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ABSTRACT
Cyber-Physical Systems (CPS) provide the foundation of our criti-

cal infrastructures, which form the basis of emerging and future

smart services and improve our quality of life in many areas. In

such CPS, sensor data is transmitted over the network to the con-

troller, which will make real-time control decisions according to

the received sensor data. Due to the existence of spoofing attacks

(more specifically to CPS, false data injection attacks), one has to

protect the authenticity and integrity of the transmitted data. For

example, a digital signature can be used to solve this issue. However,

the resource-constrained field devices like sensors cannot afford

conventional signature computation. Thus, we have to seek for an

efficient signature mechanism that can support the fast and contin-

uous message authentication in CPS, while being easy to compute

on the devices.

To this end, we introduce two Lightweight Signature schemes

(LiS), which are suitable for continuous message authentication

commonly seen in cyber-physical systems. In our constructions,

we exploit the efficient hash collision generation property of a

chameleon hash function to transform a chameleon hash function

into signature schemes. In our schemes, the signature of a message

m is the randomness r associated with m in a chameleon hash

function, such that they can lead to a hash collision with a given

message randomness pair (m′, r ′). Thus, the task of a signer is

to generate the collision using the private key of the underlying

chameleon hash function, and a verifier can verify the signature by

checking the hash collision with a known message and randomness

pair.

We also specifically instantiate the chameleon hash function

in such a way that it leads to a fast signing procedure and an

optimal storage requirement on the signer side. The optimized

signing algorithms are very efficient. Namely, our first scheme

requires only three additions and two multiplications, and only one
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additional hash is needed in the second scheme to resist adaptive

chosen message attacks. In addition, the size of the signing key in

our schemes is a small constant-sized bit string, which well fits CPS

applications.
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1 INTRODUCTION
Cyber-Physical Systems (CPS) integrate various cyber computation,

physical devices, and networking technology to control physical

processes through data exchange in real-time. The emerging CPS is

expected to encompass every aspect of our lives, which generates a

paradigm shift towards a hyper-connected society. Up to now, CPS

devices are widely used in navigation systems, smart grid, smart

city application domains. However, due to the limitation in both

computation and storage, many modern cryptographic schemes

cannot run on CPS devices, which results in serious security and

privacy issues [1–3].

Thus, it is notoriously important to ensure that the data that

comes from CPS devices has not been changed by attackers [4, 5].

A natural solution to protect the authenticity and integrity of a

message is to use a message authentication code (MAC). It allows

the verifier (who possess a shared key with the message sender) to

detect any change to the message content [6]. However, MAC has

a potential security risk: when the key stored on the verifiers gets

leaked, all the future message authentication codes will possibly

be compromised. Notice that, in more physically isolated CPS, like

nuclear plants and manufacturing systems, the verifiers (servers),
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are actually more vulnerable to cyber attacks than CPS devices.

This is because they are connected to enterprise networks or even

the Internet. For example, the famous Stuxnet worm compromised

the engineering workstations first in Iranian nuclear plants before

it got a footprint in the controller systems [1].

Another standard solution is to use cryptographic digital signa-

tures, which allow receivers to verify the origin of a message using

a ‘public’ key so that it can be secure in a verifier breach. Although

there are many online efficient (computationally secure) digital

signature schemes, such as ElGamal signature [7] and Schnorr

signature [8, 9], they require expensive cryptographic operations

like modular exponentiation which is too complex for resource-

constrained CPS devices.

Tomake a digital signature scheme deployable on constrained de-

vices, Even et al. proposed an online/offline signature paradigm [10].

The idea is to use a trusted and powerful server to pre-compute

some expensive operations in an offline phase, so the signer does

not need to compute complex operations, but the signer needs to

securely store a large number of private intermediate values D
generated by the server, and the size of D has a linear relation with

the number of signatures to be signed [10].

It is suggested in [11–13] that the offline phase for computing D
can be carried out either during the device manufacturing process

or by the device itself as a background computation. However,

none of these two ways of generating D is perfect in CPS. The

first solution requires a large amount of storage overhead on the

device (e.g., 97MB for seven-day usage with a message rate at 1

second per message [12, Schnorr]), but it is generally infeasible on

CPS devices. Although some sorts of replenishment of D might be

possible, it may interrupt the normal operation and communication

of the CPS devices, which need to keep sending data measured

in real-time. The second solution demands a lot of computational

power and idle time on the device side. However, the CPS devices

keep generating data at a fast pace, so there is no enough idle time

for it to compute these operations in the background. For example,

in an automatic identification system used on ships [14], each time

slot for sending a message is just 26.66 milliseconds, which is too

short for an exponentiation operation on an embedded device.

In this work, we are specifically motivated to design signature

schemes that can be efficiently used in CPS for continuous message
authentication. In particular, we introduce signature schemes that

are optimized for the signer, in terms of both computation over-

head and storage overhead, and the signer only needs to store a

constant-sized signing key which does not need to be replenished

for continuous and uninterrupted message authentication.

Our Work. Our construction leverages on a chameleon hash func-

tion [15] and a pre-computation strategy to shift the ‘burdens’ of

computation and storage from a signer to verifiers and possibly a

trusted third-party server. It is worth noting that the verifiers in

CPS are servers that have enough computation power and have

storage. Recall that, given a message and randomness pair (m′, r ′),
a chameleon hash function CHF allows one to use its secret key sk
to efficiently compute a collision r for a messagem ,m′ such that

CHF(m, r ) = CHF(m′, r ′). The general idea is to utilize a trusted

server to take as inputs a set of dummy message/randomness pair

(m′i , r
′
i ) (for 1 ≤ i ≤ ℓ) and pre-compute the chameleon hash values

which will be used as a part of the verification key vk , where ℓ is
the maximum number of signatures can be verified by vk . For the
online signature generation, the signer only needs to compute the

collision ri as the signature ofmi based on a used dummy random

r ′i .
In order to further optimize the signing algorithm for the resource-

constrained signers, we propose to fix all dummy messagem′i as a
constantM , and use a universal hash function UHF to chain up all

dummy randomness, i.e., r ′i = UHF(k, r ′i−1) for 1 ≤ i ≤ ℓ, and r0 is
chosen randomly, where k is a random hash key ofUHF. As a result,
the signer only needs to store a few hundreds of bits (sk, sk ·M, r ′

0
,k)

for signing. Also, we applied some arithmetic tricks in our instantia-

tion of the chameleon hash function [15], which successfully saves

one big-number modular division in the signing algorithm. After

our extensive optimization, only three modular additions and two
modular multiplications are needed to generate one signature in our

first protocol LiS1. One additional hash computation is required in

the second protocol LiS2.
However, in the above naïve construction, the size of the verifi-

cation key is dominated by the pre-computed hash values. If the vk
can support the verification of many signatures (i.e., ℓ is large), then

vk may get very large too. To reduce the size of vk , we propose
to use a Bloom filter [16] to compress vk . For certain applications

that can tolerate small errors, such as Globe Positioning System

(GPS), we can even allow a relatively large false-positive rate for

the Bloom filter.

Nevertheless, the verification key of our schemes will still be

used up after ℓ signatures. We further develop two verification

key replenishment solutions to enable unlimited signing capability.

Notice that the chameleon hash keys (both secret and public key)

do not need to be changed after a verification key update, so the
signer can keep signing messages without being interrupted. In an

update of vk , the verifiers need to get a new set of authenticated

chameleon hash values for future verification. Our first verification

key replenishment approach is to outsource the computation of the

new chameleon hash values to a trusted server, which periodically

computes the chameleon hash values based on the dummy message

M and the dummy randomness r ′ and publishes them to a bulletin

(where verifiers have access) together with a signature of the server.

Moreover, the second verification key replenishment solution can

be used when all the verifiers are honest (and not controlled by

attackers). For instance, in industrial control systems, the verifier

can be a server located in an isolated control center, which is trusted

by all signer (i.e., the client devices). In this case, one can let the

verifier have the dummy messageM and dummy randomness r ′, so
it can generate the verification key on the fly during the verification

procedure. We specifically customized a verification algorithm for

this scenario. Notice that even if the dummy message/randomness

pairs (M, r ′i ) are leaked to an adversary, he still cannot forge a valid

signature without knowing the secret signing key.

Contributions.Wemade the following contributions in our paper:

(1) We propose two lightweight signature schemes LiS with an

optimized signing algorithm in terms of both computation

and storage. Our first protocol LiS1 is designed to sign small

messages and to provide security guarantee against weak

chosen message attacks, so it is suitable for the applications
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(such as GPS), which have an untamperable data source. We

extend our first protocol to the second one LiS2 by adding a

hash function, which is modeled as a random oracle, to not

only sign large messages, but also achieve adaptive security.

(2) We instantiate and optimize the proposed algorithms. As a

result, the signing algorithm of LiS1 requires three additions
and two multiplications, and one more hash is needed in

LiS2.
(3) We propose two verification key replenishment solutions

based on different assumptions of the verifiers. New verifi-

cation algorithms are designed for honest verifiers.

(4) We show the security results of our schemes with formal

security proofs. LiS1 and LiS2 are proved in the standard

model and the random oracle model, respectively.

(5) We implement our signature schemes and evaluate the per-

formance experimentally. Our results show that they are

efficient for continuous message authentication in CPS.

Organization. We introduce necessary preliminaries that will be

used frequently in the rest of the paper in Section 2. Section 3

presents a signature frameworkwith two concrete signature schemes

based on chameleon hash functions. The security of the proposed

schemes is analyzed in Section 4. We show instantiations and opti-

mizations in Section 5. Section 6 presents two verification key re-

plenishment solutions. Some candidate applications of our schemes

in cyber-psychical systems are discussed in Section 7. Performance

analysis and evaluation results are presented in Section 8. In Section

9, we review the literature related to our work. The paper concludes

in Section 10.

2 PRELIMINARIES
Here we briefly review the notions and cryptographic primitives

that our constructions rely on.

We denote with κ the security parameter, ∅ an empty string, and

with [n] = {1, . . . ,n} ⊂ N the set of integers between 1 and n. If X

is a set, then x
$

← X denotes the action of sampling a uniformly

random element from X . If X is a probabilistic algorithm, then

x
$

← X denotes that X is run with fresh random coins and returns

x . Let ∥ be an operation to concatenate two strings, | · | be an

operation to get the bit-length of a variable, and # be an operation

to get the number of elements in a set.

2.1 Universal Hash Functions
A universal hash function (UH) family [17]: KUH ×MUH → RUH,

refers to a family of hash functions which guarantees a low number

of collisions in expectation even, where KUH,MUH and RUH be

key, message and output space of UH, respectively. These spaces
are determined by the security parameter κ.

Definition 2.1. We say that a set of hash functions UH is univer-

sal hash function family if: i) we uniformly choose a hash func-

tion UHF ∈ UH by sampling a random hash key k
$

← KUH,

ii) and ∀(x ,y) ∈ MUH we have the probability Pr[UHF(k,x) =
UHF(k,y)] ≤ 1

#MUH
.

2.2 Chameleon Hash Functions
An important cryptographic primitive that we will use is chameleon

hash function [15]. A chameleon hash functionCH(pk, ·, ·) : PKCH×

MCH × RCH → YCH is associated with a pair of public key

pk ∈ PKCH and private key sk ∈ SKCH, where (PKCH,SKCH)

are public and private key spaces, respectively,MCH is the message

space, RCH is the randomness space and YCH is the output space.

These public/secret key pairs are generated by a PPT algorithm

(pk, sk)
$

← CHKGen(1κ ). If the key is clear from the context, we

will write CH(m, r ) for CH(pk,m, r ).
A hash value generated by CH(m, r ) on input a messagem and

a random string r satisfies the following properties:

• Collision resistance. There is no efficient algorithm that on

input the public key pk can output two pairs (m1, r1) and
(m2, r2) such that m1 , m2 and CH(m1, r1) = CH(m2, r2),
except with negligible probability in the security parameter

κ.
• Trapdoor collisions. There exists an efficient determinis-

tic algorithm CHColl that on input the secret key sk , and
(r ,m,m′) ∈ RCH ×MCH ×MCH, outputs a value r

′ ∈ RCH
such that CH(pk,m, r ) = CH(pk,m′, r ′).
• Uniformity. For an arbitrary public keypk output byCHKGen,
all messagesm ∈ MCH generate equally distributed hash val-

ues CH(m, r ) when drawing r
$

← RCH uniformly at random.

This property ensures that a third party is unable to examine

the value hash from deducing any information about the

hashed message.

Given an adversary A and a chameleon function CHF, the CH
security game GCH

A,CHF(κ) is defined in Figure 1.

Proc.Init() : Proc.Finalize(m,m′, r, r ′) :

(sk, pk )
$

← CHKGen(1κ ) If (m,m′) ∈ MCH
∧

OUTPUT pk (r, r ′) ∈ RCH
∧
m ,m′

∧
CHF(m, r ) = CHF(m′, r ′)
OUTPUT 1

ELSE OUTPUT 0

Figure 1: Procedures used to define security for CH.

Definition 2.2. WedenotewithAdvCH
A,CHF(κ) := Pr[GCH

A,CHF(κ) =

1] the advantage of a PPT adversary A in breaking the security of

the chameleon hash function CHF under the security parameter

κ. We say CHF is secure if no PPT adversary has non-negligible

advantage AdvCH
A,CHF(κ).

The security of chameleon hash functions can be based on stan-

dard computational hardness assumptions like the discrete loga-

rithm assumption or the factoring assumption.

2.3 Digital Signature Schemes
We define a digital signature scheme SIG with three probabilistic

polynomial time (PPT) algorithms (KGen, Sign, Verify). We assume

that a signature scheme is associated with public and secret key

spaces {PKSIG,SKSIG}, message spaceMSIG, and signature space

SSIG in the security parameter κ. We denote the bit-length of the
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space Rs by ℓs which is determined by κ. The algorithms of SIG
are defined as follows:

• KGen(1κ , ℓ, aux): This algorithm takes as input the security

parameter 1
κ
, the maximum number ℓ of signature that SIG

can generate, and an auxiliary input aux, and generates the

secret key sk and the verification key vk .
• Sign(sk,m): This is the signing algorithm that generates a

signatureσ ∈ SSIG for amessagem ∈ MSIG with the signing

key sk .
• Verify(vk,m,σ ): This is the verification algorithm that takes

as input a verification key vk , a messagem and a signature

σ , outputs 1 if σ is a valid signature form under vk , and 0

otherwise.

Here we consider both weak and adaptive chosen message at-

tacks against SIG. The resilience of weak chosen message attacks is

enough for specific applications that the signer may have reliable

message sources (for most of running time), e.g., sensors deployed

in an isolated environment, or the satellites that send GPS signals.

Besides, the weaker security notion allows us to achieve high perfor-

mance which is crucial for the resource-constrained devices in CPS.

Whereas, the adaptive security is needed in a more complicated

environment with sophisticated adversaries.

We define a security game GSIG
A,S(κ, ℓ) that is played between

an adversary A and a challenger based on a signature scheme

S, the security parameter κ, and the number ℓ that bounds the

signatures that the adversary can obtain. In the security game,

A may ask the procedures defined in Figure 2. Concretely, the

adversary A proceeds with the game by sequentially calling the

procedures Proc.Init, Proc.SQuery and Proc.Finalize. We stress that

we can obtain the adaptive security game by removing those boxed

steps or elements. Namely, the security notions that we defined are

also known as strongly existential unforgeable against weak chosen
message attacks (SEUF-wCMA) and strongly existential unforgeable
against adaptive chosen message attacks (SEUF-CMA), respectively.

Proc.Init( M ) : Proc.Finalize(m∗, σ ∗) :

(sk, vk )
$

← S.KGen(1κ , ℓ, M ): If S.Verify(vk,m∗, σ ∗) = 1

cnt := 0 ∧ (m∗, σ ∗) < QD
OUTPUT vk OUTPUT 1

ELSE OUTPUT 0

Proc.SQuery(m) :

IFm < M

m′
$

← MSIG

m:=m’

IF cnt ≥ ℓ OUTPUT⊥
σ := S.Sign(skidC,m)
cnt := cnt + 1
APPEND (m, σ ) → QD
OUTPUT(m, σ )

Figure 2: Procedures used to define security for SIG.

Definition 2.3. Let AdvSIG
A,S(κ, ℓ) :=

���Pr[GSIG
A,S(κ, ℓ) = 1] − 1

2

��� be
the advantage of a PPT adversaryA in breaking the security of a sig-

nature scheme S under the security parameter κ. We say S is secure
if no PPT adversary has non-negligible advantage AdvSIG

A,S(κ, ℓ).

2.4 Bloom filter
Bloom filter [16] is a probabilistic data structure that provides space-

efficient storage of a set and that can efficiently test whether an

element is a member of the set. The probabilistic property of BF may

lead to false positive matches, but not false negatives. The more

elements are in the BF, the higher chance to get a false positive

match insertion. To reduce its false positive rate, we follow the

approach of [18], i.e., a BF with 1.44ϵN bits for a set with size N
has a false positive rate (FPR) of 2

−ϵ
.

We review the algorithms of a Bloom filter as follows:

• Init(N , ϵ): On input, a set size N , the initialization algorithm

initiates the Bloom filter of bit length 1.44ϵN .

• Insert(m): Element insertion algorithm takes an elementm
as input, and insertsm into BF.
• Check(m): Element check algorithm returns 1 if an element

m is in BF, and 0 otherwise.

• Pos(m): Position update algorithm computes positions to be

changed for elementm in BF.

3 LIS: LIGHTWEIGHT SIGNATURE SCHEMES
FROM CHAMELEON HASH

In this section, we propose a family of lightweight signature schemes

called as LiS = (LiS1, LiS2) from chameleon hash functions, Bloom

filters, and universal hash functions.

Figure 3: Overview of LiS. KGC stands for key generation center.

Design Rational. The system overview of LiS is shown in Figure

3. Our primary design goal is to enable the resource-constrained

signer device to authenticate its message in an extremely cheap

way, and the scheme should be resilient to verifier breaches. To

this end, we leverage on a chameleon hash function CHF and a pre-
computation strategy. In a naïve solution, one can simply compute

a verify point t = CHF(m′, r ′) based on a dummy messagem′ and
a randomness r ′, and send the t to the verifier for verification. To

authenticate a messagem online, the signer can compute a collision

x := CHColl(r ′,m′,m) as the signature form. The signer can repeat

the above procedure polynomial times to sign multiple messages.
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However, the above naïve solution is insecure since an adversary

can recover the secret key skCH of the chameleon hash function

given a pair of collided information (two signature/message pairs in

the above example). To fix the problem of the above naïve solution,

we should only use each pre-computed verify point t once. There-
fore, in our solution, we pre-compute verify points of a polynomial

number ℓ based on a set of dummy random values {r ′i }i ∈[ℓ] and
a single dummy messageM , such that ti := CHF(M, r ′i ). To avoid
store these randomnesses at the signer, we generate them using a

universal hash function UHF, such that r ′i := UHF(k, r ′i−1), where
k is the hash key of UHF. So that the signer only needs to store

the keys skCH,M , r ′
0
, and k . For online message authentication, the

signer only needs to recover the corresponding dummy random

values and compute the collisions, which is very efficient, i.e., only

two multiplication and three additions are required, according to

our instantiation and optimization in Section 5. The verification

key comprising {ti } might be costly. To reduce the storage cost of

the verifier, one could use a Bloom filter to compress these verify

points ti . This would save over 100x of storage costs. Notice that
the verification key stored at the verifier can be public so it can

resist a verifier breach.

Based on the above idea, we designed two signature schemes

LiS1 and LiS2, respectively. LiS1 is weakly secure and suitable for

small messages with a few hundred bits (determined byMCH) but

is the most efficient one. The second protocol LiS2 can provide

adaptive security, but one more cryptographic hash function is

required.

3.1 Weakly Secure Signature Scheme LiS1
Description of LiS1. This scheme relies on a universal hash func-

tion UHF, a chameleon hash function CHF, and a Bloom filter BF,
which are defined in Section 2. The algorithms of the proposed

scheme LiS1 are shown in Figure 4. Basically, LiS1 consists of three
functions which are briefly illustrated as follows:

• Initialization: A signer idC first runs the key generation al-

gorithm of the chameleon hash function (skCH,pkCH)
$

←

CHKGen(1κ ) to generate a pair of secret/public key, and sam-

ples a random key k
$

← KUH for the universal hash function

UHF, a random messageM
$

←MCH, and an initial random

value r ′
0
. Through the parameter aux, idC should be able to

parse the ‘false positive parameter’ ϵ of the Bloom filter from

it. A Bloom filter instance BF is initialized by BF.Init(ℓ, ϵ).
For i ∈ [ℓ], idC generates ℓ dummy random values such that

r ′i := UHF(k, r ′i−1), and the verify points ti := CHF(M, r ′i ) for
future use. Meanwhile, idC inserts those verify points into

the Bloom filter BF.Insert(ti ).1 A random variable r ′ := r ′
1

which is used for generating the next signature. Note that

if any r ′i = r ′j for i , j then idC re-run the key generation

algorithm. Eventually, the secret key and the verification key

of idC are skidC := (skCH,k, r
′,M) and vkidC := (BF,pkCH).

The verification key vkidC := (BF,pkCH) will be sent to po-
tential verifier(s), and the secret key skidC will be stored pri-

vately by the signer idC. To authenticate the first verification

1
Notice that, even if false positives happen in the initialization phase, they would not

affect the correctness and security of our signature schemes.

key, the signer can either transmit it to the designated veri-

fier via a secure channel (that is isolated from adversaries)

or ask a trustworthy third party to sign it digitally.

• Signing: Upon obtaining a messagem that requires authen-

tication, idC first retrieves the stored secret key skidC :=

(skCH,k, r
′,M). Thanks to the trapdoor collisions property

of CHF, idC can compute the signature x for m as x :=

CHColl(skCH, r ′,M,m). Then, idC can sendm together with

the signature x to the verifier. After this , idC updates the

dummy randomness r ′ to the next one as r ′ := UHF(k, r ′).
In fact, the update of the dummy randomness can be done at

any time before the next message authentication is carried

out, so its performance overhead can possibly be hidden in

the background.

• Verification: Upon receiving a messagem and its signature x
from the signer idC, the verifier idS verifies it by checking

that whether the resultant hash value t = CHF(m,x) is in
the Bloom filter, i.e., BF.Check(t).

Correctness. Since the Bloom filter does not have any false nega-

tive, for every x := LiS1.Sign(skidC ,m), it must have that

BF.Check(CHF(m,x)) = 1 since CHF(m,x) = CHF(m′i , ti ) which
is inserted into BF during initialization.

Remark 1. To obtain better online efficiency, the signer could com-
pute the universal hash operations offline (or during its idle time). Of
course, the signer can also pre-compute and cache many such uni-
versal hash values as online/offline signature schemes [11, 12]. Then
the signer only needs to run CHColl in the online signing phase, and
therefore the signing algorithm could be approximately 2x faster.

3.2 Adaptively Secure Signature Scheme LiS2
In this subsection, we introduce a signature scheme LiS2 that can
resist adaptively chosen message attacks. LiS2 is basically derived

from LiS1 by using an additional cryptographic hash function h1 :
{0, 1}∗ →MCH which will be modeled as a random oracle. Hence

LiS2 can be used to authenticate a message with an arbitrary size,

unlike LiS1, which is constrained by the size ofMCH. We let RCH =

{0, 1}ℓr be the randomness used in this construction. Besides, the

universal hash function is replaced with another hash function

h2 : {0, 1}
∗ → RCH.

2

Here we prefer to use an OAEP alike approach [19] for achiev-

ing adaptive security (i.e., binding a randomness to each message

using h) so that it can have an optimal signing efficiency. Although

there might be an alternative generic transformation from a weakly

secure signature to an adaptively secure signature such as [20], it

is less computationally efficient than ours.

Description of LiS2. The algorithms of the proposed scheme LiS2
are shown in Figure 5. LiS2 consists of three functions which are

briefly illustrated as follows:

• Initialization: The signer idC first runs the key generation

algorithm of the chameleon hash function (skCH,pkCH)
$

←

CHKGen(1κ ) to generate a pair of secret/public key, and

samples a random key k
$

← RCH , a random messageM
$

←

2
One of the reasons for using h2 is that it could help a party (e.g., verifier shown in

Figure 7) to quickly compute the non-sequentially generated randomness.
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LiS1.KGen(1κ , ℓ, aux):

(skCH,pkCH)
$

← CHKGen(1κ )

k
$

← KUH; ϵ ← aux
BF.Init(ℓ, ϵ)

M
$

←MCH; r
′
0

$

← RUH
For i ∈ [ℓ]:
r ′i := UHF(k, r ′i−1)
ti := CHF(M, r ′i )
BF.Insert(ti )

r ′ := r ′
1
; skidC := (skCH,k, r

′,M)
vkidC := (BF,pkCH)
Return (skidC ,vkidC )

LiS1.Sign(skidC ,m):
x := CHColl(skCH, r ′,M,m)
r ′ := UHF(k, r ′)
Return x

LiS1.Verify(vkidC ,m,x):
vr := 0

t := CHF(m,x)
vr := BF.Check(t)
Return vr

Figure 4: Algorithms of LiS1.

MCH. idC would additionally initializes two cryptographic

hash functionsh1 : {0, 1}
∗ →MCH andh2 : {0, 1}

∗ → RCH.

A Bloom filter instance BF is initialized by BF.Init(ℓ, ϵ). For
i ∈ [ℓ], idC generates ℓ dummy random values such that

r ′i := h2(k | |i), and the verify points ti := CHF(M, r ′i ) for
the future use. Meanwhile, idC inserts those verify points

into the Bloom filter BF.Insert(ti ). idC initializes a counter

cnt = 0 to count the number of generated signatures. As

a final outcome of the procedure, the secret key and the

public verification key of idC are skidC := (skCH,k,M, cnt)
and vkidC := (BF,pkCH).
• Signing: To authenticate a message m, idC first samples a

random value N
$

← R2, and computes y := h(m | |N ) and
r ′cnt := h(k | |cnt). After this, it updates the counter cnt =
cnt + 1. Then the signer idC generates the signature x for y
as x := CHColl(skCH, r ′i ,M,y), and sends the tuple (m,N ,x)
to the verifier.

• Verification: Upon receiving (m,N ,x), the verifier idS verifies
it by checking that whether the resultant hash value t =
CHF(h1(m | |N ),x) is in the Bloom filter.

Correctness. The correctness of LiS2 is implied by LiS1. The newly
added random value N and the hash operations do not change the

authentication property.

4 SECURITY ANALYSIS
In this section, we present the security results of our proposed

schemes with formal proofs in the standard model.

4.1 Security Analysis of LiS1
Theorem 4.1. We assume the chameleon hash function CHF and

the universal hash function UHF are secure as defined in Section 2.
Then LiS1 with given parameters κ and ℓ is secure against selective
chosen message attacks with advantage

AdvSIG
A,LiS1

(κ, ℓ) ≤ AdvCH
A,CHF(κ) + 2

−ϵ

.

The full proof of Theorem 4.1 is presented in Appendix B. In

Table 1, we summarize sequence of games to present the main ideas

of the proof.

Table 1: Sequence of games for LiS1

Game Description & Modification

0 Real experiment following original algorithms

1 Replace each output of the universal hash function UHF with a

uniform random value

2 Randomly generate a signature xi for each messagemi instead of

running CHColl. The output of CHColl is statistically close to a

uniform random value

3 Reduce the security to that of the chameleon hash function CHF
4 Reduce the security to the false positive error of Bloom Filter BF

4.2 Security Analysis of LiS2
Theorem 4.2. We assume the chameleon hash function CHF is

secure as defined in Section 2, and the hash function h is modeled as
a random oracle. Then LiS2 with given parameters κ and ℓ is secure
against adaptive chosen message attacks with advantage

AdvSIG
A,LiS2

(κ, ℓ) ≤ AdvCH
A,CHF(κ) +

ℓ2

2
ℓr
+ 2−ϵ

.
The proof of this theorem is similar to that of Theorem 4.1.

Here we mainly explain why the random oracle h and nonce N
can work to provide adaptive security. Recall that, to reduce the

security of LiS1 to that of chameleon hash in the proof of Theorem

4.1, we generated ℓ dummy random messages and random values

{(m′i , r
′
i )}i ∈[ℓ]. The key point in the reduction is how to use the

random oracle to map a messagem∗ chosen by the adversary to

the pre-sampledm′i . By design, we attach each messagem∗i with
a random value Ni so that the string m∗i | |Ni is unique unless a

collision happens with a collision probability ℓ2/2ℓr . Due to this

fact, we can establish a unique connection between each string

m∗i | |Ni andm
′
i ash(m

∗
i | |Ni ) =m

′
i . Hence we can reduce the security

of LiS2 to that of chameleon hash function with a similar proof

strategy of that of LiS1.
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LiS1.KGen(1κ , ℓ, aux):

(skCH,pkCH)
$

← CHKGen(1κ )

k
$

← RCH; ϵ ← aux
BF.Init(ℓ, ϵ)

M
$

←MCH
For i ∈ [ℓ]:
r ′i := h2(k | |i)
ti := CHF(M, r ′i )
BF.Insert(ti )

cnt := 1;

skidC := (skCH,k,M)
vkidC := (BF,pkCH)
Return (skidC ,vkidC )

LiS2.Sign(skidC ,m):

N
$

← R2

y := h1(m | |N )
x := CHColl(skCH, r ′cnt ,M,y)
cnt := cnt + 1
r ′cnt := h2(k | |cnt)
Return x ,N

LiS2.Verify(vkidC , (m,N ),x):
vr := 0

t := CHF(h1(m | |N ),x)
vr := BF.Check(t)
Return vr

Figure 5: Algorithms of LiS2.

5 INSTANTIATIONS AND OPTIMIZATIONS
In this section, we show the concrete instantiations and optimiza-

tions of our generic building blocks, i.e., chameleon hash func-

tion CHF, universal hash function UHF, and the hash functions

h1 and h2. Let p and q be two large prime numbers, such that

p = u · q + 1 where u is a small integer. We particularly have

that KCH = MCH = RCH = KUH = MUH = SSIG = Zq , and
YCH = Zp .

The Hash Functions h1 and h2. Our choice for both hash func-

tions h1 and h2 is the standardized cryptographic hash function

SHA2 [22]. Since the range of h1 is identical to that of h2, we can
instantiate h1 and h2 by the same functions.

Universal Hash Function UHF. We instantiate UHF by Multiply-

modular scheme proposed in [17]. The key k = (k0,k1) of UHF

consists of two group elements k0
$

← Z∗q and k1
$

← Z∗q . Given

a message m, the hash function evaluates the hash value y :=

UHF(k,m) = k0 · m + k1 (mod q). Some optimizations can be

adopted by following [23].

Instantiation of Chameleon Hash Function. We review the

original discrete logarithm based chameleon hash function [15] in

Appendix A. To have a better performance in the collision algorithm,

we slightly modify the hash evaluation algorithm, and we describe

our modified version as follows:

• CHKGen(1κ ): The key generation algorithm samples ran-

dom group generator д of order q in Z∗p and a secret key

skCH
$

← Z∗q , and computes the public key pkCH := дskCH

(mod p).
• CHF(pkCH,m, r ): The evaluation algorithm takes as input a

public key pkCH ∈ Z
∗
p , a messagem ∈ Z∗q and a randomness

r ∈ Z∗q , and outputs a hash value y := дrpkmCH (mod p). In
contrast to the algorithm in [15], we just switch the places

ofm and r , and this change is only conceptual.

• CHColl(skCH, r ′,M,m): An efficient deterministic collision

algorithm CHColl takes as input the secret key skCH, and

(r ′,M,m) ∈ Z∗q , outputs a value x := M ·skCH+r
′−m ·skCH

(mod q).

We stress that the signer idC can pre-computeM ·skCH and store

it instead ofM . Due to the modification in this scenario, we have

the following major performance optimization:

• We reduce one big-number division (comparing to [15])

due to our modification on the chameleon hash evaluation

algorithm. The improvement is significant for a resource-

constrained device since the cost of a big-number modular

division is close to a hash operation.

Lemma 5.1. The modified chameleon hash function CHF is secure
if the discrete logarithm problem is hard relative to Zp .

Proof. Comparing with the algorithm in [15], we only switched the

places of the messagem and the randomness r . If the adversary can
output two message/randomness pairs (m, r ) and (m′, r ′) that lead
to the same hash value, then we can use them to solve the discrete

logarithm problem, i.e., skCH := r−r ′
m′−m (mod q).

6 VERIFICATION KEY REPLENISHMENT
Obviously, one limitation of the pre-computation strategy is that

the pre-computed verification keys will be used up eventually. To

overcome this limitation and support unlimited message authentica-

tion, we need to design a mechanism to re-initialize the verification

key. We stress that it is sufficient to only refresh the verification key

without modifying the secret/public key pair (pkCH, skCH), so the

services running on the signer will not be interrupted at all. The

first naïve solution is to let the signer initialize a new Bloom filter

instance BF′ with ℓ chameleon hash values which are generated

based on the initial seed r ′
ℓ
andM as in LiS1.KGen. To this end, it

has to send BF′ to the verifiers together with a signature that can

be verified by the current verification key. However, this solution

requires the signer to run the expensive key generation algorithm,

and thus, it is not favorable in practice.

To free the signer from updating the verification key, we develop

two solutions as follows.
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Server-aided Replenishment (SAR): The signer can outsource

the re-initialization job of the new Bloom filter instance BF′ to a

trusted server (which is not the verifier). Then, the outsourcing

server who knows the dummy randomness/message pair (r ′,pkMCH)
and the key k of the universal hash function can compute those

chameleon hash values for the signer without any interaction. The

signer does not need to get involved in the verification key update,

and it can keep using its signing key to sign future messages con-

tinuously. The outsourcing server (the key generation center) only

needs to periodically publish a new BF′ together with the server’s

signature to a public bulletin, which can be downloaded by the

public. Nothing needs to be changed on the signer side. Hence, the

signer and the verifier can run in parallel as long as the replenish-

ment of the verification key is in time before the old verification

key becomes invalid. The system of SAR is depicted in Figure 6.

Figure 6: System Overview of Server-aided Replenishment
(SAR). Verifiers can be malicious. The singer and the trusted key
generation center (KGC) do not need any interactions during the
replenishment procedure.

Verifier Self-replenishment (VSR): If the verifier is trustworthy
(not controlled or compromised by an adversary), then we can allow

the verifier to possess (pkMCH, r
′,k) for signature verification. In this

way, the verifier can replenish its own verification keys regularly.

In particular, in a cyber-physical system, it is common that the

messages are sent on a regular basis with a fixed time period. Thus,

we can actually exploit this fact and develop a simplified verification

algorithm. In the model, we can consider all messages are associated

with a monotonically increasing time-stamp, and we simplify the

verification algorithm (to reduce the storage cost) to enable the

verifier to have a small and constant storage cost. Besides, we use

Tm to denote a time-stamp that is in the messagem, and let Tl be
the time when the last valid signature is received. ∆s stands for the
fixed time slot between two consecutive messages sent from the

signer. We show the system overview and the modified algorithm

of VSR in Figure 7 and 8. Note that the Bloom filter is not needed

in both Setup and Verify algorithms anymore, and thus the size of

the verification key does not depend on ℓ and becomes a constant.

Furthermore, to modify LiS2, we require the signer to include the

counter cnt as part of the message, and it computes h1(m | |N | |cnt)
in the Sign algorithm. Since r ′ or k needs to be kept secret, the

modified algorithms will not be able to provide public verifiability,

and it can only be verified by a group of trusted verifiers.

Figure 7: Overview of Verifier Self-replenishment (VSR). Ver-
ifiers should be trusted. KGC only needs to send the tuple (M ·
skCH, skCH, r ′, k ) to the signer and the tuple (pkMCH, r

′, k ) to verifier
only once respectively after key generation. r ′ = ∅ in LiS2.

The modified algorithm well fits a cyber-physical system sce-

nario (e.g., smart grid and manufacturing systems) where the ver-

ifier needs to continuously monitor the status (and data) of the

signer (e.g., a sensor), and the verifiers are only a few pre-known

and trusted machines. We stress that in this scenario, ℓ can be con-

sidered as the maximum number of signature failures (including

signature loss and signature verification fails) that the verifier can

tolerate between the last valid timeTl and the current timeTc . For a
real-time monitoring system in a CPS, ℓ should be small. Note that

we modified the KGen algorithm to let the KGC and the verifier

store pkMCH instead of pkCH for both security and efficiency rea-

sons. This change can hide the value ofM from the adversary, and

therefore, an adversary who compromised the KGC or the verifier

cannot extract the secret key skCH with knowingM .

Remarks. The first replenishment solution SAR is more appealing

and practical than the naïve solution since it does not need to

interact with the signer for replenishment. For example, a maritime

transport company can periodically replenish the verification keys

for ships in the sea every day. The second replenishment solution

VSR can be used when the signature schemes are deployed within

a factory or enterprise, which has trustworthy verifiers and does

not need public verifiability.

Based on the above replenishment scenarios, the message au-

thentication power of the signer in our signature schemes can be

unlimited. Besides, due to this replenishment property, we can use

a smaller ℓ to reduce the size of the verification key.

7 APPLICATIONS
LiS can bewidely used in cyber-physical systems. It enables resource-

constrained signers to (continuously) authenticate messages. In the

following, we just name a few examples of suitable applications.

Satellite Navigation Systems. Satellite-dependent positioning
systems, such as GPS and GNSS, can provide navigation and time

synchronization features, which have a significant impact on daily

life. The users of such systems just periodically (e.g., every 1 second)

receive signals and navigation messages from the satellites, without

transmitting any data back to the satellites. Such a widely used and

convenient system becomes an attractive target of various attackers.

For example, by launching a spoofing attack [24, 25], attackers

can effectively coerce GPS/GNSS receivers into concluding false
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LiSVSR1 .Verify(vkidC ,m,x):
(k,pkMCH,Tl ) = vkidC
r ′ ← private storaдe
If Tm < Tl : OUTPUT 0

r ′
0
:= r ′; vr := 0; t := CHF(m,x)

ℓ := ⌊
Tm−Tl
∆s
⌋

For i ∈ [ℓ]:
r ′i := UHF(k, r ′i−1)

tℓ := pkMCH · д
r ′
ℓ ;

If tℓ = t :
vr := 1; r ′ := r ′

ℓ
; Tl := Tm

OUTPUT vr

LiSVSR2 .Verify(vkidC , (m,N , cnt),x):
(pkMCH,Tl ) = vkidC
k ← private storaдe
If Tm < Tl : OUTPUT 0

r ′
0
:= r ′; vr := 0; t := CHF(h1(m | |N | |cnt),x)

r ′cnt := h2(k | |cnt)

tcnt := pk
M
CH · д

r ′cnt ;

If tcnt = t :
vr := 1; Tl := Tm

OUTPUT vr

Figure 8: The Modified Verification Algorithms.

location and navigation solutions. To prevent spoofing attacks, LiS1
can be used to authenticate GPS/GNSS signals and messages. In

this application, the verification key of the satellite can be refreshed

using server-aided replenishment (SAR). For example, the satellite

control center on the ground can periodically (say every week)

publish a new Bloom Filter instance for the GPS/GNSS devices on

the ground to verify the signatures.

Maritime Systems. One of the most important systems used on

ships is the automatic identification system (AIS). It can show some

information about vessels such as unique identification, position,

course, and speed. AIS is intended to assist watch-standing officers

on a vessel and allow maritime authorities to track and monitor

vessel movements. The AIS information provided by those vessels

is the primary method of collision avoidance for water transports.

In practice, we need a very accurate position of a ship when it is in

busy waters and harbors. Our LiS2 can be a solution to broadcast

authenticated AIS information to different verifiers, such as other

vessels, lighthouses, or buoys, at a fast speed as required in the

standard (i.e., < 27ms).

Critical Infrastructures. Our daily life may become a dreadful

mess when we do not have various critical infrastructures like

smart grids, water plants, and transportation systems. At the core

of these systems, usually Programmable Logic Controllers (PLCs)

are used to control the physical processes directly. To make sure

that the PLCs are running correctly and are controlling the pro-

cesses, supervisory control and data acquisition (SCADA) systems

in a control center monitor the processes remotely in real-time. It is,

therefore, crucial for SCADA to verify the authenticity of the data

obtained from PLCs. One can integrate LiS1/LiS2 into the firmware

of PLCs and authenticate each data sent to the SCADA. Depending

on whether the inputs of the signer can be adaptively affected by

the adversaries, one can choose to use LiS1 or LiS2. Apparently,
LiS1/LiS2 can be applied to sensors as well, because, as its nature,

a sensor continuously reports its measurement to a server. In this

case, having a lightweight signature integrated will prove the au-

thenticity of the sensor data to the server so that this can prevent

sensor data injection attacks via digital channels [5, 26]. In the

meantime, with our VSR replenishment scheme, the verification

Table 2: The Runtime of Sign and Verify

Sign Verify
LiSSAR

1
7.32µs 0.59 ms

LiSVSR
1

7.32µs Figure 9

LiSSAR
2

11.06µs 0.59 ms

LiSVSR
2

11.06µs 0.35 ms
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Figure 9: Runtime of LiS1.Verify.

keys of PLCs can be easily replenished by a trusted SCADAs (or

other local servers) themselves.

8 COMPARISON AND BENCHMARK

Comparison. Here we compare the security features and perfor-

mance between our signature schemes and some related works,

including Schnorr [9], Yao and Zhao’s Γ-1 and Γ-2 [12], and SEMECS

[13]. Let ‘CMAu’ and ‘PV’ denote continuous message authenti-

cation and public verifiability, respectively. And let ‘SKR’ denote

signer key replenishment (i.e., whether it needs to replenish signing

key), and ‘VKR’ denote verifier key replenishment. Note that our

concrete signature schemes LiS1 and LiS2 can have further variants

with different verification key replenishment solutions. So we use
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Table 3: Comparison

Properties Key Size

KGen

Computation Cost

Signature Size

Security SKR VKR CMAu PV Signer Verifier Signer Verifier

Schnorr [9] SEUF-CMA × ×
√ √

1 |Zq | 1 |Zp | 1E 1A+1M+1E+1H 2E+1H 1 |Zq |+1 |Zp |

Γ-1 [12] SEUF-CMA

√
× ×

√
2ℓ · |Zp | (ℓ + 1) · |Zp | ℓ · (1E + 1M + 1H ) 1M+1A+1H 1E+1M+1H 1 |Zq |+1 |Zp |

Γ-2 [12] SEUF-CMA

√
× ×

√
3ℓ · |Zp | (2ℓ + 1) · |Zp | ℓ · (1E + 1M + 1H ) 1M+1A+1H 1E+1M+1H 1 |Zq |+1 |Zp |

SEMECS [13] SEUF-CMA ×
√

×
√

|Zq | (2ℓ + 1) |Zq | ℓ(4H + 1E) 1A+1M+3H 2E+3H 2 |Zq |

LiSSAR
1

SEUF-wCMA ×
√ √ √

5 |Zq | 1.44ℓ · ϵ+1 |Zp | ℓ(2E+1BF+1U)+1E 3A+2M 2E+1BF 1 |Zq |

LiSVSR
1

SEUF-wCMA × ×
√

× 5 |Zp | 1 |Zp |+3 |Zq | 3E+1U 3A+2M + ℓ ·U 2E+ 1H 1 |Zq |

LiSSAR
2

SEUF-CMA ×
√ √ √

4 |Zq | 1.44ℓ · ϵ+1 |Zp | ℓ(2E+1BF+1H) 3A+2M+2H 2E+1H+1BF 1 |Zq | + ℓr

LiSVSR
2

SEUF-CMA × ×
√

× 4 |Zp | 1 |Zp |+3 |Zq | 3E 3A+2M+2H 2E+2H 1 |Zq | + ℓr
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Figure 10: Runtime of KGen.
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Figure 11: Size of Verification Key of LiS with SAR.

the superscripts ‘SAR’ and ‘VSR’ to indicate them, respectively. We

use ‘A’, ‘M’, ‘E’, ‘I’, ‘U’, and ‘H’ to denote addition, scalar multiplica-

tion, exponentiation, inversion, universal hash function, and hash

function, respectively. ‘SEUF-(w)CMA’ stands for strong existential

unforgeability (weak) chosen message attacks.

The comparison is presented in Table 3. Comparing with Yao and

Zhao’s online/offline signatures, our schemes have a much shorter

key size for either the signer or the verifier. Besides, our schemes

do not need to replenish the signing keys. Although our signing

algorithm is slightly more expensive than the online/offline signa-

tures, our signature schemes still have a practical performance. Also,

compared with Schnorr’s signature, our signing algorithm is more

efficient as Schnorr’s signature requires modular exponentiation,

which does not fit any resource-constrained devices in CPS [27].

Although our schemes’ the key size of the signer is slightly longer

than that of SEMECS [13], we outperform SEMECS with respect to

the other performance metrics.

Our LiSVSR
1

and LiSVSR
2

have near optimal storage costs (implied

by the optimal key size) for both signer and verifier so that they

well fit cyber-physical systems (such as smart grids) which do not

require public verifiability.

Implementations and Evaluations. In this section, we show the

practicality of our proposed family of lightweight signature schemes

LiS = (LiS1, LiS2). All benchmark results reported in Table 2 were

obtained on an Intel Core i7-4770K from the server side, and a

Raspberry Pi 3 from the client side. The operating system of the

server is Ubuntu 16.04, which runs in a VMWare virtual machine,

and only one core of the CPU is used. Note that we set |p | = 1024

and |q | = 320, and use SHA2 [22] to implement the hash function h
in LiS2. The implementation of SHA2 is taken from the highly opti-

mized MIRACL library [28]. We benchmarked the Bloom filter with

different error parameters (i.e., 10
−3, 10−6, 10−9, 10−12), and they

resulted in similar performance. Hence, we fix the parameter 10
−9

(as an example) to show the computational cost of our signature

schemes.

The performance of the Sign and Verify algorithms of LiS1 are
presented in Table 2 and Figure 9. Notice that in LiSV SR

1
, if the

signer does not send signatures in a few time slots, then the verifier

will have to fast forward the universal hash function to skip these

time slots and generate the correct dummy randomness for next

signature verification (see Figure 8 for details). The size of hash

input is 1KB for testing
3
. We stress that hashing 1KB only takes 0.32

microseconds (µs) on the server (which is much faster than other

operations such asmodular exponentiation), so wewill omit it while

calculating the performance on the server side. The performances

of the KGen algorithms are shown in Figure 10. Also, the size of

verification keys is shown in Figure 11 with various parameters.

From our benchmark results, we can see that the Sign algorithm

is very efficient for the embedded devices since it only takes 7.32

or 11.06 milliseconds. And the Verify algorithm is practical as well,

such that it will not slow the processes in a CPS. On the one hand,

the cost of KGen and the size of the verification key for SAR are

linear with the number of signatures to be verified. For 10 million

3
The cost of the hash function is linear with the size of the hashing message. Here we

just compute the hash value of 1KB as a reference.
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signatures, the verification key is about 10 MB, which is acceptable

for most of the verifiers (even if it is a modern smartphone). On

the other hand, it takes about four months to generate 10 million

signatures for authentication if we assume the signature generation

time intervals are 1s. Similarly, it will also take four months for

the verifier to consume all the signatures in the Bloom filter, so we

have more than enough time to replenish the next Bloom filter in

practice. In the case of VSR, the verification key is just a constant

with dozens of bytes.

9 RELATEDWORK

Broadcast Authentication. A research topic that is related to

our work is broadcast authentication (BA), which is widely used

to authenticate broadcast messages from resource-constrained de-

vices. One of the main motivations of BA is to authenticate the

timely delivery of messages, somost of the existing BA protocols are

time-constrained. A typical example of BA is the standardized pro-

tocol called Timed Efficient Stream Loss-Tolerant Authentication

(TESLA) [29] for broadcast authentication in wireless networks.

TESLA leverages on a symmetric message authentication code

(MAC) mechanism for authentication and a time-based chain struc-

ture to pre-compute the secrets of MAC disclosed later. Whereas,

the message and its corresponding MAC is sent to the receiver

immediately upon creation, while the secret key is dispatched af-

ter a pre-determined interval of time. However, a drawback of

TESLA and its variants [30–32] is the usage of symmetric key cryp-

tographic technique (i.e., MAC) so that the corruption of either

key share would affect the security of the whole cryptosystem.

To overcome such a drawback of TESLA, researchers [33–35] ap-

peal to lightweight public key based cryptographic building blocks

(such as (one-time) digital signature) to construct BA protocols.

Recently, Afianti et al. [36] proposed a BA scheme which mixed

many cryptographic methods including signature, MAC, encryp-

tion, and a new dynamic cipher puzzle scheme. However, the above

public key based solutions need either ecliptic-curve multiplica-

tions or many cryptographic hash operations that are too heavy

for resource-constrained devices. We refer the reader to [37] for

more BA protocols. In this work, we focus on designing a light-

weight signature scheme that has an optimized lightweight signing

procedure.

Online/Offline Signature. To enable the digital signature on a

resource-constrained device, the online/offline signature scheme

was invented [10]. The idea of such a scheme is to run those ex-

pensive public-key cryptographic operations (such as the exponen-

tiation) in a signature scheme at the offline phase and pre-store

the intermediate private data on the device, so that in the online

phase the signer can sign a message in very fast speed with a few

cheap arithmetic operations. Hence, the online/offline signatures

are suitable for many applications where the signer (e.g., sensors

or RFID) has very limited computational resources. In 2013, Yao

and Zhao proposed a variant of Fiat-Shamir paradigm [38] called

Γ-transformation that can transform Fiat-Shamir style signature

schemes (such as Schnorr [9]) into efficient online/offline signa-

ture schemes. The security of their scheme is further studied in

[39]. Moreover, there are also some variants [40–42] which are

proposed in the identity-based setting. However, a shortcoming of

online/offline signatures is that they require the signer to pre-store

a non-trivial amount of intermediate private data, and this data

needs to be replenished when it is used out. Thus, it does not fit

cyber-physical systems that have a high demand for continuous

message authentication without interruptions. In contrast, we are

interested in the lightweight signature schemes that have a small

constant-sized storage cost for the signer without any need for

replenishment.

In 2019, Yavuz and Ozmen [13] proposed a lightweight signature

scheme called SEMECS, which is adapted from the Schnorr signa-

ture. To facilitate the signature generation, SEMECS particularly

chain up the exponents of verification keys, such that r j := H (r j−1),
where the j-th verification key is computed as дr j and д is the group
generator of a cyclic abelian group, so that it can pre-compute all

verification keys in advance. To sign a messagemj , the signer only

needs to compute the randomness of the Schnorr signature by using

one multiplication and one subtraction, i.e., sj := r j −mj · sk , where
sk is the signing key. However, the SEMECS does not consider the

verification key replenishment problem like our schemes. Hence,

it is not suitable for continuous message authentication. Note that

it is not allowed to outsource the verification key replenishment

procedure to a third party or the verifier by handing over the seed

r j−1. Once the attackers get r j and r j−1, and the corresponding

messages (mj−1,mj ), it can trivially extract the signing key. Our

scheme does not have this problem since we only chain up the

randomness.

Message Authentication using Chameleon Hash. Chameleon

hash functions (CHF) [15] are not only probabilistic (randomized)

collision-resistant but also adaptable with a trapdoor (i.e., one can

efficiently generate hash collisions based on the given trapdoor).

CHF is widely used as a building block in various cryptographic

primitives and protocols. In 2010, Mohassel[43] proposed a general

construction for transforming any chameleon hash function to a

strongly unforgeable one-time signature scheme. But, unlike ours,

it did not build a regular (multiple-times) signature scheme for

continuous message authentication in cyber-physical systems. CHF

is also used in many real-world application such as the vehicular

communications [44], verifiable data streaming [45], and rewritable

block-chains [46]. However, all these constructions require the

(message) sender to compute the hash value of the CHF, which

involves two expensive exponentiation operations. In contrast, we

use the chameleon hash function in a different way by leverag-

ing the collision generation function to generate the signatures.

Therefore our signing procedure is much more efficient.

10 CONCLUSIONS
In this work, we proposed a signature framework called LiS, which
consists of two concrete signature schemes based on chameleon

hash functions. The proposed signature schemes have very fast

signing algorithms and require a small constant storage cost on the

signing device, so they are particularly suitable for cyber-physical

systems with continuous message authentication services. We also

implemented our schemes on embedded devices to show the prac-

ticality of our schemes. In contrast to prior work (especially on-

line/offline signatures), our schemes have much smaller storage
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cost, and the signing key does not need to be replenished during its

whole lifespan. In addition, we discuss the potential applications of

our signature schemes in specific types of cyber-physical systems.

An open problem remaining is how to modify LiS further to pro-

vide public verifiability without using SAR. One may check whether

the state-of-the-art cryptographic technique: indistinguishability

obfuscators (IO) [47, 48] can work in this scenario. For instance,

one may apply IO to obfuscate our modified verification algorithms

to hide the dummy randomness r ′.
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A THE ORIGINAL DISCRETE LOGARITHM
BASED CHAMELEON

In the following, we briefly review the discrete logarithm based

chameleon hash function of [15].

• CHKGen(1κ ): The key generation algorithm samples ran-

dom group generator д
$

← Zq and a secret key skCH
$

← Zq ,

and computes the public key pkCH := дskCH (mod p).
• CHF(pkCH,m, r ): The evaluation algorithm takes as input a

public key pkCH ∈ Z
∗
p , a messagem ∈ Z∗q and a randomness

r ∈ Z∗q , and outputs a hash value y := дmpkrCH (mod p).

• CHColl(skCH, r ′,m,m′): An efficient deterministic collision

algorithm CHColl takes as input the secret key skCH, and

(r ′,m′,m) ∈ Z∗q , outputs a value r
′
:=

m+r ·skCH−m′
skCH

(mod q).

B PROOF OF THEOREM 4.1
Let BKi denote an event that there exists an adversary A wins in

Game i . Note that BK
0
is the advantage of A breaking the scheme

in the real game. In the following, we will change the games starting

from the real game until the last game in which the advantage of

A is zero.

Game 0. This game equals to the real SEUF-wCMA security ex-

periment of the digital signature scheme. Meanwhile, all queries

are answered honestly according to the specification of LiS1. Thus,
we have that

Pr[BK
0
] = Adv0 = AdvSIG

A,LiS1
(κ, ℓ).

Game 1. This game proceeds like before but the challenger uses the

ℓ uniformly distributed dummy randomness {r ′i }i ∈[ℓ] to generate

the verification key without using the universal hash function UHF.
This modification actually does not change the distribution of the

dummy randomness. Recall that the seed of UHF is a random value

r0, and the hash keys of UHF are random in our design as well.

Thus, the outputs of UHF are distributed uniformly in terms of

Definition 2.1. Hence, we can just randomly choose those dummy

randomnesses {r ′i }i ∈[ℓ]. Thus, we have that

Pr[BK
1
] = Pr[BK

0
].

Game2. This game proceeds like before, but the challenger changes

the game as follows. It chooses the randomness xi
$

← RCH for each

message mi ∈ M (submitted by A) as the signature instead of

running the collision generation function CHColl. The verifica-

tion key is generated using the real signature and message pairs,

i.e., {(xi ,mi )}i ∈[ℓ]. Note that xi := M · skCH + r ′i − mi · skCH
(mod q). We can rewrite xi as xi := r ′i + m̃i (mod q) where m̃i =

M · skCH −mi · skCH. Since eachmi is unique, so is m̃i . We claim

that each xi is statistically close to a uniform random value with

distance 0. The proof of this claim could follow the proof of the

combining functions of [49, Lemma 1]. Thus, we have that

Pr[BK
2
] = Pr[BK

1
].

Game 3. In this game, the challenger C proceeds exactly like

the previous game but adds an abort rule. Namely, C aborts if the

adversary submits a tuple (m∗,x∗) which leads to a collision to one

of those hash values recorded in BF, i.e.,CHF(m∗,x∗) = CHF(M, r ′i )
for some r ′i . If this case occurs with a non-negligible probability

AdvCH
A,CHF(κ), then we can construct an efficient algorithm F by

using A to break the security of the chameleon hash function.

Specifically, F could simulate the signature game forA while re-

ceiving a challenge public key pk∗CH from the chameleon hash chal-

lenger. However, without knowing the secret key sk∗CH, F cannot

compute the collisions online as done in LiS1. Instead, F uses the

real signatures randomly chosen as the previous game to generate

the verification key rather than using dummy message/randomness

pairs. This change is possible because of the modifications in the

previous games.

Due to the security of chameleon hash function, we have that

Pr[BK
2
] ≤ Pr[BK

3
] + AdvCH

A,CHF(κ).

Game 4. In this game, C proceeds as before, but aborts if the adver-

saryA submits a tuple (m∗,x∗) such that Check(CHF(m∗,x∗)) = 1

and (m∗,x∗) has not been queried by the adversary before, i.e., A

finds a false positive error of BF. By applying the false positive

probability of BF, we have that

Pr[BK
3
] ≤ Pr[BK

4
] + 2−ϵ .

In this game, if C does not abort then the Proc.Finalize query
would always return 0. Thus, the advantage of A in this game is

zero, i.e., Pr[BK
4
] = 0.

Putting the probabilities altogether in the above games, we have

the following probability:

Adv0 ≤ AdvCH
A,CHF(κ) + 2

−ϵ

, which is the result of Theorem 4.1.
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