Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

10-2020

Efficient sampling algorithms for approximate temporal motif
counting

Jingjing WANG
Hunan University

Yanhao WANG
National University of Singapore

Wenjun JIANG
Hunan University

Yuchen LI
Singapore Management University, yuchenli@smu.edu.sg

Kian-Lee TAN
National University of Singapore

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Numerical Analysis and Scientific Computing Commons, and the Theory and Algorithms
Commons

Citation

WANG, Jingjing; WANG, Yanhao; JIANG, Wenjun; LI, Yuchen; and TAN, Kian-Lee. Efficient sampling
algorithms for approximate temporal motif counting. (2020). CIKM '20: Proceedings of the 29th ACM
International Conference on Information and Knowledge Management, Virtual, October 19-23. 1505-1514.
Available at: https://ink.library.smu.edu.sg/sis_research/5934

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.


https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5934&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Full Paper Track

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

Efficient Sampling Algorithms for Approximate Temporal Motif
Counting

Jingjing Wang”
Hunan University
wangjingjing2019@hnu.edu.cn

Yuchen Li
Singapore Management University
Alibaba-Zhejiang University Joint
Research Institute of Frontier
Technologies
yuchenli@smu.edu.sg

ABSTRACT

A great variety of complex systems ranging from user interactions
in communication networks to transactions in financial markets
can be modeled as temporal graphs, which consist of a set of vertices
and a series of timestamped and directed edges. Temporal motifs in
temporal graphs are generalized from subgraph patterns in static
graphs which take into account edge orderings and durations in
addition to structures. Counting the number of occurrences of
temporal motifs is a fundamental problem for temporal network
analysis. However, existing methods either cannot support temporal
motifs or suffer from performance issues. In this paper, we focus
on approximate temporal motif counting via random sampling. We
first propose a generic edge sampling (ES) algorithm for estimating
the number of instances of any temporal motif. Furthermore, we
devise an improved EWS algorithm that hybridizes edge sampling
with wedge sampling for counting temporal motifs with 3 vertices
and 3 edges. We provide comprehensive analyses of the theoretical
bounds and complexities of our proposed algorithms. Finally, we
conduct extensive experiments on several real-world datasets, and
the results show that our ES and EWS algorithms have higher
efficiency, better accuracy, and greater scalability than the state-of-
the-art sampling method for temporal motif counting.
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1 INTRODUCTION

Graphs are one of the most fundamental data structures that are
widely used for modeling complex systems across diverse domains
from bioinformatics [30], to neuroscience [38], to social sciences [5].
Modern graph datasets increasingly incorporate temporal informa-
tion to describe the dynamics of relations over time. Such graphs
are referred to as temporal graphs [11] and typically represented by
a set of vertices and a sequence of timestamped and directed edges
between vertices called temporal edges. For example, a communi-
cation network [9, 4648, 50] can be denoted by a temporal graph
where each person is a vertex and each message sent from one
person to another is a temporal edge. Similarly, computer networks
and financial transactions can also be modeled as temporal graphs.
Due to the ubiquitousness of temporal graphs, they have attracted
much attention [6, 8, 9, 20, 25, 27, 32, 50] recently.

One fundamental problem in temporal graphs with wide real-
world applications such as network characterization [27], structure
prediction [22], and fraud detection [18], is to count the number
of occurrences of small (connected) subgraph patterns (i.e., mo-
tifs [24]). To capture the temporal dynamics in network analysis,
the notion of motif [16, 17, 22, 27] in temporal graphs is more gen-
eral than its counterpart in static graphs. It takes into account not
only the subgraph structure (i.e., subgraph isomorphism [7, 36]) but
also the temporal information including edge ordering and motif
duration. As an illustrative example, M and M’ in Figure 1 are dif-
ferent temporal motifs. Though M and M’ have exactly the same
structure, they are different in the ordering of edges. Consequently,
although there has been a considerable amount of work on sub-
graph counting in static graphs [2, 4, 14, 15, 29, 34, 35, 42, 43, 45],
they cannot be used for temporal motif counting directly.

Generally, it is a challenging task to count temporal motifs.
Firstly, the problem is at least as hard as subgraph counting in
static graphs, whose time complexity increases exponentially with
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Figure 1: Examples for temporal motifs

the number of edges in the query subgraph. Secondly, it becomes
even more computationally difficult because the temporal informa-
tion is considered. For example, counting the number of instances
of k-stars is simple in static graphs; however, counting temporal
k-stars is proven to be NP-hard [22] due to the combinatorial nature
of edge ordering. Thirdly, temporal graphs are a kind of multigraph
that is permitted to have multiple edges between the same two
vertices at different timestamps. As a result, there may exist many
different instances of a temporal motif within the same set of ver-
tices, which leads to more challenges for counting problems. There
have been a few methods for exact temporal motif counting [27]
or enumeration [18, 23]. However, they suffer from efficiency is-
sues and often cannot scale well in massive temporal graphs with
hundreds of millions of edges [22].

In many scenarios, it is not necessary to count motifs exactly,
and finding an approximate number is sufficient for practical use. A
recent work [22] has proposed a sampling method for approximate
temporal motif counting. It partitions a temporal graph into equal-
time intervals, utilizes an exact algorithm [23] to count the number
of motif instances in a subset of intervals, and computes an estimate
from the per-interval counts. However, this method still cannot
achieve satisfactory performance in massive datasets. On the one
hand, it fails to provide an accurate estimate when the sampling rate
and length of intervals are small. On the other hand, its efficiency
does not significantly improve upon that of exact methods when
the sampling rate and length of intervals are too large.

Our Contributions: In this paper, we propose more efficient and
accurate sampling algorithms for approximate temporal motif count-
ing. First of all, we propose a generic Edge Sampling (ES) algorithm
to estimate the number of instances of any k-vertex [-edge temporal
motif in a temporal graph. The basic idea of our ES algorithm is to
first uniformly draw a set of random edges from the temporal graph,
then exactly count the number of local motif instances that contain
each sampled edge by enumerating them, and finally compute the
global motif count from local counts. The ES algorithm exploits the
BACKTRACKING (BT) algorithm [23, 36] for subgraph isomorphism
to enumerate local motif instances. We devise simple heuristics to
determine the matching order of a motif for the BT algorithm to
reduce the search space.

Furthermore, temporal motifs with 3 vertices and 3 edges (i.e.,
triadic patterns) are one of the most important classes of motifs,
whose distribution is an indicator to characterize temporal net-
works [5, 15, 27, 37]. Therefore, we propose an improved Edge-
Wedge Sampling (EWS) algorithm that combines edge sampling
with wedge sampling [15, 35] specialized for counting any 3-vertex
3-edge temporal motif. Instead of enumerating all instances con-
taining a sampled edge, the EWS algorithm generates a sample
of temporal wedges (i.e., 3-vertex 2-edge motifs) and estimates the
number of local instances by counting how many edges can match
the query motif together with each sampled temporal wedge. In
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this way, EWS avoids the computationally intensive enumeration
and greatly improves the efficiency upon ES. Moreover, we analyze
the theoretical bounds and complexities of both ES and EWS.

Finally, we test our algorithms on several real-world datasets.
The experimental results confirm the efficiency and effectiveness
of our algorithms: ES and EWS can provide estimates with relative
errors less than 1% and 2% in 37.5 and 2.3 seconds on a temporal
graph with over 100M edges, respectively. In addition, they run
up to 10.3 and 48.5 times faster than the state-of-the-art sampling
method while having lower estimation errors.

Organization: The remainder of this paper is organized as fol-
lows. Section 2 reviews the related work. Section 3 introduces the
background and formulation of temporal motif counting. Section 4
presents the ES and EWS algorithms for temporal motif count-
ing and analyzes them theoretically. Section 5 describes the setup
and results of the experiments. Finally, Section 6 provides some
concluding remarks.

2 RELATED WORK

Random Sampling for Motif Counting: In recent years, there
have been great efforts to (approximately) count the number of
occurrences of a motif in a large graph via random sampling. First
of all, many sampling methods such as subgraph sampling [33],
edge sampling [1, 21, 44], color sampling [26], neighborhood sam-
pling [28], wedge sampling [13, 15, 34, 35], and reservoir sam-
pling [3], were proposed for approximate triangle counting (see [49]
for an experimental analysis). Moreover, sampling methods were
also used for estimating more complex motifs, e.g., 4-vertex mo-
tifs [14, 31], 5-vertex motifs [29, 42, 43, 45], motifs with 6 or more
vertices [2], and k-cliques [12]. However, all above methods were
proposed for static graphs and did not consider the temporal infor-
mation and ordering of edges. Thus, they could not be applied to
temporal motif counting directly.

Motifs in Temporal Networks: Prior studies have considered
different types of temporal network motifs. Viard et al. [39, 40] and
Himmel et al. [10] extended the notion of maximal clique to tempo-
ral networks and proposed efficient algorithms for maximal clique
enumeration. Li et al. [20] proposed the notion of (0, 7)-persistent
k-core to capture the persistence of a community in temporal net-
works. However, these notions of temporal motifs were different
from ours since they did not take edge ordering into account. Zhao
et al. [50] and Gurukar et al. [9] studied the communication motifs,
which are frequent subgraphs to characterize the patterns of in-
formation propagation in social networks. Kovanen et al. [17] and
Kosyfaki et al. [16] defined the flow motifs to model flow transfer
among a set of vertices within a time window in temporal net-
works. Although both definitions accounted for edge ordering, they
were more restrictive than ours because the former assumed any
two adjacent edges must occur within a fixed time span while the
latter assumed edges in a motif must be consecutive events for a
vertex [27].

Temporal Motif Counting & Enumeration: There have been
several existing studies on counting and enumerating temporal
motifs. Paranjape et al. [27] first formally defined the notion of tem-
poral motifs we use in this paper. They proposed exact algorithms
for counting temporal motifs based on subgraph enumeration in
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static graphs and timestamp-based pruning. Kumar and Calders [18]
proposed an efficient algorithm called 2SCENT to enumerate all
simple temporal cycles in a directed interaction network. Although
2SCENT was shown to be effective for cycles, it could not be used
for enumerating temporal motifs of any other type. Mackey et
al. [23] proposed an efficient BACKTRACKING algorithm for tempo-
ral subgraph isomorphism. The algorithm could count temporal
motifs exactly by enumerating all of them. Liu et al. [22] proposed
an interval-based sampling framework for counting temporal mo-
tifs. To the best of our knowledge, this is the only existing work on
approximate temporal motif counting via sampling. In this paper,
we present two improved sampling algorithms for temporal motif
counting and compare them with the algorithms in [18, 22, 23, 27]
for evaluation.

3 PRELIMINARIES

In this section, we formally define temporal graphs, temporal motifs,
and the problem of temporal motif counting on a temporal graph.
Here, we follow the definition of temporal motifs in [22, 23, 27] for
its simplicity and generality. Other types of temporal motifs have
been discussed in Section 2.

Temporal Graph: A temporal graph T = (Vr, ET) is defined by a
set V1 of n vertices and a sequence ET of m temporal edges among
vertices in V7. Each temporal edge e = (u, v, t) where u,v € V1 and
t € R" is a timestamped directed edge from u to v at time ¢. There
may be many temporal edges from u to v at different timestamps
(e.g., a user can comment on the posts of another user many times
on Reddit). For ease of presentation, we assume the timestamp ¢ of
each temporal edge e is unique so that the temporal edges in Et
are strictly ordered. Note that our algorithms can also handle the
case when timestamps are non-unique by using any consistent rule
to break ties.

Temporal Motif: We formalize the notion of temporal motifs [22,
27] in the following definition.

Definition 3.1 (Temporal Motif). A temporal motif M = (Vy,
Ep, 0) consists of a (connected) graph with a set of k vertices Vs
and a set of [ edges Epf, and an ordering o on the edges in Eyy.

Intuitively, a temporal motif M can be represented as an ordered
sequence of edges (e; = (uj,07),. ..,el’ = (ul', Ul')). Given a tem-
poral motif M as a template pattern, we aim to count how many
times this pattern appears in a temporal graph T. Furthermore, we
only consider the instances where the pattern is formed within
a short time span. For example, an instance formed in an hour is
more interesting than one formed accidentally in one year on a
communication network [9, 27, 50]. Therefore, given a temporal
graph T and a temporal motif M, our goal is to find a sequence of
edges S C Et such that (1) S exactly matches (i.e., is isomorphic
to) M, (2) S is in the same order as specified by o, and (3) all edges
in S occur within a time span of at most . We call such an edge
sequence S as a §-instance [22, 27] of M and the difference between
t; and t; as the duration A(S) of instance S. The formal definition
is given in the following.

Definition 3.2 (Motif 5-instance). A sequence of [ edges S =
(w1, x1,t1), ..., (w, xp, 1)) (t1 < ... < t;) from a temporal graph
T is a §-instance of a temporal motif M = ((uf,v]), ..., (u},v))) if
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M1

(a) Temporal graph

(b) Temporal motifs
16

a—1%p @+5p a dB—o alt 264
SESESESNE S B
d d d b d b

(c) &-instances of M (§ = 10)
Figure 2: Example for temporal graph and motifs

(1) there exists a bijection f between the vertex sets of S and M
such that f(w;) = u] and f(x;) = v for i = 1,...,1; and (2) the
duration A(S) is at most J, i.e., t; —t; < 9.

Example 3.3. In Figure 2(a), we illustrate a temporal graph with
4 vertices and 13 temporal edges. Let us consider the problem of
finding all -instances (§ = 10) of temporal motif M1 in Figure 2(b).
As shown in Figure 2(c), there are 4 valid 10-instances of M1 found.
These instances can match M1 in terms of both structure and edge
ordering and their durations are within 10. In addition, we also give
2 invalid instances of M1, which are isomorphic to M1 but violate
either the edge ordering or duration constraint.

Temporal Motif Counting: According to the above notions, we
present the temporal motif counting problem studied in this paper.

Definition 3.4 (Temporal Motif Counting). For a temporal graph T,
a temporal motif M, and a time span J, the temporal motif counting
problem returns the number Cy; of d-instances of M appeared in T.

The temporal motif counting problem has proven to be NP-hard
for very simple motifs, e.g. k-stars [22], because the edge ordering
is taken into account. According to previous results [22], although
there is a simple polynomial algorithm to count the number of
k-stars on a static graph, it is NP-hard to exactly count the number
of temporal k-stars. Typically, counting temporal motifs exactly
on massive graphs with millions or even billions of edges is a
computationally intensive task [22, 27]. Therefore, we focus on
designing efficient and scalable sampling algorithms for estimating
the number of temporal motifs approximately in Section 4. The
frequently used notations are summarized in Table 1.

4 OUR ALGORITHMS

In this section, we present our proposed algorithms for approximate
temporal motif counting in detail. We first describe our generic
Edge Sampling (ES) algorithm in Section 4.1. Then, we introduce
our improved EWS algorithm specific for counting 3-vertex 3-edge
temporal motifs in Section 4.2. In addition, we theoretically analyze
the expected values and variances of the estimates returned by both
algorithms. Finally, we discuss the streaming implementation of
our algorithms in Section 4.3.

4.1 The Generic Edge Sampling Algorithm

The Edge Sampling (ES) algorithm is motivated by an exact sub-
graph counting algorithm called edge iterator [49]. Given a temporal
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Table 1: Frequently used notations

Symbol Description
T Temporal graph
Vr,Er  Set of vertices and edges in T
n,m Number of vertices and edges in T
M Temporal motif
Vam, Em Set of vertices and edges in M
k, 1 Number of vertices and edges in M
S Maximum time span of a motif instance
S Motif §-instance
Cum Number of §-instances of M in T
éM Unbiased estimator of Cpp
P Probability of edge sampling
Er Set of sampled edges from E1
n(e) Number of §-instances of M containing edge e
nj(e) Number of §-instances of M when e is mapped to e}.
q Probability of wedge sampling
w Temporal wedge
n(W) Number of §-instances of M containing W
WJf Temporal wedge pattern for M when e is mapped to e}
(/M7j (e)  Set of sampled d-instances of M/J’
nj(e) Unbiased estimator of 17 (e)

graph T, a temporal motif M, and a time span §, we use 7(e) to
denote the number of local d-instances of M containing an edge e.
To count all §-instances of M in T exactly, we can simply count r(e)
for each e € ET and then sum them up. In this way, each instance
is counted [ times and the total number of instances is equal to the
sum divided by [, i.e., Cpy = % Zeckr 1(e).

Based on the above idea, we propose the ES algorithm for es-
timating Cys: For each edge e € ET, we randomly sample it and
compute 5(e) with fixed probability p. Then, we obtain an unbiased
estimator Cyy of Cpy by adding up 5(e) for each sampled edge e and
scaling the sum by a factor of l%’ ie., 5M = ﬁ ZeEET n(e) where

Er is the set of sampled edges.

Now the remaining problem becomes how to compute 5(e) for
an edge e. The ES algorithm adopts the well-known BACKTRACKING
algorithm [23, 36] to enumerate all §-instances that contain an edge
e for computing 5 (e). Specifically, the BACKTRACKING algorithm
runs [ times for each edge e; in the 7™ run, it first maps edge e to
the j! edge e; of M and then uses a tree search to find all different
combinations of the remaining ! — 1 edges that can form §-instances
of M with edge e. Let 5j(e) be the number of é-instances of M
where e is mapped to e}’.. It is obvious that 5(e) is equal to the sum

ofnj(e) for j=1,...,1ie,n(e) = Zﬁ.:l nj(e).

We depict the procedure of our ES algorithm in Algorithm 1.
The first step of ES is to generate a random sample Er of edges
from the edge set ET where the probability of adding any edge is
p (Lines 1-5). Then, in the second step (Lines 6-11), it counts the
number 7(e) of local §-instances of M for each sampled edge e by
running the BACKTRACKING algorithm to enumerate each instance
Sj(e) that is a d-instance of M and maps e to e} forj=1,...,L
Note that BACKTRACKING (BT) runs on a subset E7[t — 8, t + 8] of
E7 which consists of all edges with timestamps fromt —§tot + 9§
for edge e = (u, v, t) since it is safe to ignore any other edge due to
the duration constraint. Here, we omit the detailed procedure of the
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Algorithm 1: Edge Sampling

Input: Temporal graph T, temporal motif M, time span &, edge
sampling probability p.
Output: Estimator Cyr of the number of S-instances of M in T
1 Initialize ET — @;
2 foreach e € ET do
Toss a biased coin with success probability p;

[N

4 if success then

5 L ET — ET U{e};

¢ foreach e = (u,0,t) € ET do

7 Setn(e) « 0;

8 forjel,...,ldo

9 Generate an initial instance S;I) by mapping e to e};

Run BACKTRACKING on ET [t — 8, t + §] starting from Sj(.l)
to find the set Sj(e) = {Sj(e) : Sj(e) is a S-instance of
M where e is mapped to e} 15

Setnj(e) « |S;(e)| and n(e) « n(e) +n;(e);

10

11

12 return Cpp «— 1% ZeEET n(e);

BT algorithm because it generally follows an existing algorithm for
subgraph isomorphism in temporal graphs [23]. The main difference
between our algorithm and the one in [23] lies in the matching
order, which will be discussed later. After counting r(e) for each
sampled edge e, it finally returns an estimate Cwm of Cyy (Line 12).

Matching Order for BACKTRACKING: Now we discuss how to
determine the matching order of a temporal motif. The BT algorithm
in [23] adopts a time-first matching order: it always matches the
edges of M in order of (e, ..., e/). The advantage of this matching
order is that it best exploits the temporal information for search
space pruning. For a partial instance s = ((wi,x1,t1), ..., (wj,
xj,tj)) after e} is mapped, the search space for mapping eJ’.Jrl is
restricted to E7[t}, t; + §]. However, the time-first matching order
may not work well in the ES algorithm. First, it does not consider
the connectivity of the matching order: If e]’. +1 is not connected with
any prior edge, it has to be mapped to all edges in Er[t, t1 + 6],
which may lead to a large number of redundant partial matchings.
Second, the time-first order is violated by Line 9 of Algorithm 1
when j > 1 since it first maps e to e’,.

In order to overcome the above two drawbacks, we propose
two heuristics to determine the matching order of a given motif
M for reducing the search space, and generate I matching orders
for M, in each of which e]’. (G =1,...,1)is placed first: (1) enforcing

connectivity: Foreachi = 2,...,[, the ith edge in the matching order
must be adjacent to at least one prior edge that has been matched,;
(2) boundary edge first: If there are multiple unmatched edges that
satisfy the connectivity constraint, the boundary edge (i.e., the first
or last unmatched edge in the ordering ¢ of M) will be matched
first. The first rule can avoid redundant partial matchings and the
second rule can restrict the temporal range of tree search, both of
which are effective for search space pruning.

Example 4.1. We consider how to decide the matching orders
of M2 (i.e., 4-simple temporal cycle) in Figure 2(b). When e is
placed first, we can select e;, or e; as the second edge according to



Full Paper Track

(d,a,[17,21])
‘ X

(b,d,22) & e}

(b,d,24) & e}

(b,*,[17,26])

(b,a,16) & e;
(d,a,[17,24])
X

(d,b, [17.257) (d,b,18) @ e |V

Figure 3: Example of enumerating §-instances (§ = 10) of M1
for edge (b, a,16) in Figure 2 using BACKTRACKING

the enforcing connectivity rule; and ey is selected according to the
boundary edge first rule. Then, either e; or e] can be selected as
the next edge since they both satisfy two rules. Therefore, either
(ei, eé, eé, eé) or (ei, ei, eé, eé) is a valid matching order. .Accordinfgly,
(e, e1,eq.€5), (eé,eg, ef,e5), and (ey, e], e), eé) are valid matching
orders when eé, eé, and ei in M2 are placed first, respectively.

Example 4.2. In Figure 3, we show how to use BACKTRACKING
to enumerate d-instances of M1 (§ = 10) for e = (b, a, 16) in Fig-
ure 2. There are three tree search procedures in each of which e
is mapped to ej, e;, and e;, respectively. The condition of each
mapping step is given in form of (vs, vy, [ts, t;]) where v and v;
are the starting and ending vertices and [t, t;] is the range of
timestamps. Here, “+” means that it can be mapped to an arbitrary
unmapped vertex. Moreover, we use ‘v’ and ‘X’ to denote a suc-
cessful matching and a failed partial matching, respectively. We find
three 10-instances of M1 and thus n(e) = 3. When we run ES with
p =0.25and ET ={(d,c,4), (b,a,16), (b,d,24)}, since the numbers

of 10-instances containing (d, ¢, 4) and (b, d, 24) are respectively 0

340+1
053 ~ 9.33.

and 1, we can compute Cys =

Theoretical Analysis: Next, we analyze the estimate Ch returned
by Algorithm 1 theoretically.

We first prove that C A is an unbiased estimator of Cys in Theo-
rem 4.3. The variance of Cyy is given in Theorem 4.4. The proofs of
Theorems 4.3-4.5 are provided in the extended version [41].

THEOREM 4.3. The expected value E[Cwm] ofEM returned by Al-
gorithm 1 is Cpy.

THEOREM 4.4. The variance Val[EM] ofeM returned by Algo-
rithm 1 is at most I—Tp . Cjzw.

Finally, we can derive Theorem 4.5 by applying Chebyshev’s
inequality to the result of Theorem 4.4.

1-p

THEOREM 4.5. Pr[|Cp — Cum| = - Cpy] < rra

According to Theorem 4.5, we can say EM isan (¢, y)-estimator of
Cyy for parameters €,y € (0,1),1.e., Pr[|Cyy—Cp| < €-Cpr] > 1-y,
when p =

1+ye?”

Time Complexity: We first analyze the time complexity of com-
puting n(e) for an edge e. For BACKTRACKING, the search space of
each matching step is at most the number of (in-/out-)edges within
range [t—0, t] or [t, t+5] connected with a vertex v. Here, we use dg
to denote the maximum number of (in-/out-)edges connected with
one vertex within any J-length time interval. The time complexity
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W1 W2 W3 W4

(a) Temporal wedges

3 2 3 2
@ @
1,2 A 1 2 1 3
M11 M M21 M22

12

(b) Temporal (3,3)-stars (c) Temporal triangles

Figure 4: Temporal wedges, (3, 3)-stars, and triangles

of BACKTRACKING is O(dé_l) and thus the time complexity of com-
puting n(e) is Ol(ld(ls’l). Therefore, ES provides an (¢, y)-estimator
mldit o

1+Y‘Z2 ) time.

4.2 The Improved EWS Algorithm

The ES algorithm in Section 4.1 is generic and able to count any
connected temporal motif. Nevertheless, there are still opportunities
to further reduce the computational overhead of ES when the query
motif is limited to 3-vertex 3-edge temporal motifs (i.e., triadic
patterns), which are one of the most important classes of motifs to
characterize temporal networks [5, 15, 27, 37]. In this section, we
propose an improved Edge-Wedge Sampling (EWS) algorithm that
combines edge sampling with wedge sampling for counting 3-vertex
3-edge temporal motifs.

Wedge sampling [15, 34, 35, 49] is a widely used method for
triangle counting. Its basic idea is to draw a sample of wedges (i.e.,
3-vertex 2-edge subgraph patterns) uniformly from a graph and
check the ratio of “closed wedges” (i.e., form a triangle in the graph)
to estimate the number of triangles. However, traditional wedge-
sampling methods are proposed for undirected static graphs and
cannot be directly used on temporal graphs. First, they consider
that all wedges are isomorphic and treat them equally. But there are
four temporal wedge patterns with different edge directions and
orderings as illustrated in Figure 4(a). Second, they are designed
for simple graphs where one wedge can form at most one triangle.
However, since temporal graphs are multigraphs and there may
exist multiple edges between the same two vertices, one temporal
wedge can participate in more than one instance of a temporal
motif. Therefore, in the EWS algorithm, we extend wedge sampling
for temporal motif counting by addressing both issues.

The detailed procedure of EWS is presented in Algorithm 2. First
of all, it uses the same method as ES to sample a set Er of edges
(Line 1). For each sampled edge e € ET and j = 1,2,3, it also maps e
to e/, for computing n;(e) (Line 4), i.e., the number of §-instances of

J
M where e is mapped to ej’.. But, instead of running BACKTRACKING

of Cpr in O(

to compute 7;(e) exactly, it utilizes temporal wedge sampling to
estimate 7;(e) approximately without full enumeration (Lines 5~
15), which is divided into two subroutines as discussed later. At last,
it obtains an estimate 5M of Cp from each estimate 77;(e) of n;(e)
using a similar method to ES (Line 16).

Sample Temporal Wedges (Lines 5-12): The first step of tempo-
ral wedge sampling is to determine which temporal wedge pattern
is to be matched according to the query motif M and the mapping
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Algorithm 2: Edge-Wedge Sampling

Input: Temporal graph T, temporal motif M, time span J, edge
sampling probability p, wedge sampling probability q.
Output: Estimator Cp of the number of S-instances of M in T
1 Generate ET using Line 1-5 of Algorithm 1;
2 foreach e = (u,0,t) € ET do
3 for j « 1,2,3do

4 Map edge e to e’;

5 Initialize 77j (e) < 0 and ‘Wj(e) — @;

6 if M is a temporal (3, 3)-star then

7 Select W]’ including e;. centered at the center of M;

8 else if M is a temporal triangle then

9 Select W including e’; centered at the vertex mapped

| to the one with a lower degree in u and v;

Ej(e) < all edges that form S-instances ofW]f with e;

foreach g € E;(e) do

Add a S-instance W of Wj’ comprising e and g to
‘ﬁ\/j (e) with probability g;

foreach W € (\vj(e) do

Let (W) be the number of edges that form
S-instances of M together with W;

| 7o) — (o) + 2G

= 1 3 = .
16 return Car = 35 X, 5 Xy nj(e);

from e to e;., Specifically, we categorize 3-vertex 3-edge temporal
motifs into two types, i.e., temporal (3, 3)-stars and temporal tri-
angles as shown in Figure 4, based on whether they are closed.
Interested readers may refer to [27] for a full list of all 3-vertex
3-edge temporal motifs. For a star or wedge pattern, the vertex
connected with all edges is its center. Given that e = (u,0,t) has
been mapped to ej’., EWS should find a temporal wedge pattern Wj’
containing e;. from M for sampling. Here, different strategies are
adopted to determine Wj’ for star and triangle motifs (Lines 6-9): If
M is a temporal (3, 3)-star, it must select W]’ that contains e;. and
has the same center as M; If M is a temporal triangle, it may use the
vertex mapped to either u or v as the center to generate a wedge
pattern. In this case, the center of Wj' will be mapped to the vertex
with a lower degree between u and v for search space reduction.
After deciding W/, it enumerates all edges that form a §-instance of
Wj’ together with e as Ej(e) from the adjacency list of the central
vertex (Line 10). By selecting each edge g € E(e) with probability
q, it generates a sample "ﬁ/\] (e) of d-instances of Wj' (Lines 11—12).

Estimate 7;(e) (Lines 13-15): Now, it estimates 1;(e) from the
set (ﬁ\ﬁ(e) of sampled temporal wedges. For each W ¢ (ﬁ/\j(e),
it counts the number (W) of d-instances of M that contain W
(Line 14). Specifically, after matching W with Wj’, it can determine
the starting and ending vertices as well as the temporal range for the
mapping of the third edge of M. For the fast computation of n(W),
EWS maintains a hash table that uses an ordered combination
(u,0) (u,v € Vr) as the key and a sorted list of the timestamps
of all edges from u to v as the value on the edge set ET of T. In
this way, (W) can be computed by a hash search followed by at
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Figure 5: Examples for the EWS algorithm

most two binary searches on the sorted list. Finally, 7;(e) can be
estimated by summing up (W) for each W € W;(e) (Line 15), i.e.,

10 = 4 By e (o) 10V -

Example 4.6. In Figure 5, we show how to compute 7;(e) using
EWS on the temporal graph in Figure 2. In this example, g is set
to 1, i.e., all temporal wedges found are sampled. When (a, b, 23)
is mapped to e] of M11 in Figure 4, we have W, = W2 and find 2
instances W21 and W22 of W2. Then, we get n(W21) = 1 and
n(W22) = 0 and thus 73((a,b,23)) = 1. For an edge (c,d, 26)
mapped to e}, of M21 in Figure 4, ¢ is used as the central vertex
since deg(c) = 3 < deg(d) = 5. Then, we have W, = W4 and there
is only one instance W41 of W4 found. As n(W41) = 1, we get
n2((c, d, 26)) = 1 accordingly.

Theoretical Analysis: Next, we analyze the estimate Ch returned
by Algorithm 2 theoretically. We prove the unbiasedness and vari-
ances of Cyy in Theorem 4.7 and Theorem 4.8, respectively. Detailed
proofs are also provided in the extended version [41].

THEOREM 4.7. The expected value E[gM] ong returned by Al-
gorithm 2 is Cyy.

THEOREM 4.8. The variance Val[Cy] oféM returned by Algo-

rithm 2 is at most 2= pq C2

According to the result of Theorem 4.8 and Chebyshev’s in-
equality, we have Pr[|6M —Cyml =z e-Cyl < ‘lqu and Cy is an

(&, y)-estimator of Cyy for parameters ¢,y € (0, 1) when pq = 1+y€2

Time Complexity: We first analyze the time to compute 7 (e).
First, |E;j(e)| is bounded by the maximum number of (in-/out-)edges
connected with one vertex within any d-length time interval, i.e.,
ds. Second, the time to compute (W) using a hash table is O(log h)
where A is the maximum number of edges between any two vertices.
Therefore, the time complexity per edge in EWS is O(ds log h). This
is lower than O(dz) time per edge in ES (k = I = 3). Finally, EWS
mdslogh

Tiye? ) time.

provides an (¢, y)-estimator of Cps in O(

4.3 Streaming Implementation

To deal with a dataset that is too large to fit in memory or generated
in a streaming manner, it is possible to adapt our algorithms to a
streaming setting. Assuming that all edges are sorted in chronologi-
cal order, our algorithms can determine whether to sample an edge
or not when it arrives. Then, for each sampled edge e = (u,0,t), we
only need the edges with timestamps in [t — &, t + §] to compute its
local count 7(e) or 7j(e). After a one-pass scan over the temporal
graph stream, we can obtain an estimate of the number of a tem-
poral motif in the stream. Generally, our algorithms can process
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Table 2: Statistics of datasets

Dataset |Vr| |E| |ET| Time span
AU 157,222 544,621 726,639 7.16 years
SU 192,409 854,377 1,108,716 7.60 years
SO 2,584,164 34,875, 684 47,902, 865 7.60 years
BC 48,098,591 | 86,798,226 113, 100, 979 7.08 years
RC 5,688,164 329,485,956 | 399,523,749 7.44 years

any temporal graph stream in one pass by always maintaining the
edges in the most recent time interval of length 2§ while having
the same theoretical bounds as in the batch setting.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the empirical performance of our pro-
posed algorithms on real-world datasets. We first introduce the
experimental setup in Section 5.1. The experimental results are
presented in Section 5.2.

5.1 Experimental Setup

Experimental Environment: All experiments were conducted
on a server running Ubuntu 18.04.1 LTS with an Intel® Xeon® Gold
6140 2.30GHz processor and 250GB RAM. All datasets and our code
are publicly available!. We downloaded the code?3* of baselines
published by the authors and followed the compilation and usage
instructions. All algorithms were implemented in C++11 compiled
by GCC v7.4 with -03 optimizations, and ran on a single thread.

Datasets: We used five different real-world datasets in our experi-
ments including AskUbuntu (AU), SuperUser (SU), StackOverflow
(SO), BitCoin (BC), and RedditComments (RC). All datasets were
downloaded from publicly available sources like the SNAP reposi-
tory [19]. Each dataset is a sequence of temporal edges in chrono-
logical order. We report the statistics of these datasets in Table 2,
where |V7| is the number of vertices, |E| is the number of (static)
edges, |Et| is the number of temporal edges, and time span is the
overall time span of the entire dataset.

Algorithms: The algorithms compared are listed as follows.

e EX: An exact algorithm for temporal motif counting in [27].
The available implementation is applicable only to 3-edge
motifs and cannot support motifs with 4 or more edges
(e.g., Q5 in Figure 6).

e 2SCENT: An algorithm for simple temporal cycle (e.g., Q4
and Q5 in Figure 6) enumeration in [18].

e BT: A BACKTRACKING algorithm for temporal subgraph iso-
morphism in [23]. It provides the exact count of any temporal
motif by enumerating all of them.

e IS-BT: An interval-based sampling algorithm for temporal
motif counting in [22]. BT [23] is used as a subroutine for
any motif with more than 2 vertices.

e ES: Our generic edge sampling algorithm for temporal motif
counting in Section 4.1.

!https://github.com/jingjing-hnu/Temporal-Motif-Counting
Zhttp://snap.stanford.edu/temporal-motifs/
3https://github.com/rohit13k/CycleDetection
“https://gitlab.com/paul liv.ubc/sampling-temporal-motifs
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Figure 6: Query motifs

e EWS: Our improved algorithm that combines edge sampling
with wedge sampling for counting temporal motifs with 3
vertices and 3 edges (e.g. Q1-Q4 in Figure 6) in Section 4.2.

Queries: The five query motifs we use in the experiments are listed
in Figure 6. Since different algorithms specialize in different types
of motifs, we select a few motifs that can best represent the special-
izations of all algorithms. As discussed above, an algorithm may
not be applicable to some of the motifs. In this case, the algorithm
is ignored in the experiments on these motifs.

Performance Measures: The efficiency is measured by the CPU
time (in seconds) of an algorithm to count a query motif in a tempo-

ral graph. The accuracy of a sampling algorithm is measured by the
[x—x]|

relative error where x is the exact number of instances of a
query motif in a temporal graph and ¥ is an estimate of x returned
by an algorithm. In each experiment, we run all algorithms 10 times
and use the average CPU time and relative errors for comparison.

5.2 Experimental Results

The overall performance of each algorithm is reported in Table 3.
Here, the time span § is set to 86400 seconds (i.e., one day) on AU
and SU, and 3600 seconds (i.e., one hour) on SO, BC, and RC (Note
that we use the same values of § across all experiments, unless
specified). For IS-BT, we report the results in the default setting as
indicated in [22], i.e., we fix the interval length to 306 and present
the result for the smallest interval sampling probability that can
guarantee the relative error is at most 5%. For ES and EWS, we
report the results when p = 0.01 by default; in a few cases when
the numbers of motif instances are too small or their distribution
is highly skewed among edges, we report the results when p = 0.1
(marked with “*” in Table 3) because ES and EWS cannot provide
accurate estimates when p = 0.01. In addition, we set g to 1 on AU
and SU, and 0.1 on SO, BC, and RC for EWS.

First of all, the efficiencies of EX and 2SCENT are lower than
the other algorithms. This is because they use an algorithm for
subgraph isomorphism or cycle detection in static graphs for can-
didate generation without considering temporal information. As a
result, a large number of redundant candidates are generated and
lead to the degradation in performance. Second, on medium-sized
datasets (i.e., AU and SU), ES runs faster than IS-BT in most cases;
and meanwhile, their relative errors are close to each other. On
large datasets (i.e, SO, BC, and RC), ES demonstrates both much
higher efficiency (up to 10.3x speedup) and lower estimation errors
(2.42% vs. 4.61%) than IS-BT. Third, EWS runs 1.7x-19.6x faster
than ES due to its lower computational cost per edge. The relative
errors of ES and EWS are the same on AU and SU because q = 1.
When g = 0.1, EWS achieves further speedups at the expense of
higher relative errors. A more detailed analysis of the effect of q is
provided in the following paragraph.


https://github.com/jingjing-hnu/Temporal-Motif-Counting
http://snap.stanford.edu/temporal-motifs/
https://github.com/rohit13k/CycleDetection
https://gitlab.com/paul.liu.ubc/sampling-temporal-motifs
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Table 3: Running time (in seconds) and average errors (%) of all algorithms on each dataset. We use “—” and “X” to denote
“motif not supported” and “running out of memory”, respectively. For IS-BT, ES, and EWS, we show their speedup ratios over
BT for comparison. We use “*” to mark the results of ES and EWS for p = 0.1 instead of p = 0.01.

. EX 2SCENT BT IS-BT ES EWS
Dataset | Motif [— - - - - -
time (s) | time(s) | time(s) | error time (s) error time (s) error time (s)
Q1 18 0.758 4.84% 0.402/1.9x 4.32% 0.059/12.8x 4.32% 0.027/28.1x
Q2 ' — 1.104 4.16% | 0.434/2.5x 4.57% 0.048/23.0x 4.57% | 0.029/38.1x
AU Q3 23 0.884 3.97% 0.50/1.8x *3.73% *0.605/1.5x *3.73% | *0.183/4.8x
Q4 ' 93.68 1.038 4.67% 0.492/2.1x *4.63% *0.628/1.7x *4.63% *0.173/6x
Q5 — ' 1.262 3.98% 0.536/2.4x *4.62% *0.322/3.9x —
Q1 396 1.499 3.99% 0.620/2.4x 3.06% 0.102/14.7x 3.06% | 0.052/28.8x
Q2 ’ — 1.650 3.23% 0.671/2.5x 2.47% 0.083/19.9x 2.47% 0.046/35.9x
SU Q3 46 1.506 4.85% 0.723/2.1x 4.66% 0.113/13.3x 4.66% | 0.030/50.2x
Q4 ' 46.0 1.434 3.79% 0.725/2.0x 4.63% 0.128/11.2x 4.63% 0.042/34.1x
Q5 — 1.521 4.55% 0.759/2.0x | *4.52% *0.453/3.4x —
Q1 169 105.8 4.82% | 8.626/12.3x | 0.97% 4.419/23.9x 1.22% 1.528/69.2x
Q2 — 110.7 4.82% 27.48/4.0x 0.20% 3.985/27.8x 0.89% 1.514/73.1x
SO Q3 466 107.4 4.30% 25.70/4.2x 1.36% 4.031/26.6x 3.6% 1.235/87x
Q4 2437 105.5 4.90% | 6.775/15.6x 1.78% 3.936/26.8x 3.31% 1.153/91.5x
Q5 — ’ 91.83 4.91% 9.451/9.7x 3.48% 1.505/61.0x —
Q1 8143 220.0 4.75% 50.02/4.4x 0.64% 59.12/3.7x 0.67% | 9.463/23.2x
Q2 — 399.8 4.90% 125.1/3.2x 1.11% 34.74/11.5x 1.16% | 8.126/49.2x
BC Q3 8116 396.8 3.89% 90.19/4.4x 1.49% 41.49/9.6x 3.02% 2.121/187x
Q4 4737 473.4 4.93% 95.47/5.0x 0.83% 37.43/12.6x 1.91% 2.262/209x
Q5 — ’ 596.4 4.83% 319.7/1.9x 2.92% 20.47/29.1x —
Q1 2799 1966 4.76% 840.5/2.3x 3.27% 257.4/7.6x 3.36% 31.49/62.4x
Q2 — 2113 4.67% 428/4.9x 0.63% 120.6/17.5x 0.6% 30.57/69.1x
RC Q3 % 2069 4.61% 784.4/2.6x 2.42% 76.09/27.2x 2.27% 16.17/128x
Q4 9945 1897 4.86% 683/2.8x 3.47% 68.60/27.7x 4.57% 15.91/119x
Q5 — 1613 4.41% 706.6/2.3x *4.32% | *120.3/13.4x —

8

Error(%)

(a) Q2 on SU (b) Q3 on SU

(c) Q2 onBC

Figure 7: Comparison of the performance of EWS when g = 0.1 and 1

Effect of g for EWS: In Figure 7, we compare the relative errors
and running time of EWS for ¢ = 1 and 0.1 when p is fixed to 0.01.
We observe different effects of ¢ on medium-sized (e.g., SU) and
large (e.g., BC) datasets. On the SU dataset, the benefit of smaller g is
marginal: the running time decreases slightly but the errors become
obviously higher. But on the BC dataset, by setting ¢ = 0.1, EWS
achieves 2x-3x speedups without affecting the accuracy seriously.
These results imply that temporal wedge sampling is more effective
on larger datasets. Therefore, we set ¢ = 1 on AU and SU, and
q = 0.1 0on SO, BC, and RC for EWS in the remaining experiments.

Accuracy vs. Efficiency: Figure 8 demonstrates the trade-offs be-
tween relative error and running time of three sampling algorithms,
namely IS-BT, ES, and EWS. For IS-BT, we fix the interval length
to 306 and vary the interval sampling probability from 0.01 to 1.
For ES and EWS, we vary the edge sampling probability p from
0.0001 to 0.25. First of all, ES and EWS consistently achieve better
trade-offs between accuracy and efficiency than IS-BT in almost

all experiments. Specifically, ES and EWS can run up to 60x and
330x faster than IS-BT when the relative errors are at the same
level. Meanwhile, in the same elapsed time, ES and EWS are up to
10.4x and 16.5x more accurate than IS-BT, respectively. Further-
more, EWS can outperform ES in all datasets except SO because
of lower computational overhead. But on the SO dataset, since the
distribution of motif instances is highly skewed among edges and
thus the temporal wedge sampling leads to large errors in estima-
tion, the performance of EWS degrades significantly and is close
to or even worse than that of ES. Nevertheless, the effectiveness
of temporal wedge sampling for EWS can still be confirmed by the
results on the BC and RC datasets.

Scalability: We evaluate the scalability of different algorithms with
varying the time span § and dataset size m. In both experiments,
we use the same parameter settings as used for the same motif on
the same dataset in Table 3. We test the effect of § for Q3 on the BC
dataset by varying § from 1h to 24h. As shown in Figure 9(a), the
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Figure 8: Relative error (%) vs. running time (seconds) with varying sampling probability

running time of all algorithms increases near-linearly w.r.t. §. BT
runs out of memory when § > 10h. The relative errors of ES and
EWS keep steady for different & but the accuracy of IS-BT degrades
seriously when ¢ increases. This is owing to the increase in cross-
interval instances and the skewness of instances among intervals.
Meanwhile, ES and EWS run up to 2.2x and 180x faster than IS-BT,
respectively, while always having smaller errors. The results for Q2
on the RC dataset with varying m are presented in Figure 9(b). Here,
we vary m from 50M to near 400M by extracting the first m temporal
edges of the RC dataset. The running time of all algorithms grows
near-linearly w.r.t. m. The fluctuations of relative errors of IS-BT
explicate that it is sensitive to the skewness of instances among
intervals. ES and EWS always significantly outperform IS-BT for
different m: they run much faster, have smaller relative errors, and
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6 CONCLUSION

In this paper, we studied the problem of approximately counting a
temporal motif in a temporal graph via random sampling. We first
proposed a generic Edge Sampling (ES) algorithm to estimate the
number of any k-vertex I-edge temporal motif in a temporal graph.
Furthermore, we improved the ES algorithm by combining edge
sampling with wedge sampling and devised the EWS algorithm for
counting 3-vertex 3-edge temporal motifs. We provided compre-
hensive theoretical analyses on the unbiasedness, variances, and
complexities of our algorithms. Extensive experiments on several
real-world temporal graphs demonstrated the accuracy, efficiency,
and scalability of our algorithms. Specifically, ES and EWS ran up
to 10.3x and 48.5x faster than the state-of-the-art sampling method
while having lower estimation errors.
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