
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2020

Automatic verification of multi-threaded programs by inference of Automatic verification of multi-threaded programs by inference of

rely-guarantee specifications rely-guarantee specifications

Xuan-Bach LE
Nanyang Technological University

David SANAN
Nanyang Technological University

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Shang-Wei LIN
Nanyang Technological University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Theory and Algorithms Commons

Citation Citation
LE, Xuan-Bach; SANAN, David; SUN, Jun; and LIN, Shang-Wei. Automatic verification of multi-threaded
programs by inference of rely-guarantee specifications. (2020). 2020 25th International Conference on
Engineering of Complex Computer Systems ICECCS: Singapore , March 4-6: Proceedings. 43-52.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5939

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5939&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5939&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Automatic Verification of Multi-threaded Programs
by Inference of Rely-Guarantee Specifications

Xuan-Bach Le1, David Sanán1, Sun Jun2, Shang-Wei Lin1

1School of Computer Science and Engineering, Nanyang Technological University, Singapore
2School of Information Systems, Singapore Management University, Singapore
1{bach.le, sanan, shang-wei.lin}@ntu.edu.sg 2junsun@smu.edu.sg

Abstract—Rely-Guarantee is a comprehensive technique that
supports compositional reasoning for concurrent programs.
However, specifications of the Rely condition — environment
interference, and Guarantee condition — local transformation
of thread state — are challenging to establish. Thus the con-
struction of these conditions becomes bottleneck in automating
the technique. To tackle the above problem, we propose a
verification framework that, based on Rely-Guarantee principles,
constructs the correctness proof of concurrent program through
inferring suitable Rely-Guarantee conditions automatically. Our
framework first constructs a Hoare-style sequential proof for each
thread and then applies abstraction refinement to elevate these
proofs into concurrent ones with appropriate Rely-Guarantee
relations. Experiment results demonstrate that our approach is
efficient in proving the correctness of concurrent programs.

Index Terms—Rely-Guarantee, Concurrency, CEGAR

I. INTRODUCTION

The past couple decades have witnessed a surge of interest

in concurrent programs. Consequently, a fruitful number of

concurrent verification frameworks, e.g. [4], [23], [6], [20],

has emerged to counterbalance the security risks arising from

concurrency bugs. Just like writing correct concurrent codes

is practically difficult — as evidenced by several formal

studies [14], [27], proving correctness of concurrent programs

remains to be a profoundly challenging research topic.

The execution of multiple concurrent threads results in an

exponential number of interleavings, causing the state space
explosion problem that overwhelms the verification. To tackle

this problem, one prominent solution is the Rely-Guarantee

(R-G) methodology [23] that supports modular reasoning

for concurrent programs. In this approach, each thread is

associated with a pair of abstract conditions, one is Rely

— environment interference, the other Guarantee — local

transformation of thread state. These conditions help to scale

up the verification by enabling the correctness proof of each

thread to be constructed locally without referring to other

threads. As a result, the R-G framework has been fruitfully

adopted by many verification systems, e.g. [33], [11], [17].

To preserve the consistency of the logic, the local actions

taken by each thread need to comply with the respective R-

G conditions. Besides, each Guarantee must also imply the

Relies of other threads. Due to these intertwined relationships,

the automation of R-G framework is heavily constrained by

the complex construction of the R-G conditions. There were

several approaches proposed to resolve this bottleneck system-

atically, e.g. via reachability abstraction refinement using Horn

clauses [17], or weak simulation among succinct automata

that capture the program states [40]. However, we discovered

through experiments that [17] suffered from the scalability

issue, especially when verifying against programs with large

loops. Similarly, the work in [40] also runs into the same

problem due to the intractability nature of automata.

In this work, we propose a framework that automatically

constructs a R-G proof using deductive verification, ala the-

orem proving, combined with CEGAR — CounterExample

Guided Abstraction Refinement [7]. Our methodology starts

with constructing a sequential proof for each thread, and

establishes the R-G relations through iterative abstraction

refinement, where spurious counterexamples that witness the

inconsistency in R-G conditions are generated to refine the

modular proofs. The procedure terminates when a valid R-G

proof is established. Our approach features the use of abstract

predicates to precisely encode the R-G conditions, as well

as loop invariant to compactly capture the loop behaviors.

Experiment results showed that our framework overall enjoys

better scalibility as compared to [17].

A high-level overview of our approach is illustrated in

Figure 1. It has two core components: Proof Generator (PG)

that carries out the construction of R-G proof, and Consistency

Verifier (CV) that generates counterexamples for refinement.

multi-threaded

program
Proof

Generator

Consistency

Verifier

valid

R-G proof

candidate

R-G proof

counterexamples

Fig. 1: Our framework for proving multi-threaded programs

with generated Rely-Guarantee conditions.

To verify a multi-threaded program with asserted pre/post-

conditions, PG first uses the precondition to construct, for each

thread, an initial local Hoare-style proof and R-G relations.

These key ingredients are combined to create the candidate

R-G proof, which is checked by CV for global consistency.

If this condition fails to satisfy, counterexamples representing

the missing program states are generated in the form of

abstract predicates. Both checking consistency and generating

counterexamples are fully automated by SMT solver Z3 [10]

43

2020 25th International Conference on Engineering of Complex Computer Systems (ICECCS)

978-1-7281-8558-3/20/$31.00 ©2020 IEEE
DOI 10.1109/ICECCS51672.2020.00013

via appropriate transformation into SAT constraints. The next

iteration begins with PG using the discovered counterexamples

to refine the local proofs, and subsequently to construct the

new R-G conditions. The refinement step terminates once the

consistency is established, in which local postconditions are

conjuncted together to verify the program’s postcondition.

Our contributions are summarized as follows:

• We propose an automatic procedure for verifying con-

current programs using deductive inference based on R-G

reasoning. Its main algorithms are addressed in §V-A and

§VI-A. To the best of our knowledge, this is the first work

to automate deductive proving based on R-G reasoning.

• We develop an inference system §V-B for the construction

of local Hoare-style proof and Guarantee relation.

• We develop inference rules §VI-B to validate and repair

the stability of the locally generated proofs with regards

to the environment interference in Rely.

• We implement §VIII-A our procedure in a prototype1

dubbed REGASOL and optimize it in REGASOL+. The

prototypes are benchmarked and compared §VIII-B with

other tools. Experiment results §VIII-C show that our

approach is efficient in verifying concurrent programs.

The rest of this paper is organized as follows. §II gives

preliminaries on R-G, §III provides a motivative example,

§IV describes the semantics of the R-G methodology, §V
and §VI discuss the main components of the framework,

followed by the main soundness result in §VII. In §VIII, the

implementation and optimization of the tool REGASOL are

presented, followed by the discussion on evaluation. Finally,

§IX reviews the related work and concludes the paper.

II. PRELIMINARIES

Here we briefly explain the underlying logic to help readers

get familiar with the reasoning style deployed by our approach.

Abstract predicates are used to write assertions and R-G

relations. Their full syntax is in Fig. 2 where e represents arith-

metic expression, P first-order predicate, B binary relation.

e ::= var | const | e+ e | e− e | e× e | e div e | e % e

P ::= � | ⊥ | e = e | e ≤ e | ∃x.P | ∀x.P | ¬P | P ∧ P | P ∨ P

B ::= ∅ | {P
 P} | B ∪ B
Fig. 2: Syntax for abstract predicates.

Notice that B encodes R-G conditions. It is represented as

an unordered set of transitions of the form P1
 P2, which

indicates the change from a state satisfying P1 to a state

satisfying P2. The formal semantics is fleshed out in §IV-B.

Hoare logic [19] is a formal system for establishing

program correctness proofs. The central idea is the Hoare
triple {P}c{Q} where P is the precondition, c the proving

program, and Q the postcondition. Hoare logic is used in the

form of deductive systems (e.g. [34]) consisting of rules for

the construction of modular proofs. For example, proofs can

1https://github.com/lexuanbach/ReGaSol-tool

be combined using the composition rule, where {P}c1{Q}
and {Q}c2{R} deduce {P}c1; c2{R}. As a result, Hoare

logic and its extensions [32], [4] are excellent choices for

compositional reasoning as they have found many practical

applications in verifying complex programs, e.g. [3], [21],

[31], [35], and real-life systems, e.g. [24], [5], [1].

Rely-Guarantee [23] is a technique for compositionally

proving the correctness of concurrent programs. The Rely R
represents the abstraction of the environment transition, i.e.
how the environment can change the thread’s state, whereas

the Guarantee G represents the abstraction of local state

transition that is consistent with the thread execution. These

conditions, when integrated into Hoare logic, can be pleasantly

represented as:

R,G � {P}c{Q}
which means that the proof {P}c{Q} satisfies the conditions

R, G. The full semantics of this notation are explained in detail

in Section §IV-C; for now it is important to know that P and Q
are necessarily stable under R. Intuitively, this indicates that

the environment does not take steps that makes P or Q invalid.

Formally, a predicate P is stable under R if for program states

s1, s2 such that the evaluation of P is true in s1, and (s1, s2) ∈
R, then the evaluation of P is also true in s2.

Most importantly, what makes the R-G framework viable

is the parallel rule below, as it explains how the proof of a

concurrent program c1‖c2 can be constructed from the proofs

of its threads c1 and c2:

R∪ G2,G1 � {P1}c1{Q1}
R ∪ G1,G2 � {P2}c2{Q2}

R,G1 ∪ G2 � {P1 ∧ P2}c1||c2{Q1 ∧Q2} [PAR]

Without going into excessive detail, notice that G1 — the

Guarantee of c1 — implies R∪ G1 — the Rely of c2 — and

vice versa, where R is the global Rely. In particular, R can

be empty, in which the Relies of c1 and c2 are reduced to

G2 and G1 respectively. These properties are necessary for the

consistency of the R-G proof.

III. ILLUSTRATIVE EXAMPLE

The example in Figure 3 illustrates the proof construction

for a concurrent program with a loop. It features the use of

a loop invariant in our framework to scale up the verification

task. The input program consists of two threads T1‖T2 where

T1 is the loop:

while x < 10 do {x := x+ 1;}
and T2 is the assignment:

x := 20;

With precondition x = 0, the verification postcondition is

x = 20 ∨ x = 21. The outcome x = 21 occurs when T2 is

interleaved some time right before the assignment x := x+ 1

of T1. This results in x being updated to 20, followed by

the increment of 1 to 21, in which the loop in T1 terminates

afterward. Any other scenario results in x = 20.

Furthermore, an initial sequential loop invariant x ≤ 10
is provided for T1. Although our framework by default does

44

Iteration 1

(T1)

{x = 0}R1� x = 20
{x ≤ 10}
while x < 10 do{
{x < 10}
x := x+ 1;
{x ≤ 10}
}{x ≤ 10 ∧ ¬(x < 10)}

‖
(T2)

{x = 0}R2� x ≤ 10

x := 20;
{x = 20}

——

G1 = R2 = {x < 10
 x ≤ 10}
G2 = R1 = {x = 0
 x = 20}

Iteration 2

(T1)

{. . . ∨ x = 20}
{. . . ∨ x = 20}
while x < 10 do{
{. . .}R1� x = 20
x := x+ 1;
{. . . ∨ x = 20}
}{. . . ∨ x = 20 ∧ ¬(x < 10)}

‖
(T2)

{. . . ∨ x ≤ 10}
x := 20;
{. . . ∨ x = 20}

——

G1 = R2 = {. . .}
G2 = R1 = {. . . , x ≤ 10
 x = 20}

Iteration 3

(T1)

{. . .}
{. . . ∨ x = 21}
while x < 10 do{
{. . . ∨ x = 20}
x := x+ 1;
{. . . ∨ x = 21}
}{. . . ∨ x = 21 ∧ ¬(x < 10)}

‖
(T2)

{. . .}
x := 20;

{. . .}R2� x = 21
——

G1 = R2 = {. . . , x = 20
 x = 21}
G2 = R1 = {. . .}

Iteration 4

(T1)

{. . .}
{. . .}
while x < 10 do{
{. . .}
x := x+ 1;
{. . .}
}{. . .}

‖
(T2)

{. . .}
x := 20;
{. . . ∨ x = 21}

——

G1 = R2 = {. . .}
G2 = R1 = {. . .}

Fig. 3: Example of proof refinement via counterexamples .

not support the discovering of such invariant, its strength is

to maneuver the initial sequential invariant to construct the

counterpart concurrent invariant through iterative refinement.

Moreover, such sequential invariant can be obtained by lever-

aging static analysis tools like [26] or [36].

In the first iteration, PG constructs a sequential proof for

each thread using the precondition x = 0. As for T1, the invari-

ant x ≤ 10 helps to establish both the loop precondition and

the postcondition at the end of each iteration. The postcondi-

tion of T1 is obtained by taking the conjunction of the invariant

and the negation of the loop condition, which is equivalent to

x = 10. As for T2, the triple {x = 0}x := 20{x = 20}
is derived. After that, the Guarantees are constructed from

these proofs by considering all the transitions — pairs of

pre/postconditions in Hoare triples — where the program state

is modified. The Rely of T1 (resp. T2) is then derived from

the Guarantee of T2 (resp. T1). This gives us:

G1 = R2 = {x < 10
 x ≤ 10}
G2 = R1 = {x = 0
 x = 20}

The next step involves CV checking the consistency be-

tween each local proof and the respective Rely. Intuitively,

this condition indicates that the local proof correctly reflects

the environment interference in the Rely. Here CV finds that

the assertion x = 0 in T1 is unstable under R1, meaning that

the assertion fails to contain the interference state x = 20 in

R1. Technically, this check is achieved by verifying that the

following stability formula, as being derived from the unstable

assertion and the Rely R1, is invalid:

x1 = 0→ x1 = 0→ x2 = 20→ x2 = 0

The counterexample x = 20, the image of the transition

x = 0
 x = 20 in R1, is generated by CV to refine the

proof of T1. This counterexample represents the missing states

to be included in the proof during the next refinement cycle.

Likewise, CV detects in T2 that the predicate x = 0 is unstable

under R2, in which it generates the counterexample x ≤ 10.
The second iteration begins with PG using counterexamples

to refine proofs. Each counterexample is treated as precondi-

tion to construct a sub-proof to be disjunctively merged with

the main proof. The intuition behind this sub-proof construc-

tion and merging is to introduce new states, as being caused by

the environment interference, into the proof. This refinement

is guided by a set of inference rules which are elaborated

in §V-B. Furthermore, if the counterexample happens to be in

the middle of the proof, then only the affected proof segment

needs to be refined. More specifically, the refinement typically

begins at the assertion associated with the counterexample. Yet

one single exception is when the counterexample is in the loop

body and causes the loop invariant to break. In this case, the

refinement begins before the loop so that the loop invariant

can be updated properly.
Back to our example, the counterexample x = 20 of T1

is set as the precondition to construct the sub-proof, where

it also becomes the loop invariant. As the main proof of T1

being merged with the new sub-proof, the invariant of T1 is

updated to be the disjunction of the two invariants:

x ≤ 10 ∨ x = 20

Similarly, the counterexample x ≤ 10 is used to refine the

proof of T2, where the sub-proof {x ≤ 10}x := 20{x = 20}
is constructed for merging. Besides, the R-G relations in both

threads are extended to reflect the new transitions from sub-

proofs, i.e. the transition x ≤ 10
 x = 20 is added to both

G2 and R1. This time, the predicate x < 10 in T1 is unstable

under R1, and is witnessed by the counterexample x = 20.

45

In the third iteration, the proof of T1 is refined by the

counterexample x = 20. The corresponding sub-proof is

constructed with the new invariant x = 21, followed by the

routine of merging sub-proof with main proof. Here the fresh

invariant is combined with the old invariant of T1 into:

x ≤ 10 ∨ x = 20 ∨ x = 21 (1)

As the new transition x = 20
 x = 21 being added to

G1 and R2, the postcondition x = 20 of T2 becomes unstable

under R2. This results in the counterexample x = 21 being

generated by CV.

The last refinement step takes place in T2 during the

fourth iteration, where the fresh counterexample x = 21 is

disjunctively merged with the postcondition x = 20 into

x = 20∨x = 21. In doing so, a valid R-G proof is established,

in which the final R-G relations are constructed to be:

G1 = R2 = {x < 10
 x ≤ 10, x = 20
 x = 21}
G2 = R1 = {x = 0
 x = 20, x ≤ 10
 x = 20}

and the invariant in T1 is transformed from the initial predicate

x < 10 into its final form (1). Since the refinement process

is completed, the postcondition of T1‖T2 is obtained by

conjuncting the postconditions of T1 and T2 together, which

implies the verification condition x = 20∨x = 21 as desired.

IV. LANGUAGE AND SEMANTICS

We explain the semantics backbone of our approach, starting

from the language to write concurrent programs §IV-A, fol-

lowed by the introduction of semantics notations §IV-B, and

finally the construction of R-G semantics §IV-C.

A. Programming language

e ::= var | const | e+ e | e− e | e× e | e div e | e % e
b ::= true | false | e = e | e ≤ e | !b | b && b | b || b
c ::= skip | e := e | c ; c | if b then c else c |

while b do c | atomic c | await b do c | c‖c
Fig. 4: Syntax for writing concurrent programs.

Fig. 4 displays our lightweight language for writing con-

current programs. We use non-terminal symbol e and b to

represent arithmetic and boolean expressions respectively. The

program syntax in c includes standard sequential statements

such as skip, assignment, composition, and conditional state-

ment. More importantly, c also contains statements for writing

concurrent code. In particular, atomic c enables atomic

execution of c without interleaving, await b do c preempts

the program execution until the condition b holds then runs c

atomically, and c1‖c2 runs c1 and c2 concurrently.

B. Notation of the semantics

A program state s is a mapping from variables to values. The

evaluation of a variable x in a state s is represented as �x�s,

in which we override it as �e�s and �P �s for the evaluation of

the expression e and the predicate P on the state s. Given a

transition P
 Q, we denote Θ(P
 Q) the set of variables

not used in P
 Q, formally:

∀x, v1, v2, s1, s2.v1 �= v2 → �x�s1 = v1 → �x�s2 = v2 →
(�P �s1 = �P �s2 ∧ �Q�s1 = �Q�s2)

A pair of states (s1, s2) is in P
 Q if �P �s1 ∧ �Q�s2 , and

∀x ∈ Θ(P
 Q).�x�s1 = �x�s2 , that is variables belonging

to Θ(P
 Q) remain intact. In general, a binary relation

B = {P1
 Q1, . . . , Pn
 Qn} represents all pairs (s1, s2)
where s1 = s2, or there exists some Pi
 Qi ∈ B such that

(s1, s2) ∈ Pi
 Qi. The former condition implies that our

relations contain the identity relation, which is a necessary

technicality of the R-G framework.

Given a predicate P and a relation R, we say P is stable
underR— denoted by stable(P,R) — if for every state s1, s2
such that (s1, s2) ∈ R and �P �s1 , we have �P �s2 . Also,

a predicate C is a counterexample of P derived from R
(or simply counterexample if there is no ambiguity) if the

following criteria are met:

1) C is ⊥ or of the form
∨
U where each U is retrieved

from the image of some transition R
 U in R, and

2) The disjunction P ∨ C is stable under R.

Intuitively, the counterexample C represents the missing

states of P as caused by the environment interference in R.

C. Semantics

We briefly recall the standard R-G semantics [23]. A

configuration (config) 〈c, s〉 consists of a program c and its

state s. A config is final if the program component is skip.

The sequential transition � is a binary relation between two

configs. By contrast, the concurrent transition
χ�
R

, in which R
is the Rely and χ the label, is the union of two sub-transitions:

1) the internal transition
δ�
R

that is analogous to the se-

quential transition, where the thread state is modified

according to its internal code, and

2) the external transition
ε�
R

where 〈c, s〉 ε�
R
〈c, s′〉 means

(s, s′) ∈ R, and the code c is untouched. This transition

accounts for the state alteration caused by the environ-

ment interference.

The closures of the sequential transition and concurrent

transition are denoted by
∗� and

∗�
R

respectively. A program
execution is a sequence of consecutive configs that satisfy the

transition relation, e.g. as with concurrent transition:

〈c1, s1〉 χ�
R
〈c2, s2〉 χ�

R
. . .

χ�
R
〈cn−1, sn−1〉 χ�

R
〈cn, sn〉

or 〈c1, s1〉 ∗�R 〈cn, sn〉 if intermediate configs are not important.

The sequential triple {P}c{Q} is defined by the formula:

{P}c{Q} �= ∀s, s′. �P �s → 〈c, s〉 ∗� 〈skip, s′〉 → �Q�s′

This means that for every program execution starting from

a config 〈c, s〉 — in which �P �s holds — and terminating in

some final config 〈skip, s′〉, it follows that �Q�s′ holds.

The semantics of Hoare triple with R-G relations is quite

cumbersome. First, we need the notation R,G |=n 〈c, s〉 to

indicate that the config 〈c, s〉 satisfies the conditions R,G for

n steps. Inductively, R,G |=n 〈c, s〉 holds if n = 0; or n > 0

46

Algorithm 1: Proof construction and refinement by PG.

1 Procedure construct()
Input: program c1‖ . . . ‖cn, precondition P
Output: sequential proofs with R-G conditions

2 foreach thread i = 1 . . . n do
3 use P to construct sequential proof Pi and Gi
4 foreach thread i = 1 . . . n do Ri ←

⋃n
j=1

j �=i
Gj

5 return {(Pi,Gi,Ri)}ni=1

6 Procedure refine()
Input: current local proofs with R-G conditions

{(Pi,Gi,Ri)}ni=1, counterexamples {Ci}ni=1

Output: refined local proofs and R-G conditions

7 foreach thread i = 1 . . . n do
8 foreach Uj in Ci =

∨ki

j=1 Uj do
9 use Uj to construct the sub-proof Pj

10 merge Pj with Pi and update Gi
11 foreach thread i = 1 . . . n do Ri ←

⋃n
j=1

j �=i
Gj

12 return {(Pi,Gi,Ri)}ni=1

and for every c′, s′, χ s.t. 〈c, s〉 χ�
R
〈c′, s′〉, the following

conditions hold:

1) R,G |=n−1 〈c′, s′〉, and

2) (s, s′) ∈ G if χ = σ, i.e. each internal step must satisfy

the Guarantee relation.

With the new notation, the concurrent Hoare triple with R-G

conditions R,G � {P}c{Q} can be defined by the formula:

R,G � {P}c{Q} �= ∀s, s′. �P �s →
((∀n. R,G |=n 〈c, s〉

)∧
(〈c, s〉 ∗�

R
〈skip, s′〉 → �Q�s

))

That is, for every execution starting from 〈c, s〉 in which �P �s
holds, the condition R,G |=n 〈c, s〉 satisfies for every n, and

if the execution terminates in 〈skip, s′〉 then �Q�s holds.

V. PROOF GENERATOR

Proof Generator (PG) — one of the two main components in

our framework — applies a set of inference rules to construct

and refine proofs. In this section, the key procedures in PG
are first addressed in §V-A, followed by the discussion on the

related inference rules in §V-B.

A. Proof construction and refinement

Algo. 1 presents the two key procedures construct and

refine in PG. As suggested by its name, the procedure

construct is called during the first iteration to construct an

initial sequential proof and R-G relations for each thread. In

subsequent iterations, the procedure refine uses counterex-

amples to refine proofs and recomputes the R-G relations.

We take a close look at the procedure construct in

Algo. 1. The procedure accepts a concurrent program of n
threads c1‖ . . . ‖cn and a precondition P as input, and uses

them to construct the sequential proofs {Pi}ni=1 and R-G

relations {(Ri,Gi)}ni=1. To do so, first the condition P is

set as the local precondition for each thread ci to construct

the thread’s sequential proof Pi, as at lines 2–3. Also at

line 3, each Guarantee Gi is derived simultaneously with the

construction of Pi. This step is guided by a set of inference

rules to be elaborated in §V-B. At line 4, each Rely Ri is

computed to be the union of all Guarantees from other threads.

This computation is consistent with the intuition that the

environment interference of one thread is caused by the actions

of other threads. Thanks to our relations being represented as

sets, the above step is achieved effortlessly through set union.

At line 5, the sequential proofs and R-G relations are returned

as the candidate R-G proof for validation.

In subsequent iterations, the procedure refine uses a list

of counterexamples {Ci}ni=1 to tackle the proof refinement.

Recall that each Ci contains the missing states caused by the

environment interference. Furthermore, each Ci is of the form∨ik
j=1 Uj where Uj is the image of some transition Pj
 Uj

in the Rely Ri. At lines 8–10, the procedure treats each Uj

as precondition to construct a sub-proof, and then merges

the freshly constructed sub-proofs with the main proof Pi.

Simultaneously, fresh transitions taken from sub-proofs are

added to the Guarantee Gi, as at line 10. At line 11, the

Relies are derived from the Guarantees, followed by the new

candidate R-G proof being returned for validation at line 12.

B. Deductive system

Fig. 5 presents a set of viable inference rules used by PG.

These rules are our sledgehammer to construct local proofs

and Guarantee relations. We write G � {P}c{Q} to denote

that the Hoare triple {P}c{Q} is sequentially valid, and it

also satisfies the Guarantee G. This notation can be defined

in terms of the R-G semantics in §IV-C, where the Rely is

empty, i.e. no interference. Formally, let R∅ = ∅ then:

G � {P}c{Q} �
= R∅,G � {P}c{Q}

By ignoring the Guarantee part G�, the rules in Fig. 5 become

familiar, as they are essentially inference rules of Hoare

logic. What makes our rules unique is that they also infer

the Guarantee along the way. In principle, this relation is

computed by considering all transitions P
 Q taken from

Hoare triples {P}c{Q}, where the statement c is atomic. We

now spend the rest of this section to explain these rules.

We first mention the rules for atomic statements which are

quite straightforward. In [SKIP], the Hoare triple {P}skip{P}
and the singleton Guarantee {P
 P} are inferred. As for the

rule [ASSIGN], the triple {P[x/e]}x := e{P} and Guarantee

{P[x/e]
 P} are inferred for the assignment x := e. Here

the precondition P[x/e] is constructed from P by replacing

occurrences of x with e. Both rules [ATOM] and [AWAIT] have

their triples inferred from the triples of their sub-proofs. In

particular, the triple {P}atomic c{Q} in [ATOM], together

with the Guarantee {P
 Q}, is inferred from the sub-proof

{P}c{Q}. In case of [AWAIT], the triple {P}atomic c{Q}
and Guarantee {P ∧ b
 Q} are inferred from {P ∧ b}c{Q}.

We have compositional rules to combine the Guarantees

together. They are [IF] for conditional statement, [SEQ] for

47

{P
 P} � {P}skip{P} [SKIP] {P[x/e]
 P} � {P[x/e]}x := e{P} [ASSIGN]
{P}c{Q}

{P
 Q} � {P}atomic c{Q} [ATOM]

{P ∧ b}c{Q}
{P ∧ b
 Q} � {P}await b do c{Q} [AWAIT]

G1 � {P ∧ b}c1{Q1}
G2 � {P ∧ ¬b}c2{Q2}

G1 ∪ G2 � {P}if b then c1 else c2{Q1 ∨Q2} [IF]

G1 � {P}c1{S}
G2 � {S}c2{Q}

G1 ∪ G2 � {P}c1; c2{Q} [SEQ]

G1 � {P1}c{Q1}
G2 � {P2}c{Q2}

G1 ∪ G2 � {P1 ∨ P2}c{Q1 ∨Q2} [DISJ]

G � {P}c{Q}
G ⊆ G′ P ′ ⇒ P Q⇒ Q′

G′ � {P ′}c{Q′} [CONS]

G � {I ∧ b}c1; c2{I}
G′ � {I ′ ∧ b}c1;{P}c2{I ′}

G ∪ G′ � {(I ∨ I ′) ∧ b}while b do {c1; c2}{(I ∨ I ′) ∧ ¬b} [INV]

Q ∧ b⇒ I G � {I ∧ b}c1; c2{I}
G′ � {P}c2{Q}

G ∪ G′ � {(I ∨Q) ∧ b}while b do {c1; c2}{(I ∨Q) ∧ ¬b} [WINV]

Fig. 5: Deductive system for the construction of local proofs and Guarantee relations.

composition, and [DISJ] for proof weakening. In these rules,

the result Guarantee is simply the union of the Guarantees

from sub-proofs. Notably, the last rule [DISJ] is important

for merging sub-proofs, i.e. by taking the disjuction of cor-

responding assertions from sub-proofs. We also have the rule

[CONS] for rewriting proof, in which the pre/postcondtions and

Guarantee are replaced by weaker conditions and relation.
Lastly, the two rules [INV] and [WINV] are viable for updat-

ing loop invariant. We abuse the notation {P}c1;{Q}c2{R}
to represent the triple {P}c1; c2{R} where {P}c1{Q} and

{Q}c2{R} both hold. The default invariant I is associated

with the loop while b do {c1; c2}. The counterexample P is

inside the loop body, between c1 and c2. Such counterexample

can be placed at the beginning (resp. ending) of the loop body

by instantiating c1 (resp. c2) with skip. In [INV], the refined

invariant is I ∨I ′, where I ′ is the fresh invariant that satisfies:

{I ′ ∧ b}c1;{P}c2{I ′}
However, automatically discovering I ′ could be problematic

due to the presence of P in the middle of the proof. Thus

we invent the rule [WINV] as a workaround to update the

loop invariant. The inferred invariant in [WINV], despite being

more ad hoc than its peer in [INV], is actually a blessing in

disguise, as it can be computed directly from the sub-proof of

the loop body. To do so, the triple {P}c2{Q} is derived from

P such that Q ∧ b implies I . The loop invariant then can be

correctly updated to I ∨Q. Also, the Guarantees in both rules

are updated by adding transitions from the derived sub-proofs.

VI. CONSISTENCY VERIFIER

We first elaborate on the routine steps of the component

Consistency Verifier (CV) in §VI-A. We then discuss in §VI-B

the rules used by CV for constructing counterexamples.

A. The procedure description
Algo. 2 describes the high-level architecture of the routine in

CV for validating R-G proof and computing counterexamples.

Algorithm 2: Proof validation by CV.

Input: candidate R-G proof {(Pi,Ri,Gi)}ni=1

Output: valid R-G proof, otherwise counterexamples

1 foreach proof Pi do
2 let P be the first basic assertion unstable under Ri

3 construct counterexample Ci from P and Ri

4 if no counterexample is constructed then
5 return {(Pi,Ri,Gi)}ni=1

6 else
7 return {Ci}ni=1

Before explaining the key routine steps, we first need several

definitions. A basic statement is an atomic statement — i.e.
skip, assignment, atomic, await — that is not within the

scopes of other basic statements. A proof assertion is basic
if it is the pre/postcondition of either a basic statement, or

the entire thread. These basic assertions are precisely program

points where the environment interference can occur. As with

the R-G semantics, basic assertions are required to be stable

under the Rely, meaning that they contain the interference

states specified by the Rely. Checking validity of R-G proof

is therefore reduced to checking stability between basic asser-

tions and Rely relation for each thread.

We now discuss the routine steps taken by CV in Algo. 2.

The input is a candidate R-G proof {(Pi,Ri,Gi)}ni=1 consist-

ing of local proofs and R-G relations. At lines 1–3, each local

proof Pi is examined separately, where its basic assertions are

checked against the Rely Ri for stability condition. The first

unstable basic assertion is used to construct the counterexam-

ple predicate Ci for Pi. Detail on the checking stability and

constructing counterexamples is elaborated in §VI-B. If no

counterexample is constructed, then the R-G proof is valid and

the candidate proof {(Pi,Ri,Gi)}ni=1 is returned as a validated

proof at line 5. Otherwise, a list of counterexamples {Ci}n1 is

48

∧
R
 Q ∈ R

P ⇒ R⇒ Q[x̄/ȳ] ⇒ irr(P,R
 Q)x̄ȳ ⇒ P[x̄/ȳ]

stable(P,R)
[ST]

C =
∨

U
U∈U

s.t. U = {U | ∃R. R
 U ∈ closure(R) ∧ sat(R ∧ P)}

stable(P ∨ C,R)
[RE]

Fig. 6: Rules for constructing counterexamples.

returned to enable the next refinement cycle.

B. Construction of counterexample predicates

Fig. 6 consists of the two viable rules [ST] and [RE] used by

CV routinely. A basic assertion is first checked for stability

using [ST], and if the assertion is unstable then [RE] is applied

to construct the counterexample predicate. These rules require

several notations to explain. The closure of R is denoted

by closure(R), and sat(Φ) indicates that the formula Φ is

satisfiable. The condition irr(P,R
 Q)x̄ȳ is the conjunction

of equalities
∧
(xi = yi) where each variable xi ∈ x̄ is present

in P but absent in R
 Q, and yi ∈ ȳ is a fresh variable

associated with xi. The intuition behind this condition is that

if a variable xi is in P but not in R
 Q, then any state

transition (s1, s2) in R
 Q respects the value of xi, i.e.
�x�s1 = �x�s2 . Also, we write P[x̄/ȳ] to denote the assertion P
in which each variable xi ∈ x̄ is replaced by its counterpart

variable yi ∈ ȳ.

In rule [ST], the condition stable(P,R) is established by

verifying that P is stable under every transition R
 Q in R.

This sub-condition is expressible as the implication below:

P → R→ Q[x̄/ȳ] → irr(P,R
 Q)x̄ȳ → P[x̄/ȳ]

where fresh variables ȳ carry the effects caused by the

transition R
 Q on the variables x̄ of P . The condition

irr(P,R
 Q)x̄ȳ directs the check to focus only on the changes

in shared variables between P and R
 Q, i.e. by retaining the

values of other variables. We provide the following examples

to help readers gain intuition about how [ST] works. Let:

R : {x ≥ 0
 x ≥ 1} P1 : x = 0 P2 : z = 0

Using [ST], the stability conditions for P1 and P2 are:

Φ1 : x = 0→ x ≥ 0→ y ≥ 1→ �→ y = 0
Φ2 : z = 0→ x ≥ 0→ y ≥ 1→ z = y → y = 0

It can be verified that Φ1 is invalid while Φ2 is valid. As a

result, only the assertion P2 is stable under R.

The other rule [RE] plays the role of constructing counterex-

ample predicates. Given an assertion P being unstable under

the Rely R, recall that a predicate C is a counterexample

of P if the disjunction P ∨ C is stable under R. In [RE],
the counterexample C is computed to be

∨
U , where each U

is retrieved from the image of some transition R
 U in

closure(R), such that the constraint R ∧ P is satisfiable. The

procedure for over-approximating closure(R) from R is given

Algorithm 3: Approximate transitive closure of R.

Data: A binary relation R
Result: Its over-approximated transitive closure C

1 initiate C ← R
2 repeat
3 reset N ← ∅
4 foreach P1
 Q1 ∈ C and P2
 Q2 ∈ R do
5 if sat(Q1 ∧ P2) and P1
 Q2 �∈ C then
6 update N ← N ∪ {P1
 Q2}
7 C ← C ∪ N
8 until N = ∅

in Algo. 3, which we now explain. The closure C of R is

initiated to R (line 1), and is extended iteratively (lines 4-6)

by adding fresh transitions from the composition relation C◦R;

until the fixpoint condition — i.e. C = C ◦ R — is reached.

The sub-relation C ◦R consists of transitions P1
 Q2, where

there exist Q1, P2 such that {P1
 Q1, P2
 Q2} ⊆ C,

and Q1 ∧ P2 is satisfiable. We use a temporary relation N to

store the fresh relations P1
 Q2, and to check the fixpoint

condition for termination, i.e. N = ∅.
Lastly, one important property of the rule [RE] is that it

computes the weakest counterexample, as mentioned in the

correctness result of Lemma 1:

Lemma 1. The disjunction P ∨ C in the rule [RE] is stable
under R. Furthermore, for any C ′ such that P ∨C ′ is stable
under R, we have P ∨ C ⇒ P ∨ C ′.

Proof sketch. Given a state s s.t. �P �s∨�C�s, rule [RE] ensures

that any state s′ s.t. (s, s′) ∈ closure(R) — i.e. s′ is reachable

from s via R — is in C, and thus �C�s′ holds. This implies

�P �s′ ∨ �C�s′ . Hence, P ∨ C is stable under R.
To see why C is weakest, let s be a state s.t. �P �s ∨ �C�s.

It suffices to prove that �P �s ∨ �C ′�s. If �P �s holds then we

are done. Otherwise, �C�s holds and thus s is reachable via R
from some s∗ s.t. �P �s∗ holds. Thus there exists a transition

R
 Q ∈ closure(R) s.t. �R�s∗ ∧ �P �s∗ and �Q�s. From

�P �s∗ , we arrive at �P �s∗ ∨ �C ′�s∗ . As (s∗, s) ∈ closure(R),
the condition stable(P ∨ C ′,R) implies �P �s ∨ �C ′�s.

VII. SOUNDNESS

Having our key components PG and CV addressed in

previous sections §V and §VI, we are now ready to state the

main soundness result about our framework:

Theorem 1 (Soundness). The proof constructed by the frame-
work in Fig. 1 is valid with respect to the R-G semantics.

Proof sketch. First, notice that the construction of Relies in

Algo. 1 ensures that each Guarantee necessarily implies the

Relies of other threads. Thus the rule [PAR] in §II can be

applied to establish the concurrent proof from local proofs.
It remains to verify that each local proof {P}c{Q} and its

R-G relations (R, G) satisfy the R-G definition in §IV-C:

R,G � {P}c{Q}

49

Let 〈c, s〉 s.t. �P �s holds. First, to see why R,G |=n 〈c, s〉
is true for arbitrary n, recall that our construction (i.e. Algo. 2)

ensures that all basic assertions — program points where the

environment interference can occur — are stable under R.

As a result, every program execution starting from 〈c, s〉 has

its external steps satisfy the Rely R. Meanwhile, the condition

G�{P}c{Q} implies that such program execution also satisfies

the Guarantee G. Hence, R,G |=n 〈c, s〉 holds.

Now let 〈skip, s′〉 s.t. 〈c, s〉 ∗�
R
〈skip, s′〉, we need to prove

�Q�s′ holds. Notice that the proof construction in Algo. 1

satisfies the condition G � {P}c{Q}. This implies {P}c{Q}
is a valid Hoare triple, and thus �Q�s′ can be deduced.

Discussion on completeness. The proof construction of our

framework is incomplete. That is, the R-G proof for a given

program is possibly nonexistent, and thus the refinement step

fails to terminate. This shortcoming essentially boils down

to the over-approximation of R-G relations as unordered sets

of transitions. This simple representation is advantageous for

computation, such as in the construction of Relies and coun-

terexamples. However, it also shatters the total order of the

program execution, making the reasoning infeasible in certain

scenarios. For instance, our framework fails to establish the

valid proof {x = 0}x := x+ 1‖x := x+ 1{x = 2} since the

computation of R-G relations fails to converge. This is mainly

because the locality and frequency of the statement x := x+ 1

are lost as a consequence of the over-approximation.

In fact, the above problem of over-approximation is well-

known in R-G framework, e.g. [9], [38], [39]. To tackle this

problem, one common solution is to use auxiliary (or ghost)
variables (e.g. [9], [38], [39]) for the bookkeeping of state

transitions. By doing so, the order of execution can be encoded

into the R-G relations for sensible reasoning. We adopt the

above idea by introducing the rule [AU] below as a workaround

to label necessary transitions:

fresh(a) atomic(c) G1 = {P
 Q}
G2 = {(P ∧ x = 0)
 (Q ∧ x = 1)}

R,G1 � {P}c{Q} ⇔
R,G2 � {P ∧ x = 0}atomic {c; x := 1}{Q ∧ x = 1}

[AU]

Using a fresh variable x initiated to 0, the rule [AU]
transforms the triple {P}c{Q}, where c is atomic, into the

triple in which x := 1 is grouped with c into an atomic block:

{P ∧ x = 0}atomic {x := 1; c}{Q ∧ x = 1}
As x is updated from 0 to 1 along with c, it helps to encode

the transition P
 Q into (P ∧ x = 0)
 (Q ∧ x = 1).
This allows the transition, as being associated with c, to be

identified with ease when it was added to the R-G relations.

VIII. EVALUATION

A. Implementation and optimization

The framework in Fig. 1 is realized as a Java prototype

dubbed REGASOL (Rely Guarantee Solver). Our prototype

consists of 17 component classes with more than 4500 lines

of code en masse. The SMT solver Z3 [10] is deployed as

back-end to handle SAT constraints generated during stability

check and counterexample construction. To improve the per-

formance of REGASOL, we have designed specifically several

optimization strategies for our framework. Their key principles

are briefly discussed below.

Dynamic programming. We propose a new method to

compute the new Rely closure by reusing the previous version

from the last iteration. In detail, the new closure Cnew is ex-

tended gradually from Cold by considering one fresh transition

P
 Q at a time. This task is accomplished by computing

first the composed relation P = {P
 Q} ◦ C, and then the

relation C ◦ P . In practice, this approach helps to reduce the

total number of SAT constraints, particularly when the number

of transitions in Rely is large.

Symmetry reduction. We say that a thread T1 is symmetric
to another thread T2 if there exists a bijective substitution M
mapping variables from T1 to T2, such that T1 becomes T2

after the substitution. As a result, the mapping M can be used

to transform the proof of T1 and the respective R-G relations

into their counterparts in T2, effectively reducing the workload

associated with T2. Thus this approach can improve run-time

performance when verifying programs with symmetries.

Parallelization. For each thread, the local proof construc-

tion and stability check are performed independently. As a

result, we can create multiple instances of PG and CV, one

per thread, to accomplish the above tasks in parallel. As per

iteration, synchronization only occurs when the fresh Relies

are constructed, since these relations are derived from the

Guarantees of other threads.

B. Experiment design

Table I presents our small benchmark of 12 practical multi-

threaded programs split equally into category 1 (P1–P6) and

2 (P7–P12). The first category (P1–P6) consists of standard

algorithms for mutual exclusion, namely Peterson [2], naı̈ve

Bakery [28] and its complete version [25], Szymanski [37],

readers-writers lock [12], time-varying mutex [12]. Mean-

while, programs P7–P12 in category 2 contain loops to test

the scalability of our framework. In detail, P7 is the example

program in §III, and P8 is modified from P7 by changing

the loop condition to x < 100. Program P9 contains two

threads {while x < 10 do x := x+ 1} and {while y <
20 do y := y+ 1}. Its loop conditions are changed in P10 to

x < 100 and y < 200. Program P11 is generated from P9 by

adding {await x = 10&&y = 20 do z := x+ y} as the third

thread. Lastly, P12 is generated from P10 by adding the third

thread {await x = 100&&y = 200 do z := x+ y}.
We use the above benchmark to evaluate REGASOL, and

the optimized version REGASOL+ with features discussed

in §VIII-A. The benchmark is also run by verification tools

THREADER [17] and LAZY-CSEQ [22] for comparison. The

tool THREADER applies both CEGAR and R-G technique to

prove program safety. Technically, it does so by construct-

ing the unreachability proof of error states via Horn-clause

abstraction refinement, starting from the most general abstrac-

tion. By contrast, our approach starts at a partially constructed

50

No Name THREADER LAZY-CSEQ REGASOL REGASOL+

P1 peterson 2 0.92 1.7 1.22
P2 bakery-simpl 2.16 0.8 0.25 0.17
P3 bakery 61.2 7.07 1.8 1.1
P4 read-write-lock 0.14 0.59 0.1 0.11
P5 szymanski 8.02 2.8 3.9 2.9
P6 time-var-mutex 5.68 0.92 0.13 0.11
P7 loop1-10-25 0.22 0.71 0.04 0.05
P8 loop1-100-25 T/O 36.92 0.03 0.05
P9 loop2-10-20 1.14 0.87 0.02 0.03
P10 loop2-100-200 T/O 33.92 0.02 0.04
P11 loop3-10-20 T/O 1.81 0.17 0.17
P12 loop3-100-200 T/O 144.41 0.17 0.18

TABLE I: Experiment results (in seconds) among tools.

abstractions of R-G relations, and gradually generalizes them

via proof refinement. On the other hand, the tool LAZY-CSEQ

detects bugs in a concurrent program by under-approximating

it as a nondeterministic sequential program with scheduler,

which is handled by model checking techniques. As for our

framework, while the local proofs are also constructed in

a sequential manner, global correctness of the concurrent

program is safely persevered, thanks to the R-G principles. As

a result, all successfully verified programs by our framework

are true-positive, i.e. the constructed correctness proofs are

sound, as compared to LAZY-CSEQ where false-positive cases

— i.e. buggy programs being reported safe — are possible.

We run the benchmark on a computer with 6-core 3.6GHz

processor and 32GB memory. Each program is given equally

300 seconds (s) to be verified before timeout (T/O). Results

with best running time are also highlighted. As a technicality,

the round parameter in LAZY-CSEQ is set to be the number

of statements to allow sufficient interleavings.

C. Experiment results

We now discuss the experiment results reported in Table I.

While REGASOL+ outperforms REGASOL in category 1

(5.59s vs. 7.88s), its performance is slightly worse than

REGASOL’s in category 2 (0.45s vs. 0.54s). We conjecture

that the synchronization overheads of parallel proofs accounts

for this performance penalty, especially in small programs. In

both tools, the performance gaps between P7&P8, P9&P10,

and P11&P12 are insignificant, i.e. no more than 0.02s for

each pair, thanks to the use of loop invariants.

As for the other tools, THREADER and LAZY-CSEQ need

79.2s and 13.1s respectively to verify all programs P1-P6

in category 1. These performances are worse than the per-

formances of REGASOL (5.59s) and REGASOL+ (7.88s).

Noticeably, LAZY-CSEQ outperforms our tools in programs P1

and P5. In category 2, THREADER manages to verify programs

with small loops, i.e. P7 and P9 in 1.36s. However, it times

out for the rest. Meanwhile, LAZY-CSEQ verifies programs

P7-P12 within 218.64s, which is considerably slower than

REGASOL (0.45s) and REGASOL+ (0.54s).

We further investigate the numbers of refinement iter-

ations and SAT constraints generated by THREADER and

REGASOL+. The data are plotted in Fig. 7 for comparison.

Among programs being successfully verified by both tools,

THREADER, on average, requires 29 iterations and generates

THREADER REGASOL+

1 3 6 9 12

0

10

20

30

40

50

benchmark program

it
er

at
io

n
s

(a) Required iterations to terminate

1 3 6 9 12

102

103

104

105

106

benchmark program

S
A

T
co

n
st

ra
in

ts

(b) Generated SAT constraints

Fig. 7: Comparison between THREADER and REGASOL+.

189, 719 SAT constraints for each program. These numbers

are 5 iterations and 271 SAT constraints respectively for

REGASOL+. Such statistics help to explain the performance

gap between the two tools over the benchmark.

To summarize, the experiment results demonstrate that our

framework is efficient in verifying concurrent programs, and

the strategies in §VIII-A improve the overall performance.

IX. RELATED WORK AND CONCLUSION

Correctness of parallel and concurrent software was first ad-

dressed in the Owicki-Gries [30] and shortly later in the Rely-

Guarantee [23] proof systems. Whilst the former establishes

some concepts that will be used for the verification of concur-

rent systems such as the notion of stability, parallel composi-

tionality makes R-G a reference for non-automatic [29], [33]

and automatic proof systems [13], [8], [16], [18], [40]. The

approach based on Horn-clauses and CEGAR-like refinement

followed by [15] makes it also comparable with REGASOL.

Our work combines features from both approaches, estab-

lishing a set of reasoning rules that allows compositional

reasoning on parallel programs, which is automatically carried

out using abstraction and refinement. Verification of non-

automatic approaches [29], [33] requires to manually construct

the rely and guarantee relations, and to infer the properties to

be locally verified from the global property. Our approach,

in addition to providing a push-button solution, automatically

constructs the relations modelling the environment and compo-

nent behaviours, also calculating adequate local preconditions

that satisfy the conditions for parallel compositionality.

When comparing with the automatic proof systems in [13],

[15], [16], [18], [40] for the verification of concurrent systems,

our work is not based on state transition systems but on

predicate transformations. As a consequence, our approach

has a better performance on systems with a large state space,

which can be easily observed on the analysis of programs

with loops having a high number of iterations. Although

the current setting requires us to manually provide an initial

loop invariant, this step can be easily automated with the

help of existing invariant inference tools such as [26]. While

the work in [13] is incomplete, the addition of a rule for

auxiliary variables makes our work complete. The abstraction

51

performed in [8] may be too precise declaring local variables

as global to keep completeness, but our work calculates only

the necessary over-approximation to guarantee stability of the

predicates on the current refinement iteration to guarantee

correctness. An additional side effect of our approach is that

it generates a certification of the correctness of the parallel

programs. The works in [16], [15] both use Horn-clauses

and CEGAR-like refinement. While [16] translate concurrent

C programs into a transition system that is evaluated by

their refinement-based verification engine, the work in [15]

provides a general approach taking as input a transition system,

serving as backend for other tools. Hence, the verification of

concurrent programs in [15] requires to translate the program

to be verified into a set of transitions as a constraints, and also

to provide constraints as proof rules modelling the semantics

for concurrency.

In conclusion, we proposed a novel framework to verify

concurrent programs based on R-G technique, by automati-

cally constructing the Hoare-style proof and inferring the valid

R-G relations through iterative refinement. The experiments

demonstrate that our prototypes are capable of verifying prac-

tical concurrent programs efficiently. For future work, we plan

to extend the framework to reason about programs with data

structures such as lists and arrays.

Acknowledgment. This work is supported by the Min-

istry of Education, Singapore under its Tier-2 Project (Award

No. MOE2018-T2-1-068) and partially supported by the Na-

tional Satellite of Excellence in Trustworthy Software Systems

(Award No. NRF2018NCR-NSOE003), and award NRF In-

vestigatorship NRFI06-2020-0022, funded by NRF Singapore

under National Cyber-security R&D (NCR) programme.

REFERENCES

[1] Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer,
Josiah Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy.
Program Logics for Certified Compilers. 2014.

[2] Yoah Bar-David and Gadi Taubenfeld. Automatic discovery of mutual
exclusion algorithms. In Distributed Computing, pages 136–150, 2003.

[3] Richard Bornat. Proving pointer programs in hoare logic. In MPC,
pages 102–126, 2000.

[4] Stephen Brookes. A semantics for concurrent separation logic. Theor.
Comput. Sci., 375(1-3):227–270, Apr 2007.

[5] Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong
Shao. End-to-end verification of stack-space bounds for C programs. In
PLDI, pages 270–281, 2014.

[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244–263, Apr 1986.

[7] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In CAV, pages
154–169, 2000.

[8] Ariel Cohen and Kedar S. Namjoshi. Local proofs for global safety
properties. Formal Methods in System Design, 34(2):104–125, Apr 2009.

[9] J. W. Coleman and C. B. Jones. A structural proof of the soundness of
rely/guarantee rules. J. Logic. Comput., 17(4):807–841, Aug 2007.

[10] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
In TACAS, pages 337–340, 2008.

[11] Thomas Dinsdale-Young, Pedro da Rocha Pinto, Kristoffer Just Ander-
sen, and Lars Birkedal. Caper: Automatic verification for fine-grained
concurrency. In ESOP, pages 420–447, 2017.

[12] Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. Thread-modular
verification for shared-memory programs. In ESOP, pages 262–277,
2002.

[13] Cormac Flanagan and Shaz Qadeer. Thread-modular model checking.
In Model Checking Software, pages 213–224, 2003.

[14] P. Fonseca, Cheng Li, V. Singhal, and R. Rodrigues. A study of the
internal and external effects of concurrency bugs. In DSN, pages 221–
230, 2010.

[15] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey
Rybalchenko. Synthesizing software verifiers from proof rules. In PLDI,
pages 405–416, 2012.

[16] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Predicate
abstraction and refinement for verifying multi-threaded programs. In
POPL, pages 331–344, 2011.

[17] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Threader:
A constraint-based verifier for multi-threaded programs. In CAV, pages
412–417, 2011.

[18] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Shaz Qadeer.
Thread-modular abstraction refinement. In CAV, pages 262–274, 2003.

[19] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, Oct 1969.

[20] C. A. R. Hoare. Communicating sequential processes. In The Origin
of Concurrent Programming: From Semaphores to Remote Procedure
Calls, pages 413–443, 2002.

[21] Aquinas Hobor and Jules Villard. The ramifications of sharing in data
structures. In POPL, pages 523–536, 2013.

[22] Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre,
and Gennaro Parlato. Bounded model checking of multi-threaded c
programs via lazy sequentialization. In CAV, pages 585–602, 2014.

[23] C. B. Jones. Tentative steps toward a development method for interfering
programs. ACM Trans. Program. Lang. Syst., 5(4):596–619, Oct 1983.

[24] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. sel4: Formal verification of an os kernel. In SOSP, pages
207–220, 2009.

[25] Leslie Lamport. A new solution of Dijkstra’s concurrent programming
problem. Commun. ACM, 17(8):453–455, Aug 1974.

[26] Shang-Wei Lin, Jun Sun, Hao Xiao, Yang Liu, David Sanán, and
Henri Hansen. Fib: Squeezing loop invariants by interpolation between
forward/backward predicate transformers. In ASE, pages 793–803, 2017.

[27] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning
from mistakes: A comprehensive study on real world concurrency bug
characteristics. In ASPLOS, pages 329–339, 2008.

[28] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive
Systems: Safety. Springer-Verlag, Berlin, Heidelberg, 1995.

[29] Leonor Prensa Nieto. The rely-guarantee method in isabelle/hol. In
ESOP, pages 348–362, 2003.

[30] Susan Owicki and David Gries. An axiomatic proof technique for
parallel programs I. Acta Inf., 6(4):319–340, Dec 1976.

[31] Azalea Raad, Aquinas Hobor, Jules Villard, and Philippa Gardner.
Verifying concurrent graph algorithms. In APLAS, pages 314–334, 2016.

[32] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, pages 55–74, 2002.

[33] David Sanán, Yongwang Zhao, Zhe Hou, Fuyuan Zhang, Alwen Tiu,
and Yang Liu. Csimpl: A rely-guarantee-based framework for verifying
concurrent programs. In TACAS, pages 481–498, 2017.

[34] Norbert Schirmer. A verification environment for sequential imperative
programs in isabelle/hol. In LPAR, pages 398–414, 2005.

[35] Ilya Sergey, Nanevski, and Anindya Banerjee. Specifying and verifying
concurrent algorithms with histories and subjectivity. In ESOP, pages
333–358, 2015.

[36] Rahul Sharma, Isil Dillig, Thomas Dillig, and Alex Aiken. Simplifying
loop invariant generation using splitter predicates. In CAV, pages 703–
719, 2011.

[37] B. K. Szymanski. A simple solution to Lamport’s concurrent program-
ming problem with linear wait. In ICS, pages 621–626, 1988.

[38] Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee
and separation logic. In CONCUR, pages 256–271, 2007.

[39] Qiwen Xu, Willem Paul de Roever, and Jifeng He. The rely-guarantee
method for verifying shared variable concurrent programs. Formal
Aspects of Computing, 9(2):149–174, Mar 1997.

[40] Fuyuan Zhang, Yongwang Zhao, David Sanán, Yang Liu, Alwen Tiu,
Shang-Wei Lin, and Jun Sun. Compositional reasoning for shared-
variable concurrent programs. In FM, pages 523–541, 2018.

52

	Automatic verification of multi-threaded programs by inference of rely-guarantee specifications
	Citation

	Automatic Verification of Multi-Threaded Programs by Inference of Rely-Guarantee Specifications

