π ′ only if

res(m,o, t) precedes inv(m′,a∗, t ′) in π .

Intuitively, a history is linearizable if, from each thread’s point

of view, each method invocation behaves as if it is executed imme-

diately. We say that Q is linearizable to P iff every history of Q is

linearizable to some sequential history of P. Intuitively, since by

assumption any sequential history of P satisfies the specification, Q

always satisfies S (if S is preserved by linearizability).

Deadlock-freeness is another desirable property of concurrent

programs, i.e., a history of Q is always deadlock-free. We thus

aim to generate Q which is always deadlock-free. Furthermore, it

is insufficient to require only thread-safety or deadlock-freeness,

which can be achieved trivially by having a universal lock which is

acquired at the beginning of every public method and released only

after the method completes. Thus, we further require that Q ideally

should be as efficient as possible so long as it is still thread-safe.

Our problem definition is thus as follows. Given a program P

which satisfies the above-mentioned assumptions, synthesize a pro-

gram Q such that (1) Q is linearizable with respect to P; (2) Q is

deadlock-free; (3) Q is reasonably efficient. Note that the last re-

quirement on efficiency is kept vague for now and we shall formalize

it properly in Section 5.

The primary means of synthesizing Q is to refactor P with an

implementation of a consistent locking policy. Intuitively, a locking

policy specifies how each instance variable in Var is protected.

Definition 2.2 (Locking policy). A locking policy is a function

Var → Lck ∪ {⊥} where Lck is a finite set of locks (i.e., objects)

and ⊥ is a special lock denoting no locking.

Intuitively, assuming lp is a locking policy, lp(x) = l means that

variable x is guarded by lock l . For efficiency, we assume that when a

lock is acquired, we have the option of acquiring it for either reading

or writing. Note that multiple threads can obtain the same lock for

reading whereas writing is exclusive, i.e., a lock acquired for writing

can succeed if and only if there are currently no threads which hold

the lock for reading or writing. There are existing implementations

for such locks, like ReadWriteLock in Java. We write lock(l,R) to

944

Towards Generating Thread-Safe Classes Automatically ASE ’20, September 21–25, 2020, Virtual Event, Australia

Input
Program

Annotated
Program

Thread-safe
Program

1
Access Annotations Generation

Metadata
Extraction

Graph Construction

Data Flow Simply Aliasing
Analysis Context Information

2

Graph Traversal

3 1

Locking Policy Generation

AST-based
Traversal

V-P Construction

Variable Set Permission Set

2

Infer
Lock

3

Apply
Lock

41 1

Figure 1: Overall algorithm.

denote that lock l is acquired for reading and lock(l,W) to denote

that lock l is acquired for writing.

3 HIGH-LEVEL OVERVIEW
The high-level idea of AutoLock is to automatically synthesize a

locking policy based on static analysis of P, and then consistently

implement the locking policy to produce Q as the result. The overall

workflow is shown in Figure 1. First, we perform static analysis of

the source code (i.e., based on data flow and alias flow analysis)

to obtain the permission-based access annotations for methods in

a class. Intuitively speaking, a permission-based access annotation

abstracts how variables are accessed and how methods manipulate

them. Next, we synthesize a locking policy based on the access

annotations. Afterwards, the locking policy is systematically imple-

mented through program re-factoring. Note that the implementation

is optimized for efficiency and deadlock-freeness.

In the following, we walk through each step using an illustrative

example. Figure 2 shows partly a Java class named RatePath which

is from the Grande benchmark [19]. The class contains multiple

instance variables and it is meant to be thread-safe. Note that the

comments and “+”-statements are introduced automatically by Au-

toLock. This example is interesting for the following reasons. First,

it has 438 lines of code (excluding those in the super-classes or

interfaces), 8 instance variables and 16 methods (all of which are

public). Note that only a minimum part of the class is shown due to

the space constraint. Second, there are file IO operations (e.g., at the

beginning of the method in lines 11− 23) which are time-consuming

in multiple methods, which means that simply synchronizing every

method would not be efficient.

Step 1: Generate access annotations. In this step, static analysis

is performed to systematically identify the access annotations for

each variable and each method. Access annotations are associated

with each variable in V and each method in PubM and PriM . For

instance, variable pathValue is associated with an annotation shared
which means that the object can be (potentially) updated by multiple

threads at the same time. For another instance, method readRatesFile
is associated with the annotations shown at line 9, which intuitively

means that the method writes variable pathValue, pathDate and

nAcceptedPathValue. The annotation at line 2 states that the three

variables pathValue, pathDate and nAcceptedPathValue are related,

which intuitively means their values are constrained to satisfy cer-

tain conditions according to the specification S. Note that access

annotations characterize the way a shared resource can be accessed

by multiple threads, and thus can be used to infer a safe (parallel)

execution order of different program parts. For instance, a variable

annotated immutable is thread-safe and thus allows maximum paral-

lelism, and two methods can be executed in parallel if the variables

they access do not overlap.

Step 2: Generate locking policy. In this step, we synthesize a locking

policy based on the access annotations. In the illustrative exam-

ple, 3 mutable instance variables are shown, i.e., pathValue, path-
Date and nAcceptedPathValue. A locking policy assigns a lock for

each and every mutable variable in the class. By default, differ-

ent mutable variables are guarded by different locks for better ef-

ficiency, unless multiple variables are annotated related and thus

must be guarded by the same lock. For instance, because pathValue,

pathDate and nAcceptedPathValue are related, they are assigned

with the same lock. The resultant locking policy is documented in

the form of annotations at lines 3, 5 and 7, where nAcceptedPath-
Value_pathDate_pathValueLock is a freshly declared lock.

Step 3: implement locking policy. In this step, we implement the lock-

ing policy consistently throughout the class by automatic program

re-factoring. For each method, we examine the access annotations

and acquire the respective locks according to the locking policy.

We decide where exactly to acquire the locks based on two con-

siderations. First, the scope of the locks should be minimized to

improve efficiency. Second, there should be no lock-ordering dead-

locks. For the latter, the locks are always acquired in a fixed global

ordering throughout the class (in an ascending order alphabetically

based on the names). For the former, a lock is acquired as late as

possible except that it must be before the variable to guarded is

accessed while not breaking the global ordering for acquiring locks.

For instance, the first access to the three variables is a write access to

pathValue at line 25 and thus the corresponding lock nAcceptedPath-
Value_pathDate_pathValueLock is acquired immediately. Note that

this excludes the expensive file IO operations from the synchronized

block and thus improves efficiency. The last access to the three vari-

ables is at line 32 and thus the lock is released as soon as possible

at line 33. Note that we sometimes use finally (e.g., line 37 to 40)

to make sure all locks are always released before the method ends

in the presence of potential exceptions. We similarly implement the

same locking in method getPathValue, where the lock is acquired

for reading since this is a getter method.

The resultant RatePath class is guaranteed to be thread-safe. For

instance, variable pathValue is systematically protected by lock nAc-
ceptedPathValue_pathDate_pathValueLock in the class. In particular,

as shown in Figure 2, the lock is acquired (for writing) at line 24

and released only at line 33 in function add and acquired for reading

at line 38. We remark that multiple threads may execute method

getPathValue at the same time whilst only one thread can execute

line 25 to line 32 at any time.

4 INFERRING ACCESS ANNOTATIONS
In this section, we show what access annotations are used in our

approach and how they are generated automatically.

945

ASE ’20, September 21–25, 2020, Virtual Event, Australia Wang et al.

1 class RatePath extends PathId{
2 // + @related(pathValue, pathDate, nAcceptedPathValue)
3 // + @shared @guardedBy(nAcceptedPathValue_pathDate_pathValueLock)
4 private double[] pathValue;
5 // + @shared @guardedBy(nAcceptedPathValue_pathDate_pathValueLock)
6 private int[] pathDate;
7 // + @shared @guardedBy(nAcceptedPathValue_pathDate_pathValueLock)
8 private int nAcceptedPathValue = 0;
9 + // @write(pathValue) * @write(pathDate) * @write(nAcceptedPathValue)

10 private void readRatesFile(String dirName, String filename) throws DemoException {
11 File ratesFile = new File(dirName, filename);
12 BufferedReader in;
13 if (!ratesFile.canRead()) {throw new DemoException("Cannot read the file " + ratesFile.toString()); }
14 try {in = new BufferedReader(new FileReader(ratesFile));}
15 catch (FileNotFoundException fnfex) {throw new DemoException(fnfex.toString());}
16 int iLine = 0, initNlines = 100, nLines = 0;
17 String aLine;
18 Vector allLines = new Vector(initNlines);
19 try { while ((aLine = in.readLine()) != null) {
20 iLine++;
21 allLines.addElement(aLine);}
22 } catch (IOException ioex) {throw new DemoException("Problem from file "+ioex.toString());}
23 nLines = iLine;
24 + nAcceptedPathValue_pathDate_pathValueLock.writeLock().lock();
25 this.pathValue = new double[nLines];
26 this.pathDate = new int[nLines];
27 nAcceptedPathValue = 0;
28 iLine = 0;
29 nAcceptedPathValue = iLine;
30 setname(ratesFile.getName());
31 setstartDate(pathDate[0]);
32 setendDate(pathDate[nAcceptedPathValue - 1]);
33 + nAcceptedPathValue_pathDate_pathValueLock.writeLock().unlock();
34 setdTime((double) (1.0 / 365.0));}
35 //@read(pathValue)
36 public double getPathValue(int index) {
37 + try {
38 + nAcceptedPathValue_pathDate_pathValueLock.readLock().lock();
39 return (pathValue[index]);
40 + } finally {nAcceptedPathValue_pathDate_pathValueLock.readLock().unlock();}}}

Figure 2: An illustrative example

4.1 Access Annotations
Our annotations are inspired by existing research on access per-

missions [20, 21]. Access permissions are abstract capabilities that

model the mutability and aliasing of a referenced object at one place.

There are five kinds of permissions, i.e., unique, full, share, pure and

immutable, that encode whether or not an object is being aliased,

whether a given reference can modify the referenced object, and

whether there are other references (aliases) that point to the same

object. In this work, we simplify the access permissions to a few

access annotations which are friendly to programmers and yet are

sufficient for generating locking policies.

In general, we keep the access annotations rather simple so that,

once generated, they can be efficiently reviewed by programmers and

amended if necessary. Programmers need to be kept in the loop since

the generated annotations (and subsequently the implementation)

must confirm to the specification S which we assume is only known

by the programmers. In other words, the annotations serve as an

abstract layer which explains why the implementation is generated

in a certain way.

Each variable in Var is associated with three different anno-

tations: immutable, thread-safe, and shared. The annotation im-
mutable means that the variable is of an immutable type (e.g.,

String and Integer in Java) or that the variable is never updated.

Note that an immutable variable is by definition thread-safe. The

annotation thread-safe means that the variable is of a thread-safe

type, e.g., Vector, SynchronizedArrayList and classes in package

java.util.concurrent.atomic1. Note that such variables are by itself

thread-safe except that there might be high-level data races if they are

related with some other variables. The annotation shared specifies

that the associated variable is mutable and it is not thread-safe.

Intuitively, an immutable variable does not require protection

through locking; a thread-safe variable requires protection only if it

is related with other mutable variables in certain ways; and shared
variables require protection through a consistent locking policy.

Additionally, we adopt an annotation in the form of related(x,y)
which intuitively means that variables x and y are related. In gen-

eral, two variables x and y are considered ‘related’ if their values

are constrained by some predicate ϕ(x,y) which is implied by the

specification S and that cannot be captured by constraints on x and y
separately. Note that this relation is transitive in nature, i.e., related(x,
y) and related(y, z) implies related(x, z).

Each method in PubM and PriM is annotated with a set of an-

notations, one for each thread-safe or shared variable in the class,

which can be either write or read. That is, we annotate a method

with @write(x) if x is modified in the method body; or otherwise it

gets annotated with @read(x). For instance, method readRateFile()
is annotated with three annotations shown at line 9.

1The term thread-safe is misleading as whether a class is thread-safe or not depends on
its specification, e.g., thread-safety for SynchronizedHashMap and ConcurrentHashMap
means something different. Here we have no choice but wishfully assume that the
programmer has chosen the right ‘thread-safe’ class according to the specification.

946

Towards Generating Thread-Safe Classes Automatically ASE ’20, September 21–25, 2020, Virtual Event, Australia

4.2 Generating Access Annotations
In the following, we present the approach to generate access anno-

tations at the method level. To generate access annotations for a

given method, following the access permission semantics [20, 21],

we need to identify the way (i.e., read or write) an instance variable

is accessed. Moreover, we need to identify and track aliases of the

referenced objects, to maintain the integrity of data during analysis.

For this purpose, we perform a modular static analysis of the input

Java program based on its abstract syntax tree (AST) and extracts

the data-flow, alias-flow and context information for all the instance

variables accessed at the method level. The extracted information

is then consolidated as access annotations for each method. The

objective here is to explicitly show the implicit dependencies that

exist between the code (method) and mutable states. In general, we

systematically analyze each method in PubM and PriM with the

following three steps.

In the first step, we parse a method’s signature and its body to

identify and track the variables’ accesses as read, write and aliasing

information. We recursively parse each expression in an expression

statement in the AST to distinguish between read-only and read-
write expressions. The analysis further depends on the type of the

reference variable such as an object (class) field, a parameter or a

method’s local variable accessed in each expression. Note that we

ignore the method’s local variables unless they are aliases of the

instance variables. It is because manipulating local references does

not affect the access rights of the current methods.

We perform flow-insensitive analysis of the source code which

ignores the order of execution of statements. However, our analysis

preserves the semantics of assignment statements by determining the

type of a reference variable on the left-hand side of an assignment

statement based on its right-hand side expression type. We recur-

sively parse the right and the left side of each assignment statement

to identify the expression type and precisely extract the data-flow

and alias-flow information of all the shared variables accessed at the

method level. For example, in Figure 2 for method readRatesFile()
at line 25 and 26, we analyze the expressions this.pathValue = new
double[nLines] and this.pathDate = new int[nLines] and determine

write access for variables pathData and pathValue is required. Note

that the context analysis for the variables accessed in the current

method depends on how the same variables are being accessed in

other methods (e.g., aliasing).

For instance, the assignment expression nAcceptedPathValue =
0 at Line 27 is considered as a <value-flow> statement as the right-

hand side is a <NumberLiteral> expression. The approach maps this

information as write access by the current method for the variable

present on left-hand side of assignment expression i.e., nAccepted-
PathValue.

The second step organizes the data flow and alias flow information

extracted in step 1 in a graph model for each method, where nodes

represent the variables accessed in the method, and the labeled edges

represent the way (read/write/alias) the current method accesses

the variables. In the last step, access annotations are generated by

traversing the read, write and alias edges between the method and

variable nodes in the generated graph.

Once annotations for each method have been generated, we gen-

erate annotations for each variable x in Var . If x is declared of a

type which is known be immutable or thread-safe, x is annotated

as immutable or thread-safe respectively. Note that a white-list of

immutable classes and thread-safe classes in the Java development

kit are embedded in our toolkit. If x is never written in any of the

methods (which can be checked based on the annotations for the

methods), x is also annotated as immutable.

Next, we generate annotations in the form of related(x,y). Ideally,

whether two variables are related should be inferred based on the

specification S. For instance, variable lower and upper in a Range
class should be inferred related as the specification of Range implies

that lower must be always no larger than upper . Since we do not

assume that S is known, we rely on the following heuristics to infer

whether two variables are related: two variables are related if there

does not exist a public method such that one of them is updated

without accessing (reading or writing) the other one. Intuitively, if

two variables x and y are related (i.e., constrained to satisfy certain

predicate ϕ(x,y)), updating only one of those without reading or

updating the other risks breaking the predicate ϕ(x,y) and conse-

quently the specification S. Note that our assumption is that any

public method can be invoked for an arbitrary number of times. For

instance, a method which updates lower should read the value of

upper so as to make sure that the relation lower ≤ upper is not

violated. We remark that this heuristic is based on our assumption

that class P is correct if its methods are called sequentially.

5 GENERATING LOCKING POLICY
In this section, we describe how to synthesize a locking policy based

on the inferred access annotations. Let Lck be a set of locks. For

simplicity, let us assume that Lck is a set of fresh objects which are

created to solely serve as the locks. Recall that a locking policy lp is

a mapping from variables to locks. It is synthesized according to the

following two general principles.

† A mutable variable is always guarded by the same lock.

‡ Related mutable variables are guarded by the same lock.

These principles are adopted from [22]. Guarding the same variable

with the same lock makes it impossible to have a data race on the

variable, whereas guarding related variables with the same block

avoids high-level races, i.e., a race which breaks certain relation

between two or more variables. The goal is to synthesize the most

efficient locking policy which respects these two principles. To

compare the efficiency of different locking policies, we formulate

the following definition.

Definition 5.1 (Efficiency of locking policies). Given two locking

policies lp1 and lp2 for program P, we say that lp1 is more efficient

than lp2 if and only if the following conditions are satisfied.

• For any pair of variables (x1, x2), lp1(x1) = lp1(x2) only if

lp2(x1) = lp2(x2).
• There exists a pair of variables (x1, x2), lp1(x1) � lp1(x2) and

lp2(x1) = lp2(x2).

A locking policy lp for P is the most efficient iff there does not exist

a locking policy lp′ such that lp′ is more efficient than lp.

Our locking policy synthesis algorithm works as follows. First,

we assign a ⊥ lock to variables which are annotated with immutable,

since they do not need protection. Second, we compute the transitive

closure of the related relation between the remaining variables. The

947

ASE ’20, September 21–25, 2020, Virtual Event, Australia Wang et al.

Algorithm 1: Synthesize locking policy

1 for each immutable variable x do
2 assign lp(x) to be ⊥

3 end
4 for each variable y which is not assigned do
5 if there exists z such that related∗(y, z) then
6 assign lp(y) and all x such that related∗(x, z) the

same lock l
7 end
8 else
9 if y is shared or there is z s.t. related∗(y, z) then

10 assign lp(y) to be a fresh lock object

11 end
12 else
13 assign lp(y) to be ⊥

14 end
15 end
16 end

result is a partition of all variables such that each group of variables

are related. Next, we assign a fresh lock object for each group if

the group contains at least one shared variable or has at least two

variables. The details are shown in Algorithm 1, where related∗ is

the transitive closure of related.

For the example shown in Figure 2, the locking policy is docu-

mented in the form of annotations. That is, variable domain is to

be guarded by no locks since it is immutable. Variables data and

timePeriodClass are guarded by the same lock since they are related.

The other variables are guarded with different locks.

PROPOSITION 5.2. The locking policy synthesized by Algorithm 1
is the most efficient one with respect to the access annotations and
principles † and ‡. �

The proposition can be proved straightforwardly through contra-

diction and thus we skip the proof. Note that here we assume the

locking policy treats each method as a whole, i.e., it would be possi-

ble to have more efficient locking policy if we consider the internal

of methods (as we do in Section 6). Note that the locking policy

is synthesized based on the annotations, among which, the related
annotation is ‘guessed’ based on heuristics. Therefore there is no

guarantee on the correctness of the annotations and consequently the

synthesized locking policy. This is inevitable as we do not have the

specification. It is also why the access annotations must be presented

to the programmers for validation.

6 IMPLEMENTING LOCKING POLICY
In this section, we present details on how the synthesized locking

policy is implemented systematically and consistently. Recall that

a locking policy lp is consistently implemented in P if and only if,

for every variable x , every access of x (for either reading or writing)

is guarded with the corresponding lock in every possible run of

the program (i.e., the statement is executed after the lock has been

acquired and before the lock is released).

8

10b

ø
10a

ø

12

ø

ø
9 11

ø

end

13

ø

22

{pathValue}

28

{pathDate}
24

{nAcceptedPathValue}26

{nAcceptedPathValue}
23

{pathDate}

14

ø
15

ø
16

ø
17

ø
18

ø

19

ø
20

ø

25

ø
27

ø

29
ø

31
ø

Figure 3: The finite-state automaton for method readRateFile()
in the program in Figure 2.

First, static analysis including inter-procedural control flow anal-

ysis and aliasing analysis is systematically applied to build an ab-

straction of each method m. Let R be the set of variables read in

m and W be the set of variables written in m; and V = R ∪W .

The abstraction ma is of the form of a labeled finite state automa-

ton ma = (S, init, E, L, F) where S is a finite set of control loca-

tions; init ∈ S is the unique initial location (i.e., the method head);

E ⊆ S × S is a set of labeled transitions which capture the control

flow; L : S → 2
V is a labeling function which labels each node with

a set of variables, which are the set of variables read or written at the

line; and F is a set of final nodes (i.e., control locations where the

method terminates). We remark that over-approximation is applied

whenever it is impossible to precisely determine the control flow or

aliasing, i.e., E may contain infeasible control flow and, L may be a

superset of the actual set.

The following are the requirements that must be satisfied by an

implemention of the locking policy.

• First, for every variable x in R, along every path from init to

a transition which reads x , lock lp(x) must be acquired for

reading before the transition; for every variable x inW , along

every path from init to a transition which reads or writes x ,

lock lp(x) must be acquired for writing before the transition.

• Second, the lock can only be released after the corresponding

variable is accessed for the last time and all locks must be

released by the end of the method.

• Third, for efficiency reasons, the lock should be acquired as

late as possible and the lock release should be as early as

possible (without breaking other constraints).

• Fourth, the locking policy must not introduce lock ordering

deadlock.

We thus design the following approach for implementing the lock-

ing policies. First, we fix a global ordering on the locks, i.e., the

ascending alphabetical order. Note that since all locks are freshly

introduced, there are no aliasing problems and thus their names are

sufficient to uniquely distinguish them. Let < denote the ordering.

The ordering dictates that if o1 < o2, lock o1 is always acquired

before lock o2 along any path.

Algorithm 2 shows details on how to insert the lock acquire

statement and release statement at the right place. That is, we sys-

tematically traverse through every path of m (i.e., unfolding each

loop only once). Whenever there is a path such that a variable x in

V is accessed without acquiring lp(x) first, we insert a statement for

948

Towards Generating Thread-Safe Classes Automatically ASE ’20, September 21–25, 2020, Virtual Event, Australia

Algorithm 2: Implement locking policy

Input: Am method (S, init, E, L, F)
1 Let V be R ∪W ;

2 while there is path which accesses a variable x ∈ R ∪W and
lp(x) is not acquired before the access do

3 if x is in R then
4 insert lock(lp(x),R) before the first access;

5 end
6 else
7 insert lock(lp(x),W) before the access;

8 end
9 end

10 for each lock l such that ∃x : V . lp(x) = l do
11 release l right after last(l);

12 end
13 while ∃ a path containing lock(l) and subsequently lock(l ′)

and l is not unlocked in between and l ′ < l do
14 move lock(l ′) to right before lock(l);

15 end

locking lp(x) for reading if x in R (or for writing if x in W) right

before the node labeled with x . To release the lock, for each lock l
acquired somewhere in the method, we identify last(l) to be a set of

nodes such that there is no path starting from any n in the set which

accesses any variable x such that lp(x) = l and there does not exist

n′ satisfying this condition and a path from n′ to n (i.e., n is the first

such node along any path). Note that last(l) can be systematically

identified using a backward breath-first-search algorithm from F .

Lastly, line 11 and 12 reorder the lock acquire statements so that

the locks are always acquired in a fixed global ordering. That is,

we systematically traverse through every path ofm (i.e., unfolding

each loop only once). Whenever there is a path such that a lock l is

acquired before another lock l ′ (before l is released) such that l ′ < l ,
we move the statement for locking l ′ before that for locking l .

For instance, in our running example shown in Figure 2, method

readRateFile() is abstracted as the finite-state automaton shown in

Figure 3, where the nodes are labeled with the corresponding line

numbers for readability. If there are multiple statements on the same

line, we distinguish them by extending the line number with a letter,

e.g., 10a and 10b. Note that the automaton captures control flow due

to exceptions, e.g., the transition from node 16 to node 19 where

IOException due to in.readLine() is caught. The first variable to be

protected is pathValue which is accessed at line 22. Thus, the lock

which protects pathValue (as well as pathDate and nAcceptedPath-
Value) is acquired at line 21. By traversing through the automaton, we

determine last(nAcceptedPathValue_pathDate_pathValueLock) is

line 29. Thus, the lock is released at line 30. We remark method

getPathValue() is similarly handled except that the access to the in-

stance variable happens on a return statement at line 36. As a result,

last(datat imePeriodClassLock) is calculated to be the exit of the

method. Thus a finally block is introduced to release the lock. Note

that this is a common practice. Lastly, we examine the lock ordering

to check whether there is any path which holds multiple locks at the

same time and the locks are locked in an order not following the

fixed global ordering (i.e., the ascending alphabetical order based on

the lock names). In this example, there is no such path as only one

lock is acquired in each of the two methods.

In the following, we establish the soundness of our approach

based on the notation of linearizability. The proof is shown below.

Recall that we assume, without loss of generality, that variables are

only accessible through methods in the class. We can always rewrite

the direct variable reference with a getter function.

THEOREM 6.1. The synthesized program is linearizable with
respect to the given program. �

The following establishes that the synthesized program is always

deadlock-free. The proof is straightforward as locks are always

acquired in a fixed global ordering along any program path in Algo-

rithm 2.

THEOREM 6.2. The synthesized program is deadlock-free. �

PROOF. We sketch the proof below using a simple setting with

two threads (say t1 and t2) and two methods (say m1 and m2). Let

π be ab arbitrary trace of the synthesized program, which is com-

posed of the following kinds of events inv(mi ,ai , ti), res(mi ,oi , ti),
locki (l), releasei (l), readi (x),writei (x), and τi where i ∈ {1, 2}, l is

any fresh clock introduced in the program, x is any shared variable,

readi (x) is the event of thread i reading x’s value to be v, writei (x)
is the event of thread i writing x , and τi represents all the rest of the

events (i.e., local transitions of thread i). By the soundness of the syn-

thesized locking policy, if x is mutable, events read(x) and write(x)
must be preceded with lock(lp(x)) and followed by release(lp(x)),
and each lock(lp(x)) to release(lp(x)) block does not contain any

variable related to y (including x) by the other thread. To prove the

theorem, we show a procedure which constructs a trace π ′ which

satisfies the two conditions for linearizability. The general idea is to

expand the scope of each locki (l) to releasei (l) block in between a

pair of inv(mi ,ai , ti) and res(mi ,oi , ti), locki (l) such that the block

encloses all events in between the invocation and the return, without

changing the invocation and return events.

First, it is easy to see that a locki (l) to releasei (l) block can be

‘expanded’ to include all τi events immediately proceeding locki (l)
or immediately following the releasei (l) event. Afterwards, we have

a sequence of lock-release blocks which may overlap. By the cor-

rectness of Algorithm 1 and 2, the overlapping blocks must not

update related variables, and thus we can re-order the events to have

two non-overlapping blocks with the same sequence of events for

each thread, without affecting the return events. The result is a se-

quence of back-to-back lock-release blocks which do no overlap.

Afterwards, we delay the inv(mi ,ai , ti) to the start with the first

subsequent lock-release block of the same thread and obtain the

resultant π ′.

The above argument can be generalized to an arbitrary number of

threads and methods as follows. If the theorem is invalid, there must

be a concurrent history which is non-linearable, i.e., there exists a

history composed of two threads and invocation of two methods

which is not linearable. �

7 IMPLEMENTATION AND EVALUATION
In this section, we first briefly present how AutoLock is implemented

and then evaluate its effectiveness through multiple experiments.

949

ASE ’20, September 21–25, 2020, Virtual Event, Australia Wang et al.

Table 1: Buggy programs.

program name LOC #vars type #locks fixed time(s)

log4j.Appender
128 2 Race 1 � 0.894AttachableImpl

java.io.Buffered
314 17 Atom 5 � 1.209InputStream

log4j.File
156 9 Atom 1 � 1.086Appender

java.util.
4083 154 Race 24 � 14.445HashTable

log4j.Null
160 15 Atom 7 � 0.997Appender

dbcp.PerUser
1101 80 Race 27 � 1.792PoolDataSource

dbcp.Shared
1115 73 Atom 20 � 1.786PoolDataSource

java.util.Syn
4107 154 DL 24 � 14.981chronizedMap

jfree.
303 9 Race 1 � 1.181TimeSeries

java.util.
221 4 Atom 1 � 1.124Vector117

java.util.
1940 103 Atom 27 � 3.81Vector142

jfree.
142 9 Race 2 � 1.169XYSeries

AutoLock has been implemented based on JDK 1.8 and it is open

source [23]. It is built on top of the Java bytecode analysis and

modification tool ASM for code instrumentation. It has total 2,327

lines of code. It relies on the Sip4J project [24, 25] to perform the

data flow and aliasing flow analysis required for generating access

annotations and that relies on org.eclipse.jdt for conducting the AST-

based static analysis of the Java source code.

7.1 Evaluation
In the following, we conduct multiple experiments to answer the

following research questions (RQ).

• RQ1: How effectiveness is our proposed technique in avoiding
the concurrency bugs?

• RQ2: What is the time overhead of our method?
• RQ3: How efficient are the generated thread-safe classes?

RQ1 aims to study whether indeed AutoLock can be used to elimi-

nate concurrency bugs systematically in the first place. RQ2 aims

to evaluate whether AutoLock can be applied in practical scenarios,

i.e., handing real-world sized programs and having an acceptable

overhead. RQ3 aims to evaluate whether the thread-safe classes gen-

erated by AutoLock is reasonably efficient. In the following, we

present details of the experiments for answering the RQs one by one.

All experiments are conducted on a computer with Intel Xeon CPU

E5-2640 of 40 cores and 128GB memory. All programs are running

under ubuntu 18.04 and JDK 1.8.

To answer RQ1, we collect a set of concurrent programs which

are known to be buggy. Table 1 shows details of the 12 classes. These

classes are collected from CovCon [26], each of which contains one

concurrency bug. In the table, the first four columns show the pro-

gram name, the number of non-blank non-comment line of code in

1 public class TimeSeries extends Series implements
Serializable {

2 //+ @related(timePeriodClass,data,
maximumItemCounthistoryCount)

3 //@shared @guardedBy(ddhmrtLock)
4 private Class timePeriodClass;
5 //@shared @guardedBy(ddhmrtLock)
6 private List data;
7 //@shared @guardedBy(ddhmrtLock)
8 private int maximumItemCount;
9 //@shared @guardedBy(ddhmrtLock)

10 private int historyCount;
11 //@write(timePeriodClass) * @write(data) * @read(

maximumItemCount) * @read(historyCount)
12 public void add(TimeSeriesDataItem pair) throws

SeriesException {
13 try {
14 + ddhmrtLock.writeLock().lock();
15 if (!pair.getPeriod().getClass().equals(

timePeriodClass)) { throw new
SeriesException(); }

16 int index = Collections.binarySearch(data,
pair);

17 if (index < 0) {
18 this.data.add(-index - 1, pair);
19 if (getItemCount() > this.

maximumItemCount) {this.data.
remove(0);}

20 if ((getItemCount() > 1) && (this.
historyCount > 0)) {

21 long latest = getTimePeriod(
getItemCount() - 1).
getSerialIndex();

22 while ((latest - getTimePeriod(0).
getSerialIndex()) >=
historyCount) { this.data.
remove(0); }}

23 fireSeriesChanged();
24 } else {throw new SeriesException("");}
25 } finally {
26 + ddhmrtLock.writeLock().unlock();}}}

Figure 6: The TimeSeries class as a fixed example.

the program, the number of variables, and a broad categorization of

the bug (DL indicates dead lock). These classes range from hundreds

of lines of code to thousands, some of which have more than 100

instance variables.

Instead of patching the program by introducing additional syn-

chronization (as is the case in [9, 12, 27]), we systematically remove

all the synchronization (e.g., synchronized keyword and lock ob-

jects) and apply our approach to generate a thread-safe version of the

classes. The last three columns show the number of locks used in the

generated classes, whether the bug is fixed and how long it takes to

generate the classes. To check whether the bug is fixed, we manually

examine the generated classes one-by-one and check whether the

buggy execution is eliminated successfully.

In all of the 12 cases, the bug is fixed successfully. In the fol-

lowing, we illustrate how bug fixing is achieved using the example

shown in Figure 6. This class has a subtle concurrency bug in the

method add. Specifically, a data race on variable data occurs when

two threads execute method add() at the same time. In short, when

two threads call function add() at the same time, line 16 might be

executed concurrently by the two threads at the same time. Because

variable data is of the type ArrayList (which is not a thread-safe

class), a data race happens when data.add() is called by the two

threads at the same time. A potential result is IndexOutOfBoundEx-
ception as there may be only one element in data whereas its length

950

Towards Generating Thread-Safe Classes Automatically ASE ’20, September 21–25, 2020, Virtual Event, Australia

has already been set to be 2 by the other thread. The exact details of

the bug can be found at [26].

After applying our approach, the access annotations are generated

at line 2 to 11, which leads to the locking policy shown at line 3

to 9. Note that because all of these four variables are accessed in

method add() and some of them are updated, they are related and

thus are guarded by the same lock. To protect these variables, the

lock is acquired for writing at line 14 and released at line 26 in a

finally block. As a result, no two threads are allowed to execute line

16 concurrently and thus the bug is fixed.

In terms of the number of locks used in the generated program,

it ranges from 1 (guarding at most 9 variables) to 27 (guarding 80

variables). This statistic suggests that variables in the same class are

not always related and thus we could use different locks to guarded

different variables for better efficiency. We further summarize the

time taken for generating the thread-safe classes, which is all within

15 seconds (and the average is 0.48 seconds). Compared to the

time that people typically spend on fixing a single concurrency bug,

e.g., 73 days [28], we believe that the time overhead is justified. In

summary, we show that AutoLock could be applied to systematically

prevent concurrency bugs.

To answer RQ2, we examine the performance of AutoLock in rela-

tion to the size of the given program, the number of variables, and the

number of locks generated in the following experiment. The aim is to

see whether AutoLock can be applied to large real-world programs.

Although the time overhead in the above experiment seems reason-

able, the experiment is limited to a set of buggy programs. We thus

systematically collect a set of additional 33 programs from the Java

Grande Benchmark [29], Æminium and Plaid Benchmark [30, 31],

Pulse [32] and JDK 1.6 [33]. The details of the programs are shown

in Table 2. Column 2 to 5 show the total lines of code, the number

of classes, the total number of methods and variables respectively.

In total, our benchmark has 64,447 lines of code, 724 classes and

7,544 methods. The largest one is plural with 246 classes and 2,189

methods. Column 6 shows the total number of locks generated to

guard the variables. Note that each related annotation only concerns

two variables. The last four columns show the time taken in seconds

by each step and the total time.

On average, it takes total of 7.54 seconds to handle each program.

The first step of generating access annotations takes the most time

(i.e., 93.6%), whereas the rest two steps are efficient. This is expected

as the first step requires non-trivial static analysis. For the biggest

program pural, the total time is slightly less than 4 minutes. In

summary, the time overhead of AutoLock is reasonable.

To answer RQ3, we conduct experiments to systematically com-

pare the efficiency of programs generated using AutoLock with

alternative approaches. We collect a set of 8 data structures (i.e.,

arraylist, hashmap and so on) from the standard JDK library. These

are selected as there are different thread-safe versions of the pro-

grams in the library. For each program, we systematically compare

the performance of four versions, i.e., the original sequential version,

a baseline version in which a single lock is used to guard every

method (i.e., every method is synchronized as would be the result of

a naive programmer), a corresponding expert version (e.g., CopyOn-
WriteList, ConcurrentHashMap and so on) which is adopted from

the JDK library and the version generated by AutoLock. Note that

the expert version from the JDK library is highly optimized and it

is highly non-trivial, if not impossible, to generate programs which

are more efficient. In fact, because the expert version often “relaxes”

the specification in order to achieve better efficiency, e.g., Concur-
rentHashMap allows multiple threads modifying different buckets in

the map at the same time which is not allowed by SynchronizedMAP.

Performance testing of concurrent programs is a highly non-trivial

task. Our performance test is set up in accordance to the performance

test example shown in [22]. In particular, for each data structure, we

set up an increasing number of threads which randomly invoke meth-

ods on the data structure through a shared object. A timedbarrier is

used to start the timer and all the threads at the same time. The timer

is stopped (again through the timedbarrier) as soon as all the threads

finish. Afterwards, we divide the number of operations performed on

the object by the total execution time to get the average throughput

(the larger the better). The same random seed is used so that the

same methods with the same parameters are executed. For the origin

version, we just run it sequentially with previous settings because

it’s not thread-safe. Each experiment is executed for 20 times and

we report the average as the result.

Our evaluation is conducted in two scenarios. In the first scenario,

the methods called are mostly read-only. In particular, among a total

of 512,000 method invocations, 90% of them are read-only (e.g.,

method contains()) and 10% of them write (e.g., method remove()).
Note that whether a method reads only or writes as well can be

easily checked based on the generated access annotations. To test the

performance of the program under different workload, we run the

experiments multiple times with the number of threads increasing

from 2, 4, 8 to 256 and report the results separately. In the second

scenario, only methods which write to the data structure are called

(for the same total of 512, 000 times) and we compare the throughput

of each version with different number of threads.

The result is shown in Figure 7 and Figure 8, where the y-axis is

the throughput. For comparison, we additionally measure the time

taken by the original version in the sequential setting, i.e., a thread

is calling the same methods one after another. For the expert version,

we use the highly optimized java.util.concurrent.ConcurrentHashMap
for maps and java.util.concurrent.CopyOnWriteArrayList for lists

and vectors. For jobs which are mostly read-only, the expert version,

i.e., ConcurrentHashMap has the best performance in most of the

cases (i.e., 6 out of 8). It is resonable because such classes have

been carefully tuned for years and are widely used by millions of

programs. However, in two cases, the program generated by Au-

toLock consistently performs the best. The reason is that, although

the programs generated by AutoLock only has one lock (there are

methods in the class which access all variables at the same time), we

make use of ReadWriteLock which allows multiple threads executing

read-only methods at the same time. Overall, AutoLock generates

programs which are more efficient than the baseline version in 3

cases and as efficient as the baseline in the rest. Note that due to lock

contention and the overhead of locking and unlocking, the sequential

version is not always the slowest.

When only writing methods are invoked, the results are shown

in Figure 8. First, we observe that while ConcurrentHashMap con-

sistently performs best in multiple cases, CopyOnWriteArrayList’s
performance is often on the bottom as expected (due to the overhead

of copying the data structure every time it is written). AutoLock

again wins in 3 cases but are slightly less efficient in 4 cases. The

951

ASE ’20, September 21–25, 2020, Virtual Event, Australia Wang et al.

Table 2: Efficiency evaluation.

program name #line #classes #methods #vars #lock generate anno. (s) generate LP (s) apply LP (s) total (s)
arraylist 740 7 96 16 4 1.468 0.539 0.377 2.384

bitset 355 1 38 10 1 0.945 0.274 0.21 1.429
hashmap 765 12 116 37 9 1.162 0.314 0.231 1.707
hashtable 2729 47 506 151 24 5.101 0.475 0.408 5.984

identityhashmap 996 11 109 34 9 1.29 0.319 0.246 1.855
linkedhashmap 1237 18 143 52 17 1.335 0.331 0.246 1.912

linkedlist 1016 11 138 27 7 1.41 0.376 0.27 2.056
random 141 1 15 13 2 0.749 0.159 0.128 1.036
treemap 1892 25 285 70 22 3.178 0.492 0.326 3.996
vector 2634 45 552 136 20 6.201 0.413 0.339 6.953

aeminium.blackscholes 1062 5 72 37 9 1.098 0.303 0.272 1.673
aeminium.fft 96 3 7 7 3 0.714 0.125 0.112 0.951

aeminium.fibonacci 36 0 3 2 1 0.648 0.017 0.108 0.773
aeminium.gaknapsack 1154 5 24 49 15 0.885 0.277 0.221 1.383

aeminium.health 810 5 12 66 15 0.772 0.251 0.174 1.197
aeminium.integral 43 0 3 4 1 0.64 0.028 0.099 0.767

aeminium.lud 326 3 16 16 4 0.787 0.177 0.156 1.12
aeminium.quicksort 68 2 5 3 1 0.658 0.118 0.103 0.879
aeminium.raytracer 601 12 65 62 16 1.089 0.363 0.278 1.73
aeminium.shellsort 64 1 5 6 3 0.658 0.028 0.101 0.787

aeminium.webserver 149 2 8 6 2 0.722 0.115 0.11 0.947
jomp.crypt 489 4 39 27 8 0.853 0.316 0.255 1.424
jomp.euler 891 6 50 63 16 1.362 0.42 0.332 2.114
jomp.jgfutil 253 4 36 16 3 1.292 0.39 0.29 1.972
jomp.lufact 570 4 41 26 5 1.37 0.307 0.235 1.912

jomp.moldyn 612 6 42 56 9 0.963 0.342 0.261 1.566
jomp.montecarlo 1375 17 195 137 29 1.697 0.668 0.495 2.86

jomp.search 672 7 51 49 8 0.906 0.328 0.259 1.493
jomp.series 359 4 36 20 6 0.844 0.265 0.212 1.321

jomp.sor 323 4 33 24 5 0.818 0.269 0.217 1.304
jomp.sparsematmult 330 3 33 30 6 0.802 0.277 0.214 1.293

plural 20413 246 2189 594 196 228.56 1.882 1.187 231.629
pulse 7476 22 220 91 25 3.215 0.634 0.465 4.314

Figure 7: Throughput with mostly-read jobs.

reason is that all locks are acquired for writing and thus the benefit

of ReadWriteLock diminishes.

Limitations AutoLock aims to generate a thread-safe class by

automatically synthesizing locking policies, and the protection is

provided to the variables within the target class. There maybe cases

that the target class accesses an object from an external library, which

contains concurrency bugs. In this case, the bug is due to the the

thread-safety issue of the external library, and not our target class.

To avoid accidentally returning references of objects of the target

class, we explicitly add a getter function, which conducts deep

copy, for each object in the target class. This properly protect objects

in the target class, but may introduce some performance overhead.

8 RELATED WORK
The access annotations in this work are closely related to work

on access permission sharing models. Access permission sharing

952

Towards Generating Thread-Safe Classes Automatically ASE ’20, September 21–25, 2020, Virtual Event, Australia

Figure 8: Throughput with write-only jobs.

models [20, 34] have been used in many formal approaches such

as Plural[35], Chalice [36, 37], Pulse[38], Verifast[39], Viper [40,

41] and VerCors[42–44], to provide thread-local reasoning for the

shared-memory concurrent (multi-threaded) programs and to ensure

race-free sharing of heap locations. In these approaches, the general

idea is to explicitly associate access permission (read/write) infor-

mation to program references (threads) to access memory locations

and track the permission flow through the system to enforce mutual

exclusion mechanisms. Moreover, permission-based programming

paradigms [45–48] have been recently developed that parallelize

execution of sequential programs based on access permission con-

tracts. These approaches, however, require manually-specified access

permission contracts.

This work is closely related to work on automatically generating

safe concurrent programs. In [49–52], the authors proposed to use

read-copy-update and read-log-update to adopt synchronization. In

particular, Herlihy [52, 53] use compare and swap (CAS), which

has been widely used to implement wait-free or lock-free synchro-

nizations. Dig et al. [54] proposed to use concurrency libraries to

refactor sequential program. Based on read-copy-update and read-

log-update, Zhang et al. [55] proposed to automatically convert

sequential C++ data abstractions to concurrent lock-free implemen-

tations using compiler technology. It relies on software transactional

memory (STM) which was proposed by Shavit and Touitou [16].

Such an approach however works without users acknowledging its

underlying assumptions. In [56–59], authors provides approaches to

make atomic sections automatically to guarantee programs’ atomic-

ity. Michael et al. [60] proposed regression testing for two versions

of thread-safe classes. Different from them, our approach aims to

compare the non-thread-safe class and its thread-safe version.

This work is also related to work on detecting and fixing concur-

rency bugs. Multiple approaches [8–11] tried to detect and fix con-

currency bugs by detecting erroneous interleaving patterns. Huang et
al. [8] attended to fix concurrency bugs via adding synchronization.

There are a few approaches for fixing concurrent bugs of atomic-

ity violation. AFix [9] adds a mutex lock to the program based on

the CTrigger’s [61] output to fix concurrency bugs. CFix [10] ex-

tends AFix to fix order violation concurrency bugs. CFix enforces

all A-B or first A-B order relationships and mutual exclusion to fix

order violation. Similar to AFix, Axis [11] fixes atomicity violations

by adding mutual exclusion locks and synchronization measures.

Besides, Axis works on reducing the possibility of introducing dead-

locks. AlphaFixer [62] fixes atomicity violations by introducing

locks. It fine-tunes the locking by analyzing the lock acquisitions

and thus it is possible to reduce the introduction of deadlocks. Liu

et al. [27] proposed HFix, which designs fix strategies based on a

survey of 77 manual patches of real-word concurrency bugs. Besides

using mutex locks, Hfix can also use the multi-thread operations,

i.e., create and join, to achieve the purpose of fix while modifying

the original locks. Grail [27] fixes concurrency bugs by adding locks

in ways similar to AFix and Axis. Grail builds a Petri net analysis

model which is context-aware and can consider lock alias. It allows

Grail to take measures for deadlock-freedom. Grail can be time con-

suming due to the use of constraint solving and besides, it cannot

fix multivariable bugs. PFix [12] proposes to fix concurrency bugs

based on memory access patterns. Instead of fixing concurrency

bugs, we aim to prevent concurrency bugs systematically.

9 CONCLUSION
In this work, we propose an approach of avoiding concurrency bugs

by automatically generating thread-safe classes which are lineariz-

able. The novel idea is to infer access annotations for each method

automatically and synthesize as well as implement a locking policy

based on the access annotations.

10 ACKNOWLEDGEMENT
This work was partially supported by the National Natural Sci-

ence Foundation of China under Grant No. 61872263, U1836214

and 61802275, Key-Area Research and Development Program of

Guangdong Province under Grant No. 2018B010107004, Intelligent

Manufacturing Special Fund of Tianjin under Grant No. 20191012,

20193155, Innovation Research Project of Tianjin University under

Grant No. 2020XZC-0042, 2020XRG-0022.

953

ASE ’20, September 21–25, 2020, Virtual Event, Australia Wang et al.

REFERENCES
[1] Cormac Flanagan and Stephen N Freund. Fasttrack: efficient and precise dynamic

race detection. In ACM Sigplan Notices, volume 44, pages 121–133. ACM, 2009.
[2] Christoph Von Praun and Thomas R Gross. Static conflict analysis for multi-

threaded object-oriented programs. In ACM Sigplan Notices, volume 38, pages
115–128. ACM, 2003.

[3] Shuang Liu, Guangdong Bai, Jun Sun, and Jin Song Dong. Towards using concur-
rent java api correctly. In 2016 21st International Conference on Engineering of
Complex Computer Systems (ICECCS), pages 219–222. IEEE, 2016.

[4] Kai Lu, Zhendong Wu, Xiaoping Wang, Chen Chen, and Xu Zhou. Racechecker:
efficient identification of harmful data races. In 2015 23rd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, pages 78–85.
IEEE, 2015.

[5] Dejan Perkovic and Peter J Keleher. Online data-race detection via coherency
guarantees. In OSDI, volume 96, pages 47–57, 1996.

[6] Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. A randomized
dynamic program analysis technique for detecting real deadlocks. In ACM Sigplan
Notices, volume 44, pages 110–120. ACM, 2009.

[7] Chang-Seo Park and Koushik Sen. Randomized active atomicity violation de-
tection in concurrent programs. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, pages 135–145.
ACM, 2008.

[8] Jeff Huang and Charles Zhang. Execution privatization for scheduler-oblivious
concurrent programs. In ACM SIGPLAN Notices, volume 47, pages 737–752.
ACM, 2012.

[9] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. Automated
atomicity-violation fixing. In ACM Sigplan Notices, volume 46, pages 389–400.
ACM, 2011.

[10] Guoliang Jin, Wei Zhang, and Dongdong Deng. Automated concurrency-bug
fixing. In Presented as part of the 10th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 12), pages 221–236, 2012.

[11] Peng Liu and Charles Zhang. Axis: Automatically fixing atomicity violations
through solving control constraints. In 2012 34th International Conference on
Software Engineering (ICSE), pages 299–309. IEEE, 2012.

[12] Huarui Lin, Zan Wang, Shuang Liu, Jun Sun, Dongdi Zhang, and Guangning
Wei. Pfix: fixing concurrency bugs based on memory access patterns. In Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, pages 589–600. ACM, 2018.

[13] Bertrand Meyer. Applying’design by contract’. Computer, 25(10):40–51, 1992.
[14] Wladimir Araujo, Lionel C Briand, and Yvan Labiche. Enabling the runtime

assertion checking of concurrent contracts for the java modeling language. In
Proceedings of the 33rd International Conference on Software Engineering, pages
786–795. ACM, 2011.

[15] Mike Barnett, K Rustan M Leino, and Wolfram Schulte. The spec# programming
system: An overview. In International Workshop on Construction and Analysis of
Safe, Secure, and Interoperable Smart Devices, pages 49–69. Springer, 2004.

[16] Nir Shavit and Dan Touitou. Software transactional memory. Distributed Comput-
ing, 10(2):99–116, 1997.

[17] Lu Zhang, Arijit Chattopadhyay, and Chao Wang. Round-up: Runtime checking
quasi linearizability of concurrent data structures. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 4–14.
IEEE, 2013.

[18] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages and
Systems (TOPLAS), 12(3):463–492, 1990.

[19] Grande. Grande benchmark. https://www.epcc.ed.ac.uk/research/computing/
performance-characterisation-and-benchmarking/java-grande-benchmark-suite.

[20] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased
objects, volume 42 of OOPSLA ’07. ACM, 2007.

[21] Nels E. Beckman, Kevin Bierhoff, and Jonathan Aldrich. Verifying correct usage
of atomic blocks and typestate. In Proceedings of the 23rd ACM SIGPLAN
Conference, OOPSLA ’08, pages 227–244, 2008.

[22] Brian Goetz, Tim Peierls, Doug Lea, Joshua Bloch, Joseph Bowbeer, and David
Holmes. Java concurrency in practice. Pearson Education, 2006.

[23] Autolock. https://github.com/autolock-anonymous/AutoLock, 2020.
[24] Ayesha Sadiq, Yuan-Fang Li, Sea Ling, Li Li, and Ijaz Ahmed. Statically inferring

permission-based specifications for sequential java programs. arXiv preprint
arXiv:1902.05311, 2019.

[25] A. Sadiq, L. Li, Y. Li, I. Ahmed, and S. Ling. Sip4j: Statically inferring access
permission contracts for parallelising sequential java programs. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 1098–1101, 2019.

[26] Ankit Choudhary, Shan Lu, and Michael Pradel. Efficient detection of thread
safety violations via coverage-guided generation of concurrent tests. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE), pages
266–277. IEEE, 2017.

[27] Haopeng Liu, Yuxi Chen, and Shan Lu. Understanding and generating high quality
patches for concurrency bugs. In Proceedings of the 2016 24th ACM SIGSOFT
international symposium on foundations of software engineering, pages 715–726.
ACM, 2016.

[28] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes:
a comprehensive study on real world concurrency bug characteristics. In ACM
SIGARCH Computer Architecture News, volume 36, pages 329–339. ACM, 2008.

[29] Kevin Bierhoff, Nels E Beckman, and Jonathan Aldrich. Polymorphic fractional
permission inference. 2009.

[30] Kevin Bierhoff, Nels E Beckman, and Jonathan Aldrich. Practical api protocol
checking with access permissions. In European Conference on Object-Oriented
Programming, pages 195–219. Springer, 2009.

[31] Stefan Heule, K Rustan M Leino, Peter Müller, and Alexander J Summers. Ab-
stract read permissions: Fractional permissions without the fractions. In VM-
CAI‘13, pages 315–334, 2013.

[32] Stefan Blom and Marieke Huisman. The vercors tool for verification of concurrent
programs. In International Symposium on Formal Methods, pages 127–131.
Springer, 2014.

[33] jdk16. https://github.com/zxiaofan/JDK.
[34] John Boyland. Checking Interference with Fractional Permissions. In Proceedings

of the 10th International Conference on Static Analysis, SAS’03, pages 55–72.
Springer-Verlag, 2003.

[35] Kevin Bierhoff and Jonathan Aldrich. Plural: Checking protocol compliance under
aliasing. In ICSE Companion ’08, pages 971–972, 2008.

[36] K. Rustan M Leino, Peter Müller, and Jan Smans. Verification of concurrent
programs with chalice. In FOSAD 2007/2008/2009 Tutorial Lectures, pages
195–222. Springer Berlin Heidelberg, 2009.

[37] K Rustan M Leino and Peter Müller. A basis for verifying multi-threaded programs.
In European Symposium on Programming, pages 378–393. Springer, 2009.

[38] Radu I. Siminiceanu, Ijaz Ahmed, and Néstor Cataño. Automated verification
of specifications with typestates and access permissions. ECEASST, pages 1–15,
2012.

[39] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx,
and Frank Piessens. VeriFast: A powerful, sound, predictable, fast verifier for C
and java. In NASA Formal Methods Symposium, pages 41–55. Springer, 2011.

[40] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In Barbara Jobstmann and K. Rus-
tan M. Leino, editors, Verification, Model Checking, and Abstract Interpretation,
pages 41–62, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[41] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In Dependable Software Systems
Engineering. 2017.

[42] Afshin Amighi, Stefan Blom, Marieke Huisman, and Marina Zaharieva-
Stojanovski. The VerCors Project: Setting Up Basecamp. In Programming
Languages meets Program Verification (PLPV 2012), 2012.

[43] Marieke Huisman and Wojciech Mostowski. A symbolic approach to permission
accounting for concurrent reasoning. In Proceedings - IEEE 14th International
Symposium on Parallel and Distributed Computing, ISPDC 2015, 2015.

[44] Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. The vercors
tool set: Verification of parallel and concurrent software. In Nadia Polikarpova
and Steve Schneider, editors, Integrated Formal Methods, pages 102–110, Cham,
2017. Springer International Publishing.

[45] Jonathan Aldrich, Robert Bocchino, Ronald Garcia, Mark Hahnenberg, Manuel

Mohr, Karl Naden, Darpan Saini, Sven Stork, Joshua Sunshine, Éric Tanter, and
Roger Wolff. Plaid: a permission-based programming language. In Proceedings
of the ACM international conference companion on Object oriented programming
systems languages and applications companion, pages 183–184. ACM, 2011.

[46] Jonathan Aldrich, Nels E Beckman, Robert Bocchino, Karl Naden, Darpan Saini,
Sven Stork, and Joshua Sunshine. The Plaid language: Typed core specification.
Technical report, DTIC Document, 2012.

[47] Sven Stork, Karl Naden, Joshua Sunshine, Manuel Mohr, Alcides Fonseca, Paulo
Marques, and Jonathan Aldrich. Aeminium: A permission-based concurrent-by-
default programming language approach. TOPLAS,, 36(1):1–42, 2014.

[48] Sam Blackshear, Nikos Gorogiannis, Peter W O’Hearn, and Ilya Sergey. Racerd:
compositional static race detection. Proceedings of the ACM on Programming
Languages, 2(OOPSLA):1–28, 2018.

[49] Paul E McKenney and John D Slingwine. Read-copy update: Using execution
history to solve concurrency problems. In Parallel and Distributed Computing
and Systems, pages 509–518, 1998.

[50] Jaeho Kim, Ajit Mathew, Sanidhya Kashyap, Madhava Krishnan Ramanathan,
and Changwoo Min. Mv-rlu: Scaling read-log-update with multi-versioning.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 779–792.
ACM, 2019.

[51] Alexander Matveev, Nir Shavit, Pascal Felber, and Patrick Marlier. Read-log-
update: a lightweight synchronization mechanism for concurrent programming.
In Proceedings of the 25th Symposium on Operating Systems Principles, pages

954

Towards Generating Thread-Safe Classes Automatically ASE ’20, September 21–25, 2020, Virtual Event, Australia

168–183. ACM, 2015.
[52] Maurice Herlihy. A methodology for implementing highly concurrent data ob-

jects. ACM Transactions on Programming Languages and Systems (TOPLAS),
15(5):745–770, 1993.

[53] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems (TOPLAS), 13(1):124–149, 1991.

[54] Danny Dig, John Marrero, and Michael D Ernst. Refactoring sequential java code
for concurrency via concurrent libraries. In Proceedings of the 31st International
Conference on Software Engineering, pages 397–407. IEEE Computer Society,
2009.

[55] Jiange Zhang, Qing Yi, and Damian Dechev. Automating non-blocking synchro-
nization in concurrent data abstractions.

[56] Michael Emmi, Jeffrey S Fischer, Ranjit Jhala, and Rupak Majumdar. Lock
allocation. ACM SIGPLAN Notices, 42(1):291–296, 2007.

[57] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker: synchro-
nization inference for atomic sections. In Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages

346–358, 2006.
[58] Michael Hicks, Jeffrey S Foster, and Polyvios Pratikakis. Lock inference for

atomic sections. In Proceedings of the First ACM SIGPLAN Workshop on Lan-
guages, Compilers, and Hardware Support for Transactional Computing, 2006.

[59] Sigmund Cherem, Trishul Chilimbi, and Sumit Gulwani. Inferring locks for
atomic sections. ACM SIGPLAN Notices, 43(6):304–315, 2008.

[60] Michael Pradel, Markus Huggler, and Thomas R Gross. Performance regression
testing of concurrent classes. In Proceedings of the 2014 International Symposium
on Software Testing and Analysis, pages 13–25, 2014.

[61] Soyeon Park, Shan Lu, and Yuanyuan Zhou. Ctrigger: exposing atomicity violation
bugs from their hiding places. In ACM SIGARCH Computer Architecture News,
volume 37, pages 25–36. ACM, 2009.

[62] Yan Cai, Lingwei Cao, and Jing Zhao. Adaptively generating high quality fixes
for atomicity violations. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 303–314. ACM, 2017.

955

	Towards generating thread-safe classes automatically
	Citation
	Author

	Towards Generating Thread-Safe Classes Automatically

