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Abstract—This paper proposes and analyzes a new virtual
machine (VM) placement technique called Group Instance to
deal with co-location attacks in public Infrastructure-as-a-Service
(IaaS) clouds. Specifically, Group Instance organizes cloud users
into groups with pre-determined sizes set by the cloud provider.
Our empirical results obtained via experiments with real-world
data sets containing million of VM requests have demonstrated
the effectiveness of the new technique. In particular, the advan-
tages of Group Instance are three-fold: 1) it is simple and highly
configurable to suit the financial and security needs of cloud
providers, 2) it produces better or at least similar performance
compared to more complicated, state-of-the-art algorithms in
terms of resource utilization and co-location security, and 3) it
does not require any modifications to the underlying infrastruc-
tures of existing public cloud services.

Index Terms—cloud security, co-location attacks, virtual ma-
chine placement.

I. INTRODUCTION

In Infrastructure-as-a-Service clouds [1], large amounts of

computing power are accessible to ordinary users as a service,

in which anyone can request for computing resource on-

demand without significant upfront expenditure. This service

is typically served in the form of Virtual Machines (VM) that

are created upon requests. Each VM is initialized and placed

into one of many Physical Machines (PM) owned by the IaaS

cloud provider. The physical resource of each PM is divided

into isolated partitions by a VM monitor (hypervisor). Then,

each of the partitions will be used to host a VM accordingly.

The assignment of these VMs to PMs is controlled by the

cloud provider through appropriate VM placement algorithms

[2].

Although there are strong isolation mechanisms to ensure

that no data would be shared between different VMs; if the

VMs are in the same PM, they still have to share several types

of common resource in the PM such as the Last-Level Cache,

etc. Such resource sharing enables certain side channels which

could leak data across VMs located on the same PM. This

in turn motivates various kinds of co-location based attacks,

which first involve getting a rogue VM into a particular PM

hosting multiple other ordinary VMs. From there, the rogue

VM might be able to extract confidential information and data

from the victim VMs via existing or new side channels [3].

One notable example was demonstrated by Ristenpart et

al. [4] in an empirical study of such attacks in Amazon EC2

cloud service. The researchers were able to recreate a map of

the underlying physical cloud resources using network probes

and to determine the co-location status of any VMs. Such

information was then used to launch rogue VMs that could

co-locate themselves with a target VM, of which data could

be subsequently extracted via some side-channels. Co-location

attacks have gained more attention as recent vulnerabilities

such as Spectre [5] and Meltdown [6] critically impact major

public cloud providers.

To deal with the threat of co-location attacks, a straight-

forward approach is to separate each user physically. This

method has been practically used by current cloud service

providers, e.g., Amazon EC2’s Dedicated Instance (DI) [7],

[8]. The obvious downside for this approach is low physical

resource utilization, as VMs belong to different users could

not be consolidated on the same PM. As a result, Dedicated

Instance could be significantly more expensive compared to

other types of VMs.

Popular approaches in this area focus on improving both

resource utilization and co-location resistance of the VM

placement algorithms at the same time. Better resource utiliza-

tion could bring significant financial benefits for both cloud

users and providers. Notable approaches include Previously

Selected Server First (PSSF) by Hans et. al. [9] and Previously

Co-located User First (PCUF) [10], [11]. More specifically,

PSSF limits the number of different PMs that a VM from a

particular user can be placed on. On the other hand, PCUF,

which is one of the most recent approaches, aims to reduce

the chance for malicious co-location by only letting VMs of

previously co-located users to share the same PM.

In this paper, we propose a new approach called Group

Instance (GI), in which we also aim to reduce the chance of

malicious co-locations. In essence, GI introduces a new config-

urable parameter, group limit, to maintain a balance between

security and resource utilization. With this new parameter,

GI could be tuned to achieve comparable or even better

performance in terms of resource utilization or co-location

resistance compared to Dedicated Instance, PSSF, or PCUF in

most practical cases. Compared to state-of-the-art approaches

like PCUF, GI has several enhancements: 1) the cloud provider

can easily control of the balance between co-location security

and resource utilization (which directly affects the resource

cost), 2) it is simpler to analyze and implement, and 3) it
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provides better or similar performance compared to existing

approaches most of the time, as demonstrated in the empirical

experiments using real workload traces from Azure [12].

The remaining part of the paper is organized as follows. In

Section II, we discuss the most recent related work. In Section

III, we elaborate the problem statement. We then describe our

VM placement algorithm and its theoretical analysis in Section

IV. Section V describes our empirical study of the algorithm.

Finally, Section VI discusses the limitations of our research

and some directions for future work.

II. RELATED WORK

We broadly classify existing work in defending against co-

location based attacks into two categories, namely direct and

indirect approaches.

A. Direct approaches

These approaches hinder malicious users directly by apply-

ing changes or patches into the existing cloud infrastructure

to remove any known side channels in the platform. Such

changes may make it much harder for any attackers when

they try to achieve co-locations with other users. Even if they

manage to obtain co-location, the potential impacts could be

limited as most known side channels have been inhibited. Such

modifications can be done at many levels [13], for example

at the CPU cache [14], [15], network layer [16], or at the

hypervisor layer [17], [18].

As a result, direct approaches have been quite effective at

eliminating most well-known cloud attack strategies based on

co-location. However, there are two clear downsides to this

category of defenses:

• They require significant modifications to the production

cloud infrastructures. Such changes are not easy to carry

out due to potential downtime and cost, given the scale

of current commercial cloud providers.

• They might not work well against unknown vulnera-

bilities. Most recent work such as [19] and [20] have

demonstrated that new side-channels will keep appearing;

and it is almost impossible to eliminate all of them.

B. Indirect approaches

On the other hand, indirect approaches aim to reduce the

chance that a malicious user can be co-located with other

ordinary users on the same PM. If it is not possible to

achieve co-location, it would be much harder to carry out

subsequent attacks. Normally, co-location prevention could

be obtained using either: i) some co-location resistant VM

placement algorithms such as [2], [9], and [21]; or ii) live,

random VM migration strategies so that it becomes hard for

anyone to locate a particular target VM, as in [22] and [23].

We note that live migration approaches may negatively affect

applications running on the cloud; while co-location resistant

VM placement could reduce resource utilization.

Compared to direct approaches, the main issue here is that

indirect approaches are not able to prevent potential side-

channel attacks once malicious users have been successfully

co-located with their victims. Another problem could be that

a resourceful attacker with a large budget could launch many

VM requests, or employ an increasing number of accounts

until he can achieve co-location. However, this type of ap-

proaches might still be of interest for two main reasons:

i) it does not require significant changes to existing cloud

platforms, and ii) it is more likely to be resilient against

arbitrary and currently unknown attacks.

Our proposed algorithm, Group Instance, belongs to the

category of indirect approaches. Compared to existing methods

in the same category, Group Instance stands out due to its

ability to handle resourceful attackers more effectively: a

single user could only co-locate with a predefined, fixed

number of other users. It has been demonstrated empirically

in our experiments that when the number of malicious users

increases, the Group Instance algorithm with an appropriate

group size remains quite resilient compared to most recent

approaches like PCUF [10], [11].

III. PROBLEM STATEMENT

A. Assumptions

We assume that a multi-tenant public IaaS cloud service

has a known number of users. The users of the service can be

categorized into one of two types: benign or malicious. Benign

users are the ordinary cloud users whose purpose is not to

steal data from other users, while the malicious users would

try to co-locate with other users to access or to compromise

the victim’s data. It is assumed that the cloud provider has

no knowledge about the classification of any particular user;

therefore it is not possible for the provider to impose certain

restrictions on potentially malicious users.

The cloud service provider is the only one who can assign

VMs to PMs. All VM requests arrive in a sequential manner,

characterized by the ID of requesting user, the number of CPU

cores and the amount memory for each request. The duration

(lifetime) of each VM which includes its start time and end

time is not known at VM placement time. We also assume

that each VM will stay on the same PM until it is terminated,

i.e., no live migration of the VM.

B. Co-location resistant VM placement

We use the same set of metrics originally proposed in [10]

for quantifying the performance of VM placement algorithms.

The objective of the Co-Location Resistant VM Placement
(CVP) problem is to assign each newly provisioned VM to the

available PMs in a way which maximizes both the resource

utilization CU and the co-location resistance CLR.

1) Core Utilization (CU ): The resource utilization of a PM

could be measured using several factors, including memory

utilization. In this paper, we measure the utilization by com-

paring actual running time of all CPU cores to their total active

time, i.e., core utilization. We note that in [24], the authors

demonstrated that the energy consumption of CPUs exceeds

all the other computer hardware. Note that the total active time

of a CPU core is basically the time during which its PM is on.
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The actual running time of a CPU core is the duration during

which the core is occupied by a VM.

2) Co-Location Resistance (CLR): Following [10], we

consider two states for a user, which are safe and unsafe,

respectively. A user is in the safe state if none of his/her

VMs is co-located with at least one malicious user during

the lifetime of the VMs. The Co-Location Resistance CLR is

computed as the ratio of all the benign users who are safe to

all benign users in the cloud. When CLR = 1, all the benign

users are safe.

IV. THE GROUP INSTANCE (GI) ALGORITHM

A. Algorithm

The GI algorithm is invoked whenever a new VM request

arrives. Its input parameters include the newly arrived VM Vi,

a list of PMs that are currently active open pms and a list

of empty PMs empty pms. Ucur is the requester of Vi. The

basic idea is that we aim to limit the number of users that

a user can be co-located with. This is done by dividing all

cloud users into a number of small groups with a fixed size

group limit. This simple strategy could limit the extent of

damage should a user is malicious. In addition, by controlling

the variable group limit, we can easily fine tune the trade-

off between CU and CLR. Below are the key steps in the GI

algorithm:

• First, verify whether the Ucur is a new cloud user or not

by checking if he/she already has a group index GUi .

If he/she is not a new cloud user, we construct a list of

eligible pms by including all the PMs from open pms
satisfying two conditions: i) have enough resource to

host Vi, and ii) currently host VMs belonging to Ucur’s

group. If the eligible pms list is not empty, we assign

Vi to a PM belonging to eligible pms which has the

least number of free cores. Otherwise, we assign Vi to a

random and empty PM, and mark that PM as occupied

by Ucur’s group.

• If Ucur is a new cloud user, we construct a list of

eligible pms which includes PMs satisfying the follow-

ing conditions: i) the PM is currently occupied by a group

that is not full, i.e. the size of this group is smaller than

the group limit, and ii) the PM still has enough resource

to host Vi. If this eligible pms list is not empty, we

assign Vi to a PM having the smallest group size selected

from eligible pms. On the other hand, if eligible pms
is empty, we create a new group Gnew for Ucur, and

assign Vi to an empty PM Pk.

• When a VM Vi is terminated from PM Pj , if there

are no other VMs on Pj , we put Pj back into the list

empty pms. We also clear the group index GPj
currently

assigned to Pj .

B. Theoretical Analysis

In this section, we derive the theoretical CLR values

obtained by the GI algorithm.

1) Worst-case CLR: In this case, each individual malicious

user would be assigned to a full group, i.e., a group with

the same size as group limit. Thus, the malicious user has

successfully achieved co-location with group limit− 1 other

users. Hence, the number of benign users that are safe Nsafe
b

is calculated as Nb - Nm * (group limit − 1), where Nb

and Nm are the numbers of benign users and malicious users,

respectively. As the total number of users who are safe cannot

be negative, we have:

CLR =
max(Nb −Nm ∗ (group limit− 1), 0)

Nb
(1)

2) Expected CLR: Following the methodology suggested

in [10], we derived a simple formula1 to estimate the average

CLR for the GI algorithm:

CLRaverage
GI =

Nb ×
(

Nb−1

N−1

)group limit−1

Nb
=

(
Nb−1
N−1

)group limit−1

(2)

We provide an example on how to make use of the derived

formula to estimate the CLR. Assume that there are 100 users,

and 2% of them are malicious, we have N = 100 and Nb =

98. If we choose group limit = 3 and use Equation (2), we

will have CLR = 96.00%. However, a potential shortcoming

of the derived formula is that with a large group limit, the

accuracy of the estimated CLR would deteriorate due to the

fact that it is less likely on average for group sizes to reach

the limit.

The formula (2) can be easily generalized for the case where

cloud users can have different group limit assigned by the

cloud provider. In this case, we divide N users into sub-

groups based on their value of group limit. The next step

is to calculate the number of users who are safe in each sub-

group. Finally, the expected total number of safe users in the

system is the sum of the results from all sub-groups.

V. EVALUATION AND RESULTS

A. Methodology

Similar to [10], we use the dataset which has been released

recently by Microsoft Azure [12]. The dataset contains a

total of 2,013,767 VMs request over a period of 30 days.

In this paper, we present the results obtained from using all

VM requests from the 11th day to 20th day of the dataset,

as the findings are quite similar for other periods of the

original dataset. We make use of the following information

in evaluating VM placement algorithms: VM id, subscription

id (considered a distinct cloud user), VM start time, VM stop

time, VM core count and VM memory (in GB). In total, there

are 619846 VM requests and 1884 different cloud users during

the 10-day duration used in this evaluation. We also assume

that the core count and memory of all PMs in the system are

the same: 32 cores and 224GB main memory for each PM.

1The calculation details have been omitted due to a restriction on the
number of pages for this paper.
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The largest VMs in the Azure dataset have 16 CPU cores and

112GB of memory.

Since the Azure dataset has no information regarding ma-

licious users, for each run we randomly select Pm% of all

users to be malicious. We repeat each algorithm over the 10-

day dataset 20 times. We then aggregate CU and CLR values

over all experiments, and use the averages for further analysis.

B. GI algorithm - impacts of different values for group limit

In the following, we use the notation GItx where x indicates

the value for group limit to denote the results derived from

the theoretical formula (2). For example, GIt3 denotes the

theoretical results for GI with group limit = 3. On the

other hand, GIx denotes the empirical results obtained with

group limit = x.
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Fig. 1: Comparing CLR for different values of group limit.
Smaller limits provide better co-location resistance, at the cost of
lower resource utilization. group limit = 1 has the same CLR as
the Dedicated Instance approach.

TABLE I: CU values for the GI algorithm, obtained by

varying group limit

group limit 1 2 3 4 5
CU (%) 61.9 66.98 69.40 71.52 72.87

From Fig. 1 and Table I, we can observe that when

group limit increases, the value of CU will increase, while

the value of CLR decreases. This is due to the fact that

smaller group sizes result in less chance for malicious co-

location. Thus, by setting appropriate values for group limit,
we would be able to fine-tune the trade-off between CU
and CLR if needed. We also observe that by increasing

group limit, we can improve resource utilization, but only

up to a certain extent. Table I shows that group limit values

beyond 3 do not significantly increase CU .

C. GI algorithm - theoretical vs. empirical performance

Fig. 2 summarizes the difference between results obtained

empirically and those produced by the derived equation (2).

The data indicate that for small values of group limit, the

empirical and theoretical results are very similar. However,

while there is negligible difference when group limit = 2,

the gap appears to become wider as this limit increases. When

group limit = 5, the difference is quite noticeable.

One possible reason for this difference is that we assume the

average user group size to be the same or close to group limit
in our theoretical model. However, the actual average group

size will be less likely to reach the the larger group limit
most of the time. Due to smaller average group sizes, the

CLR values obtained in the empirical experiments are actually

better compared to those obtained theoretically. Therefore,

the theoretical CLR values may serve as indications of a

lower bound for the co-location resistance performance of our

algorithm.
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Fig. 2: Comparing CLR values obtained empirically and theoreti-
cally. We note that the gaps between theoretical and empirical values
are not significant especially when the group limit is small.

D. GI algorithm - compared to the state-of-the-art approaches

In this section, we compare our proposed placement strat-

egy GI with the latest co-location resistant VM placement

algorithms, namely: i) Amazon EC2’s Dedicated Instance

(DI) placement [7], and ii) Previously Co-located User First

(PCUF) by Amit. et. al. [10], [11]. Note that we do not

compare GI with Previously Selected Servers First (PSSF) by

Han et al. [9], as [10] and [11] have thoroughly demonstrated

that PCUF has a clear advantage.

1) DI approach: Two VMs that belong to different AWS

accounts are not placed on the same PM. Therefore, for

allocating a VM Vi requested by user Uj , we only consider

those PMs which currently host Uj’s VMs. Among all eligible

PMs, we will fit Uj’s new VM request using the Best-Fit bin
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Fig. 3: CLR performance for different co-location resistant place-
ment algorithms - GI , DI and PCUF .

packing approach. A new PM is started if the current PMs do

not have enough resource to take in the new VM request.

2) PCUF: Most recently, Amit et. al. [10], [11] proposed

a new placement strategy based on the co-location history of

cloud users. In this approach, each user has a log file that

records a peer list containing users whose VMs have been

placed in the same PM previously. For each VM request, the

PCUF algorithm will favor the PM which is hosting some

VMs owned by the same user himself or his peers. If no such

PM is found, a new empty PM would be started. If the user

is new to the system, his first VM would be assigned to a

randomly selected and running PM, or a brand-new PM.

PCUF DI GI2 GI5
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Fig. 4: CU performance for different co-location resistant placement
algorithms. Note that CU does not depend on the percentage of
malicious users in the system.

Fig. 3 and Fig. 4 show the CLR and CU respectively,

for different co-location resistant placement algorithms on the

Azure workload with varying percentage of malicious users.

Below are some important observations from the obtained

results:

• DI has the same performance in terms of CLR and CU
as GI1. This is because when group limit is set to 1,

no cloud user would be co-located with another user. In

other word, DI can be considered a special case of GI.

• The overall performance of GI when group limit = 5 is

surprisingly close to that of PCUF. One possible reason

is that in the Azure workload, the average number of co-

located peers for each user is similar to our average group

size when group limit is set to 5.

• GI2 has much better CLR performance compared to

PCUF, especially when the percentage of malicious users

in the system is high. For instance, when %10 of the users

are potential attackers, GI2 shows a CLR improvement

of 30% compared to PCUF. This is at the cost of slightly

lower CU performance for GI2. We also note that GI2
has better CU compared to DI.

From these observations, we conclude that our proposed GI

algorithm can achieve better or at least similar overall perfor-

mance compared to state-of-the-art VM placement policies.

In addition, our new algorithm also provides the opportunity

to fine-tune the trade-off between resource utilization and co-

location resistance with ease. This can be done via setting the

appropriate values for the group limit parameter. This feature

could be of great practical implications for the following

reason. As the amount of malicious users increases with the

popularity of a cloud service, static algorithms such as PCUF

would produce less co-location resistance, as evidenced in Fig.

3. In contrast, GI is more adaptive to such a change: we can

simply reduce the group limit value and achieve a better

CLR.

For instance, if the cloud provider observes that poten-

tially malicious activities are increasing via tools such as

CloudRadar [25], the group limit should be set to smaller

values such as 3 or 2. On the other hand, a larger limit such

as 5 can be used to achieve better resource utilization. Our

GI algorithm can be configured so that a mix of different

group limit values could also be used at the same time. Fig.

5 compares the CLR in such a scenario, where 20% of the

users2 in our experiments are given a group limit = 2, while

the rest of them use group limit = 5. We observe that GI -

due to its flexibility to switch between different group limits

- clearly outperforms PCUF in this case.

VI. CONCLUSION

In this paper, we propose and evaluate a new co-location

resistant VM placement algorithm named Group Instance.

We then conduct performance analysis of the new approach

using resource utilization and co-location resistance as the

2These users could be identified by the cloud provider as the current targets
of some on-going co-location attacks.
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Fig. 5: CLR performance for different co-location resistant place-
ment algorithms - GI using two group limit values of 2 and 5, and
PCUF .

metrics. Both the theoretical and empirical evaluation of

Group Instance demonstrate that it can achieve better overall

performance compared to the latest published approaches. On

top of that, our new algorithm has the distinct advantage

of being simple to implement and easily tuned to adapt to

the changing landscape of cloud threats. We believe that this

advantage makes Group Instance more desirable in practical

settings.

We plan to extend this work in several directions. First, if

cloud providers are able to detect on-going co-location attacks

with certain accuracy, a complement VM migration policy

in combination with our algorithm might provide better co-

location resistance and resource utilization. Another direction

could be developing a classifier to determine if a user is

potentially malicious or not with certain probabilities. If such

information is available, we believe that Group Instance would

be able to obtain much better overall performance by grouping

users that are more likely to be malicious.
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