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A Lightweight Privacy-Preserving CNN Feature
Extraction Framework for Mobile Sensing

Kai Huang , Ximeng Liu ,Member, IEEE, Shaojing Fu ,Member, IEEE,

Deke Guo, Senior Member, IEEE, and Ming Xu,Member, IEEE

Abstract—The proliferation of various mobile devices equipped with cameras results in an exponential growth of the amount of

images. Recent advances in the deep learning with convolutional neural networks (CNN) have made CNN feature extraction become

an effective way to process these images. However, it is still a challenging task to deploy the CNN model on the mobile sensors, which

are typically resource-constrained in terms of the storage space, the computing capacity, and the battery life. Although cloud computing

has become a popular solution, data security and response latency are always the key issues. Therefore, in this paper, we propose a

novel lightweight framework for privacy-preserving CNN feature extraction for mobile sensing based on edge computing. To get the

most out of the benefits of CNN with limited physical resources on the mobile sensors, we design a series of secure interaction

protocols and utilize two edge servers to collaboratively perform the CNN feature extraction. The proposed scheme allows us to

significantly reduce the latency and the overhead of the end devices while preserving privacy. Through theoretical analysis and

empirical experiments, we demonstrate the security, effectiveness, and efficiency of our scheme.

Index Terms—Privacy-preserving, CNN, feature extraction, mobile sensing

Ç

1 INTRODUCTION

THE mobile sensing has received a lot of attention in recent
years and transformed our lives as an efficient sensing

paradigm. This is greatly attributed to the popularity of
smartphones and other mobile devices equipped with a vari-
ety of sensors, such as accelerometers, gyroscopes, micro-
phones, and cameras. These sensors can be used to collect
data from our surrounding environment and provide valu-
able information for various applications. Particularly, the
camera is the most pervasive one among them. Massive
images acquired by the cameras have been utilized to support
a large number of visual applications, such as object recogni-
tion, variety identification, scene understanding, and envi-
ronment modeling. Specifically, with the recent advances in
the deep learning with convolutional neural networks
(CNN), the accuracy of these applications can be vastly
improved. Literatures [1], [2], [3] have shown that the features
extracted by CNN significantly outperform traditional hand-

crafted features and other highly tuned state-of-the-art meth-
ods. It is suggested that features obtained from CNN should
be the primary candidate in essentially any visual tasks [1].

This motivates many researchers to work on putting CNN
feature extraction on mobile devices. However, it still has a
longway to go. The explosive growth in the volume of images
and the complicated CNNs impose significant challenges on
the storage and processing capacity of resource-constrained
mobile sensors.With the cloud computing beingmorewidely
utilized, more andmore users choose to outsource their huge
amount of image data and computation-intensive visual tasks
to the cloud data centers. Unfortunately, the cloud data cen-
ters are usually far away from the mobile users, which usu-
ally connect to the internet via the wireless network. For the
massive image data, communication between the mobile
users and the cloud demands substantial bandwidth and
incurs unpredictable delays, which will result in a degraded
quality of experience [4].

Edge computing has been proposed as a method of opti-
mizing cloud computing architecture by performing data
processing at the edge of the network and close to the source
of the data [5]. This can significantly reduce the bandwidth
consumption of delivering large amounts of data to the data
center and reduce the latency between the mobile device and
the data center. Nevertheless, security remains a challenge in
this architecture, since the images usually contain confide-
ntial or sensitive information. The most intuitive way is to
use a homomorphic encryption scheme, which allows com-
putation on encrypted data, to protect the privacy of the
images before outsourcing to the edge. CryptoNets [6] pro-
posed by Microsoft was the first work to show how to apply
CNN to encrypted data based on homomorphic encryption.
Following that, literatures [7] and [8] made some

� K. Huang and S. Fu are with the College of Computer, National University
of Defense Technology, Changsha, Hunan 410073, China, and also with
the State Key Laboratory of Cryptology, Beijing 1816670, China.
E-mail: kai.huang@nudt.edu.cn, shaojing1984@163.com.

� M. Xu is with the College of Computer, National University of Defense
Technology, Changsha, Hunan 410073, China.
E-mail: xuming@nudt.edu.cn.

� X. Liu is with the College of Mathematics and Computer Science, Fuzhou
University, Fuzhou, Fujian 350108, China, and also with the Key Lab of
Information Security of Network Systems, Fuzhou University, Fuzhou,
Fujian Province 350108, China. E-mail: snbnix@gmail.com.

� D. Guo is with the Science and Technology on Information Systems
Engineering Laboratory, National University of Defense Technology,
Changsha, Hunan 410073, China. E-mail: dekeguo@nudt.edu.cn.

Manuscript received 23 Jan. 2019; accepted 21 Apr. 2019. Date of publication
26 Apr. 2019; date of current version 13 May 2021.
(Corresponding author: Kai Huang.)
Digital Object Identifier no. 10.1109/TDSC.2019.2913362

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2021 1441

1545-5971 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Published in IEEE Transactions on Dependable and Secure Computing, 2020, 18 (3), 1441-1455. DOI: 10.1109/TDSC.2019.2913362

https://orcid.org/0000-0002-2380-7275
https://orcid.org/0000-0002-2380-7275
https://orcid.org/0000-0002-2380-7275
https://orcid.org/0000-0002-2380-7275
https://orcid.org/0000-0002-2380-7275
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-7275-8190
https://orcid.org/0000-0002-7275-8190
https://orcid.org/0000-0002-7275-8190
https://orcid.org/0000-0002-7275-8190
https://orcid.org/0000-0002-7275-8190
mailto:
mailto:
mailto:
mailto:
mailto:


improvements and obtained better accuracy. To support
homomorphic operations, the non-linear functions in their
networks need to be approximated by low degree polyno-
mials, which essentially reduces the accuracy of their
schemes. Moreover, current homomorphic encryption tech-
niques are too computation-intensive. Recently, Liu et al. [9]
proposed MiniONN for transforming an existing neural net-
work to an oblivious neural network supporting privacy-pre-
serving predictions. Although they put the homomorphic
encryption in the offline phase, the garbled circuits are
needed in the online phase. Generating and storing such gar-
bled circuits would be a challenging task. Riazi et al. [10] pro-
posed a mixed protocol framework. They claimed that they
can choose themost efficient protocol for different operations.
However, they suffer from the complicated data structures
and conversion of protocols. Therefore, while providing secu-
rity, existing solutions still require significant computation
and storage on the end devices. In addition, they incur high
communication cost between the end devices and the data
center. As a consequence, they are impractical to be used in
the setting ofmobile sensing.

Accordingly, it is important to design a novel lightweight
framework to address the issue of privacy-preserving CNN
feature extraction for mobile sensing. Our aim is to greatly
reduce the latency and the overhead of the end devices while
preserving the accuracy of the neural networks and the pri-
vacy of the data. To this end, we perform the task of CNN fea-
ture extraction at the edge close to the mobile sensors. To
protect the privacy of the data, we utilize the additive secret-
sharing techniques and design a series of secure interaction
protocols corresponding to the various CNN layers. In partic-
ular, two independent edge servers and a trusted third party
are utilized in our novel architecture. The trusted third party
is responsible for generating random values in the offline
phase. In the online phase, the two edge servers perform the
CNN feature extraction over the received encrypted images
via the series of secure interaction protocols. The user can
obtain the CNN features from the encrypted results gener-
ated by the two edge servers.

Our main contributions can be summarized as follows:

� We propose a novel lightweight framework for
privacy-preserving CNN feature extraction in the
setting of mobile sensing. By utilizing the secret
sharing-based encryption technique and moving the
computation-intensive work to the edge servers, we
can greatly reduce the overhead on the mobile sen-
sors and the end users. Meanwhile, it requires no
interaction between the end devices and the servers.

� We develop a series of building blocks that don’t rely
on the computation-intensive cryptographic primi-
tives like homomorphic encryption and garbled cir-
cuits. Thus, our solution can greatly improve the
overall performance with a minimal amount of com-
putation and communication overheads.

� We design a privacy-preserving CNN feature extrac-
tion scheme that does not need to make any approxi-
mation for recommended common CNN layers as
previous schemes based on homomorphic encryption.
Thus, we can maintain the accuracy of the CNN
modelwhile preserving privacy.

� We conduct comprehensive theoretical analysis
and empirical experiments to measure the perfor-
mance of our scheme. The results indicate that our
scheme outperforms previous work in terms of the
runtime and the communication overhead while pre-
serving the accuracy of the neural networks and the
privacy of the data.

The remainder of this paper is organized as follows. We
introduce the related work in Section 2 and the necessary pre-
liminaries in Section 3. Then we formulate the problem and
give the system model and security model in Section 4. The
building blocks that support efficient secure computation
based on secret sharing techniques are given in Section 5. On
the basis of that, we propose the details of our scheme in
Section 6. We give the security analysis and experimental
results in Sections 7 and 8. Finally, we conclude our work in
Section 9.

2 RELATED WORK

Feature extraction is a fundamental problem in various visual
tasks such as image classification, object recognition, and
image retrieval. Recently, to preserve the privacy of the
images, numerous schemes have been proposed to extract
traditional features over the encrypted images. These include
privacy-preserving global feature detection [11], shape-based
feature extraction [12], SIFT [13], [14], [15], SURF [16], [17],
and HOG [18]. In [19], color and texture information were
used to support privacy-preserving content-based image
retrieval in the cloud. Lu et al. [20] used the global color histo-
gram in the HSV space as image features and studied the
problem of confidentiality-preserving image retrieval. Xia
et al. [21] proposed a privacy-preserving and copy-deterrence
content-based image retrieval scheme by using the local
features. Yuan et al. [22] adopted the Bag-of-Words model
to aggregate the local features and proposed a privacy-
preserving social discovery architecture based on encrypted
images. In addition, there are some other schemes using
the finger code or other biometric data to design privacy-
preserving biometric authentication and identification [23],
[24]. However, these traditional hand-crafted features have
their inherent defects, since they often rely on expert knowl-
edge and require expensive human labor.

To the best of our knowledge, the first related work for
applying the neural network to the encrypted data to make
encrypted predictions is CryptoNets [6], [7], [8]. The recent
work CryptoDL [25] considers both training and inference
phases. However, the main ingredient of both CryptoNets
and CryptoDL are homomorphic encryption. The accuracy is
essentially reduced and the computation overhead is too high
to be practical. Therefore, they are not appropriate in the
setting of mobile sensing. SecureML [26] seems to be the
first work based on SMC techniques for privacy-preserving
training and prediction. However, they are inefficient and
can only support very simple networks and very few
hidden layers. Recently, various mixed-protocol frameworks
have been proposed, like MiniONN [9], DeepSecure [27],
Chameleon [10], GAZELLE [28], and ABY3 [29]. However,
they are not easy to expand since they suffer from computa-
tion-intensive cryptographic primitives and cannot fully uti-
lize the efficient parallel data structure of CNN. An
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orthogonal line of work focused on privacy-preserving learn-
ing. [30] and [31] are both based on homomorphic encryption.
However, they only supported low-depth network and had
high computation and communication complexity. In [32],
[33], [34], the authors developed new algorithmic techniques
for learning within the framework of differential privacy.
They tried to make a trade-off between accuracy and privacy,
however, the server has full access to the data in plaintext and
the privacy of the original image contentwas not protected.

3 PRELIMINARIES

In this section, we briefly review the CNN features and the
cryptographic tools we use in our scheme.

3.1 CNN Features

In this work, we focus on the features extracted from the
publicly available pre-trained CNN.

CNN is a sequence of layers that transform an input layer
to an output layer. Each layer is made up of a set of neurons.
Each neuron of one layer (except the input layer) is the output
of a function applied on the neurons of the previous layer, i.e.,
y ¼ fðxÞ. Several commonly used layers are the fully con-
nected layer, the convolutional layer, the activation layer, and
the pooling layer.

� Fully connected layer. Each neuron of this layer is con-
nected to each neuron of the previous layer. Let wjk

denote the weight on the connection between the kth
neuron of the previous layer and the jth neuron of
the current layer. Let bj denote the bias of the jth
neuron of the current layer. Then, the output of the
jth neuron of this layer will be yj ¼

P
k wjkxk þ bj.

� Convolutional layer. The neurons in this layer share
the same weights and bias, which are often said to
define a kernel or filter. Let the size of the filter be
n� n, then each neuron in this layer will be con-
nected to a n� n region of the neurons in the previ-
ous layer. Correspondingly, for the ðj; kÞth neuron,

the output will be yj;k ¼
Pn�1

l¼0

Pn�1
m¼0 wl;mxjþl;kþm þ b.

� Activation layer. Activation layers apply elementwise
non-linearity and are usually used immediately after
convolutional or fully connected layers. Common
activation functions include sigmoid, tanh, and the
rectified linear unit (ReLU), in which ReLU has
become the default recommendation in modern neu-
ral networks. ReLU is defined by the activation func-
tion fðxÞ ¼ maxðx; 0Þ.

� Pooling layer. The pooling layer partitions the neurons
of the previous layer into a set of non-overlapping rec-
tangles and performs a downsampling operation on
each sub-area to obtain the value of one neuron in the
current layer. The most common pooling functions
are the max-pooling that outputs the maximum value
within the sub-area and the average-pooling that out-
puts the average of the values of the sub-area.

A convolutional neural network usually stacks a seque-
nce of convolutional (Conv)-ReLU layers, following with the
pooling layers (Pool), and repeats this pattern until the image
has been merged spatially to a small size. At some point, it is
common to transit to fully-connected layers (FC). For clarity,

the most common CNN architecture follows the pattern:
Input! [[Conv! ReLU] �n ! Pool?] �m ! [FC! ReLU]
�l ! FC, where the � indicates repetition, and the question
mark ? indicates an optional layer. In addition, n � 0 (and
usually n � 3),m � 0, l � 0 (and usually l < 3). We can take
the responses from one of the network’s layers as our CNN
feature vector, which can be used for different visual tasks in
combinationwith some other techniques.

3.2 Secure Multiparty Computation

Secure Multiparty Computation (SMC) is an interactive
computation paradigm that enables multiple parties to col-
laboratively evaluate a function over their respective inputs
while keeping those inputs private.

SMC was originally introduced for the so-called Million-
aire Problem in the two-party setting (2PC) by Yao [35].
Since it turns out that information theoretic security would
not be possible for 2PC [36], most solutions are based on
cryptographic tools like homomorphic encryption (HE) or
garbled circuits (GC). However, HE schemes are computa-
tionally expensive since they require relatively expensive
public-key operations in the online phase. Although GC
allows to pre-compute the expensive operations, it requires
to generate a garbled circuit for evaluating a function. Gen-
erating and storing such garbled circuits would be challeng-
ing for large-scale problems [37].

Following that, SMC was generalized to the multi-party
setting (MPC), which works quite differently from the secure
two-party computation. Many schemes for secure MPC have
been proposed, like VIFF [36], FairplayMP [38], Sharemind
[39], SPDZ [40], and so on. They make use of secret sharing
techniques that were introduced by Shamir [41] and Blakley
[42]. Particularly, MPC with an honest majority could be
implemented with secret sharing alone. Two commonly used
secret sharing schemes are Shamir secret sharing and additive
secret sharing. Comparedwith the secure two-party computa-
tions, they are much more efficient since they don’t rely upon
any computationally expensive cryptographic primitives.

4 PROBLEM FORMULATION

4.1 System Architecture

In this paper, we aim to address the issue of privacy-
preserving CNN feature extraction formobile sensing. Several
schemes have been proposed to outsource the tasks of CNN
inference to the cloud servers. However, a deep CNN model
typically has a substantially sophisticated structure that con-
sists of many layers of non-linear feature extractors. The extra
latency brought by the user-cloud and the inter-cloud interac-
tion will become unacceptable since the users and the cloud
servers are usually far away from each other. Moreover, to
protect the privacy of the data, they usually utilize the compu-
tation-intensive cryptographic primitives like homomorphic
encryption or garbled circuits. As described previously,
this will incur lots of computation and storage overheads on
the end devices and high communication cost between the
end devices and the data center. Therefore, we propose a
novel lightweight framework based on the edge computing
and most of the data processing is moved away from the cen-
tralized cloud to the edge of the network (e.g., the edge gate-
ways or the edge servers).

HUANG ET AL.: A LIGHTWEIGHT PRIVACY-PRESERVING CNN FEATURE EXTRACTION FRAMEWORK FOR MOBILE SENSING 1443



To protect the privacy of the data and enable the CNN
feature extraction over the encrypted data, we design a series
of secure computation protocols based on the additive secret
sharing techniques. However, different from previous secret
sharing schemes [37], [39], [43], [44], [45] that are designed for
at least three parties and the multi-parties play almost the
same role, we put the computation-intensivework on just two
edge servers. This is due to the fact that the required storage
and bandwidth resources for the storage and transmission of
the shares have to be at least of the size of the data times the
number of shares. Correspondingly, every additional party
will increase the communication traffic and the risk of being
attacked [39].

As illustrated in Fig. 1, our proposed framework consists of
four main entities: the mobile sensor O, two edge servers S1

and S2, the trusted third party T , and the user U. The trained
CNNmodel is publicly available and can be obtained by both
S1 and S2. The user collected a large number of images with
the mobile sensors and would like to process the images on
the edge servers by leveraging their storage and computation
resources. Let I denote the original image and f denote the
extracted CNN feature. To protect the privacy of the images,
O will first encrypt the image data I by randomly splitting it
into two shares I 0 and I 00 in an element-wisemanner such that
I can be recovered by adding the two shares together. Then
the ciphertexts I 0 and I 00 will be distributed to the two edge
servers S1 and S2. To reduce the interactions between the par-
ties, T is just responsible for the generation of random values,
which is simple and can be done at a light server or a client.
The computation-intensive work is performed by S1 and S2.
After running the CNN feature extraction in the ciphertext
domain via a sequence of secure interaction protocols, S1 and
S2 will return the encrypted CNN features f0 and f00 to U.
Then, U can eventually recover the CNN features f from their
encrypted versions to perform various visual tasks such as
object recognition, attribute detection, image classification,
and image retrieval.

4.2 Security Model

Similar to many secure computation protocols found in the
literature [14], [37], [39], [43], [46], [47], [48], we use the semi-
honest (also known as passive or honest-but-curious) security
model. That is, each edge server will perform the protocols

exactly as specified, yet may attempt to learn as much as pos-
sible about private information of interest based on the data
stored and processed on it.

In addition, the two edge servers S1 and S2 are assumed
to be independent and non-colluding. It means that one
edge server will not reveal more information than protocol
messages to the other. This is a practical assumption since
the two edge servers can be deployed on and managed by
two different or even competitive service providers (e.g.,
AWS’s Lambda@Edge and Microsoft Azure IoT Edge).

As described above, the third party T is just responsible
for the random value generation. The work can simply be
performed by a light server or a client that is controlled by
the valid users. Therefore, it is reasonable to assume that
the third party is always honest and can be trusted. Besides,
we also assume that the sensors and valid users are always
honest and secure communication channels are available
between the entities.

4.3 Design Goals

Our goal is to design a secure and lightweight CNN feature
extraction scheme for mobile sensing. Specifically, we have
the following goals:

� Correct. Our primary goal is to support the CNN fea-
ture extraction over the encrypted images. The edge
servers included in our architecture should be able to
correctly extract the CNN features over the encrypted
images. The encrypted CNN features can later be
decrypted to perform other visual tasks by the user.

� Privacy-preserving. The main concern in our design is
to protect the privacy of the images. During the pro-
cess of the CNN feature extraction, the edge servers
or the attackers should be prevented from learning
any content of the images or the extracted features.

� Lightweight. Since the mobile sensors are typically
resource-constrained, our design should take into
full account the computation overhead on the mobile
devices. Meanwhile, we should greatly reduce the
communication overhead between the mobile devi-
ces and the edge servers and therefore reduce the
response latency.

5 BUILDING BLOCKS: EFFICIENT SECRET

SHARING-BASED SECURE COMPUTATION

To enable the secure interactions between the two edge
servers S1 and S2, we design a series of efficient secure com-
putation sub-protocols based on the additive secret sharing
techniques.

Given two numbers u and v, they will be randomly split
into two parts, respectively. Let u ¼ u1 þ u2 and v ¼ v1 þ v2,
where the ui’s and vi’s are called the shares of u and v andwill
be stored in Si ði ¼ 1; 2Þ. Then S1 and S2 will work together
to compute fðu; vÞ. S1 will output f1 and S2 will output f2,
where f1 þ f2 ¼ f . Note that, to preserve the privacy of the
inputs of the two edge servers, both parties won’t reveal the
outputs of the functions to each other in the secure computa-
tion except the secure comparison.

Fig. 1. System architecture.
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5.1 Secure Addition and Subtraction

In this protocol, we want to compute fðu; vÞ ¼ u� v. Since
u� v ¼ ðu1 þ u2Þ � ðv1 þ v2Þ ¼ ðu1 � v1Þ þ ðu2 � v2Þ, it is
easy to find out that S1 and S2 can perform the secure addi-
tion and subtraction locally without interaction with each
other. After the computation, Si ði ¼ 1; 2Þ will output fi ¼
ui � vi. Obviously, we have f1 þ f2 ¼ u� v.

Note that, when it comes to the field of Z2, we actually
implement the secure XOR (�) computation.

Besides, we can also execute the secure multiplication by
a publicly known constant c in the same way. To compute
fðuÞ ¼ c 	 u, Si ði ¼ 1; 2Þ will output fi ¼ c 	 ui. This can also
be done by Si independently without interaction.

5.2 Secure Multiplication

To greatly reduce the computation and communication over-
heads, we design our securemultiplication protocol by incor-
porating the main idea of Beaver’s triplet [49]. A secret
multiplication triplet would be of the form ða; b; cÞ, where a
and b are random and private, and c ¼ a 	 b. The triplet would
be shared between the two edge servers in the offline phase.
Let Si ði ¼ 1; 2Þ have the shares ai, bi, and ci. In the online
phase, the two edge servers would compute the product
fðu; vÞ ¼ u 	 v over a finite field F. The basic idea of Beaver’s
triplet is to mask u and v with a and b. And then u 	 v can be
expressed as the linear combination of a, b, and c, whose com-
ponents will be publicly known and will not disclose any
information about u and v.

As illustrated in Fig. 2, we divide our secure multipl-
ication protocol SecMul into an offline phase and an
online phase. Note that the offline phase is independent of
the private input numbers. It can be pre-computed and
stored by the trusted third party T before performing the
actual computation. This will lead to a very efficient online
phase that just takes place between the two edge servers
S1 and S2.

Offline Phase. The trusted third party T generates the Bea-
ver’s triplet ða; b; cÞ, where a, b 2 F and c ¼ a 	 b, Then a, b,
and c are split into random shares: a ¼ a1 þ a2, b ¼ b1 þ b2,
and c ¼ c1 þ c2. The shares ai, bi, and ci will be distributed to
the two edge servers Si.

Online Phase. The two edge servers Si ði ¼ 1; 2Þ first mask
their inputs by computing ai ¼ ui � ai and bi ¼ vi � bi. Then
they send ai and bi to each other and reconstruct a and b.
Finally, S1 and S2 will compute and output f1 ¼ c1 þ b1 	 aþ
a1 	 b and f2 ¼ c2 þ b2 	 aþ a2 	 bþ a 	 b, respectively.

Similarly, when it comes to the field of Z2, we actually
implement the secure AND (^) computation.

5.3 Secure Comparison

The secure comparison is one of the most fundamental
building blocks in our scheme. Given two numbers u; v 2 R,
we want to compute fðu; vÞ ¼ ðu < vÞ and f 2 f0; 1g, where
f ¼ 1 if and only if u < v.

We first design a protocol for secure comparison of a
number and zero, which is actually to determine the sign of
the number. It could then naturally expand to the secure
greater than or equal to (GTE) and less-than (LT) compari-
son of two arbitrary numbers. Our secure comparison pro-
tocol is based on the fact that the most significant bit (MSB)
of the two’s complement representation of a signed integer
indicates the sign of the number. Thus the evaluation of the
GTE and LT predicates could be reduced to the bit extrac-
tion operations.

To extract the MSB and preserve the privacy of the data,
we adapt the bit-decomposition method in [50] to implement
bit-level operations in our scheme. The online operations are
performed between just two parties, which can greatly
reduce the communication overhead between the parties.
Given a shared l-bit number u ¼ u1 þ u2, we need to securely

compute the shares of the MSB uðl�1Þ ¼ u
ðl�1Þ
1 � u

ðl�1Þ
2 , where

ui and u
ðl�1Þ
i are the input and output of Si ði ¼ 1; 2Þ. This is

achieved bymasking the inputs with random values that will
be converted into sharing of bits. And the bits of original
inputs can be revealed by performing the bit-wise operations.
To ensure computation and communication efficiency, we
also put the random value generation on the trusted third
party T , whichwould be done in the offline phase.

Specifically, the following sub-protocols are included in
our secure comparison protocol.

Data Representation. The bit-decomposition approach we
use is over the signed integers, while the numbers we com-
pare may be decimals. Since we just require to determine the
sign of a number, we could convert the numbers into integers
by multiplying the numbers by 10p and remove the remain-
ing decimal places, where p is the number of decimal places
we want. Then, for the shared number u ¼ u1 þ u2, the two
edge servers Si ði ¼ 1; 2Þ can compute �ui ¼ bui 	 10pc, respec-
tively, where b	c denotes the round-down operation. For the
sake of simplicity in notation, we will omit the overbar in the
following if there is no confusion.

To perform the bit-wise operations, we make use of the
two’s complement binary representation of the number. The
weight of each bit is a power of two, except for the MSB,
whose weight is the negative of the corresponding power of
two. Specifically, for the l-bit signed integer u, it can be con-

verted into the form uðl�1Þuðl�2Þ 	 	 	uð0Þ with uðl�1Þ being the
MSB and

u ¼ �uðl�1Þ 	 2l�1 þ
Xl�2

j¼0

uðjÞ 	 2j:

Fig. 2. Secure multiplication protocol SecMul.
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Random Bits Generation. It is fairly easy for the third party
T to generate a random shared l-bit number r along with its
sharing of bits in Z2.

Specifically, T first generates two shares of random bits

r
ðl�1Þ
1 	 	 	 rð0Þ1 and r

ðl�1Þ
2 	 	 	 rð0Þ2 . Then he performs bit-wise XOR

and generates rðl�1Þ 	 	 	 rð0Þ, where rðjÞ ¼ r
ðjÞ
1 � r

ðjÞ
2 ; j ¼ 0;

1; . . . ; l� 1. According to the two’s complement binary repre-
sentation, r can be reconstructed by computing r ¼
�rðl�1Þ 	 2l�1 þ

Pl�2
j¼0 r

ðjÞ 	 2j. Then, T splits r into two shares
s1 and s2 such that r ¼ s1 þ s2. Note that si 6¼
�r

ðl�1Þ
i 	 2l�1 þ

Pl�2
j¼0 r

ðjÞ
i 	 2j; i ¼ 1; 2. Finally, T sends si along

with ðrðl�1Þ
i ; . . . ; r

ð0Þ
i Þ to Si, respectively.

Secure Bit-Wise Addition. Given two bit-wise shares
v
ðl�1Þ
i 	 	 	 vð0Þi and r

ðl�1Þ
i 	 	 	 rð0Þi , S1 and S2 need towork together

to reveal the bit-wise shares u
ðl�1Þ
i . . .u

ð0Þ
i of their sum u ¼

vþ r.
Although the carry lookahead adder (CLA) can solve the

carry delay problem of the ripple-carry adder (RCA) by calcu-
lating the carry bits in advance, it requires much more
rounds of communication between the two edge servers.
Therefore, in our scheme, we design the secure bit-wise
addition protocol based on the RCA. Specifically, we com-
pute the carry bit by iterating from the least significant bit to
the most significant one.

For the two input bit-wise numbers vðl�1Þ 	 	 	 vð0Þ and
rðl�1Þ 	 	 	 rð0Þ, we let uðjÞ be the sum of the bits at position j, and
cðjÞ be the carry bit at position j that is propagated through
from a less significant bit position.With cð0Þ ¼ 0, we have

uðjÞ ¼ vðjÞ � rðjÞ � cðjÞ;

cðjþ1Þ ¼ ðvðjÞ ^ rðjÞÞ � ððvðjÞ � rðjÞÞ ^ cðjÞÞ:

We can easily find out that only XOR (�) and AND (^)
operations are included. As illustrated in Fig. 3, when the
inputs are shared between the two edge servers S1 and S2,
the massive XOR operations can be performed by them
locally without any interaction with each other. For the

AND operations, they can also be implemented by invoking
the secure multiplication protocol SecMul over Z2.

Secure Bit Extraction. To extract the bits of the shared num-
ber u, S1 and S2 first mask their input shares u1 and u2 with
the received random number shares s1 and s2 by computing
t1 ¼ u1 � s1 and t2 ¼ u2 � s2, respectively. Then they send t1
and t2 to each other and compute v ¼ t1 þ t2. We can easily
find out that u ¼ u1 þ u2 ¼ vþ r. Since S1 and S2 have
known the value v and the bit-wise shares of r, they can work
together to compute the bit-wise shares of u by invoking the
above bit-wise addition protocol BitAdd. The secure bit
extraction protocol BitExtra is as illustrated in Fig. 4.

So far, we have extracted the shared bits of the number u.
Then the secure MSB protocol would just involve computing

uðl�1Þ ¼ u
ðl�1Þ
1 � u

ðl�1Þ
2 , which can determine the sign of the

shared number u, i.e., if uðl�1Þ ¼ 0, u � 0; otherwise, u < 0.
Finally, if we want to compare two shared numbers u and

v, we can transform the problem into determining the sign of
u� v. Specifically, given u ¼ u1 þ u2 and v ¼ v1 þ v2, S1 and
S2 can compute w1 ¼ u1 � v1 and w2 ¼ u2 � v2, respectively.
By invoking the secure MSB protocol, we can get the most sig-
nificant bit of w ¼ w1 þ w2. Correspondingly, we can obtain
the comparison result of u and v, i.e., if wðl�1Þ ¼ 0, we have
u � v; otherwise, u < v.

5.4 Vectorization

By using the efficient matrix-vector operations, we can make
the most of the nature of CNN, that is the data and parame-
ters can be organized into vectors and matrices. Moreover,
multiple instances can also be processed in a batch simu-
ltaneously. Correspondingly, we can speed up calculations
in the network significantly. Besides, in order to take better
advantage of the parallelism and efficient matrix operations,
we could have our secret-sharing based secure comp-
utation be performed simultaneously. This can be easily

Fig. 3. Secure bit-wise addition protocol BitAdd.

Fig. 4. Secure bit-extraction protocol BitExtra.

1446 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2021



implemented since the data is always in the form of shares in
our design and we don’t need to make any changes to the
data structures.

6 LIGHTWEIGHT PRIVACY-PRESERVING CNN
FEATURE EXTRACTION FOR MOBILE SENSING

In this section, we present the details of our design and the
secure interaction protocols. Note that for the sake of clarity
in notation, we use the marks0 and 00 to denote the shares
distributed to the two edge servers in the following.

6.1 Image Encryption

To protect the privacy of the original images, the sensor O
encrypts them based on the additive secret sharing tech-
nique. Specifically, for each image I of size w� h� d
(width, height, and depth, respectively), O first generates a
random volume V of the same size as I. To preserve the pri-
vacy of the original elements of I in the range ½0; 28 � 1
, the
elements of V are drawn uniformly at random from a much
larger interval ½�2n�1; 2n�1 � 1
, where n > 8 acts as secu-
rity parameter to define the message space. After that, O
encrypts I by splitting it into two shares in an element-wise
manner: I 0 ¼ V , and I 00 ¼ I � I 0. As illustrated in Fig. 5, we
give an example of splitting a handwritten image into two
shares with regard to different choices of n. The two shares
I 0 and I 00 are shown in the top row and the bottom row,
respectively. Then, I 0 and I 00 will be sent to two edge servers
S1 and S2, respectively.

6.2 Secure CNN Feature Extraction

As described above, a common convolutional neural network
architecture usually consists of the following four types of
layers: Convolutional Layer, ReLU layer, Pooling Layer, and
Fully-Connected Layer. To enable privacy-preserving CNN
feature extraction, we design a series of secure interactive

protocols between the two edge servers S1 and S2, as shown
in Fig. 6. These protocols correspond to the various layers
and will be the building blocks of our scheme. Note that we
aim to utilize the publicly available model of CNN and focus
on the inference phase. Thus, the parameters such as weights
and biases are considered to be public to all participants.

6.2.1 Convolutional Layer

The convolution operation essentially performs dot products
between the filters and local regions of the input, which is
associative and distributive over addition. Therefore, we can
take advantage of this fact and let S1 and S2 perform the for-
ward pass of the convolutional layer locally with the public
weightsw and biases b based on our secure addition protocol.

Specifically, for the ðj; kÞth hidden neuron in this layer,
S1 will compute the output:

y0j;k ¼
Xn�1

l¼0

Xn�1

m¼0

wl;mx
0
jþl;kþm þ b: (1)

And S2 will compute the output:

y00j;k ¼
Xn�1

l¼0

Xn�1

m¼0

wl;mx
00
jþl;kþm: (2)

Here, we use xj;k to denote the input activation at position j,
k. And the filters have size n� n with shared weights
wl;mðl;m ¼ 0; 1; . . . ; n� 1Þ and bias b. It is important to note
that we have set all the biases in S2 to be 0.

6.2.2 Fully-Connected Layer

Neurons in a fully connected layer have full connections to all
activations in the previous layer. Their activations can then be
computedwith amatrixmultiplication followed by a bias off-
set, which also satisfies the associativity and distributivity.
Therefore, the forward pass of the full-connected layer can
also be performed locally in S1 and S2 based on our secure
addition protocol. Specifically, for the jth hidden neuron in
this layer, S1 will compute one component of the activation:

y0j ¼
X
k

wjkx
0
k þ bj: (3)

And S2 will compute the other component of the activation

y00j ¼
X
k

wjkx
00
k: (4)

We use xk for the activation of the kth neuron in the previ-
ous layer. In addition, we use wjk to denote the weights for

Fig. 5. An example of splitting an image in the MNIST dataset into two
shares with regard to different choices of n. One share is in the top
row and the other is in the bottom row. (a) n = 8; (b) n = 16; (c) n = 24;
(d) n = 32; (e) n = 40.

Fig. 6. Privacy-preserving CNN feature extraction protocols.
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the connection from the kth neuron in the previous layer to
the jth neuron in the current layer, and bj to denote the bias
of the jth neuron in the current layer. Note that the sum is
over all neurons k in the previous layer and we have also
set the biases in S2 to be 0.

6.2.3 Activation Layer

Unlike the former two linear layers, the purpose of the acti-
vation layer is to introduce non-linearity into the network.
As described above, the default recommendation in modern
neural networks is to use ReLU. Therefore, we first describe
the privacy preserving ReLU layer.

ReLU layer applies the function maxðx; 0Þ thresholding
at zero. Note that each element x is shared by S1 and S2, i.e.,
x ¼ x0 þ x00. By applying the above secure MSB protocol, S1

and S2 will work together to determine the MSB of x. If the
MSB is 0, we have maxðx; 0Þ ¼ x; and otherwise, maxðx;
0Þ ¼ 0. Correspondingly, for the ðj; kÞth hidden neuron, we
let S1 have:

y0j;k ¼
x0
j;k if MSBðxÞ ¼ 0

0 if MSBðxÞ ¼ 1:

�
(5)

Meanwhile, we let S2 have

y00j;k ¼
x00
j;k if MSBðxÞ ¼ 0

0 if MSBðxÞ ¼ 1:

�
(6)

Themajor drawback of ReLU is that it cannot learn via gra-
dient-based methods when x < 0 [51]. Several generaliza-
tions of ReLU are proposed to address this issue, including
absolute value rectification, leaky ReLU, and parametric
ReLU. They are based on using a non-zero slope a when
x < 0: maxðx; 0Þ þ aminðx; 0Þ. The main difference between
them lies in the value of a, which can be fixed to �1, 0.01, or
even be treated as a learnable parameter, respectively.

For the generalizations of ReLU, we need to make corre-
sponding modifications. Particularly, for the ðj; kÞth hidden
neuron, we let S1 have:

y0j;k ¼
x0
j;k if MSBðxÞ ¼ 0

aj;kx
0
j;k if MSBðxÞ ¼ 1:

�
(7)

Meanwhile, we let S2 have

y00j;k ¼
x00
j;k if MSBðxÞ ¼ 0

aj;kx
00
j;k if MSBðxÞ ¼ 1:

�
(8)

Other Non-Linear Activation Layers. We note that, prior to
the introduction of ReLU, most neural networks used the
sigmoid activation function sðxÞ ¼ 1=ð1þ e�xÞ or the tanh
activation function tanhðxÞ. However, it is accepted that
they suffer from the problem of vanishing gradient and
therefore make gradient-based learning difficult. Thus, their
use as activation functions in feedforward networks is now
discouraged. In addition, many other types of activation
functions are possible but are used less frequently.

Even so, for the sake of completeness, we still give a gener-
alized approach for securely processing the non-linear activa-
tion layers. As previous work [9], we also adopt the piecewise
polynomial spline because of its ease and accuracy of construc-
tion and evaluation, and its capacity to approximate complex

shapes [52]. Then, the non-linear functions can be approxi-
matedwith piecewise polynomials

fðxÞ ¼

P0ðxÞ; x0 � x < x1

P1ðxÞ; x1 � x < x2

	 	 	
Pk�1ðxÞ; xk�1 � x < xk;

8>><
>>:

where P ðxÞ is an n-degree polynomial, i.e., P ðxÞ ¼ a0þ
a1xþ 	 	 	 þ anx

n. There is no doubt that higher degree poly-
nomials give better approximations.

To further protect the privacy of the elements x, we pro-
pose to split the piecewise polynomials as well. We let the
coefficients ai ¼ a0i þ a00i . Correspondingly, P ðxÞ ¼ P 0ðxÞþ
P 00ðxÞ, where P 0ðxÞ ¼ a00 þ a01xþ 	 	 	 þ a0nx

n and P 00ðxÞ ¼
a000 þ a001xþ 	 	 	 þ a00nx

n are stored in S1 and S2, respectively.
Meanwhile, the endpoints of the intervals are also split into
shares distributed to S1 and S2, i.e., xj ¼ x0

j þ x00
j . It’s not

hard to find out that the polynomials can be solved securely
by applying the above secure computation protocols. Specif-
ically, the first step is to decide which interval x lies in,
which could be easily implemented with the secure compar-
ison protocol. Since the polynomials only include addition
and multiplication operations, we can then securely solve
them by invoking the secure addition and multiplication
protocols.

We must point out that, compared with previous work
based on computation-intensive cryptographic primitives
like homomorphic encryption and garbled circuits, we can
ensuremuch better accuracy by representing these non-linear
layers with higher degree polynomials. This is due to the fact
that we can achieve high efficiency with our secret-sharing
based secure computation protocols, and meanwhile, we
don’t need to deal with the noise growth in the ciphertext.

6.2.4 Pooling Layer

Pooling layer performs a downsampling operation along the
spatial dimensions (width, height). As described above, pop-
ular pooling functions include the average pooling and the
max pooling. For the average pooling that outputs the aver-
age of the valueswithin a rectangular neighborhood, it is triv-
ial to check that computing average is also associative and
distributive over addition. If we use the average pooling in
our network, the two edge servers can still perform the pool-
ing operations locally.

However, the max pooling is a bit more complicated. It
reports the maximum output within a rectangular neighbor-
hood. Let the stride size be n, then each max is taken over
n� n numbers. In our scenario, each number xiði 2
f1; 2; . . . ; n2gÞ is split into two components x0

i and x00
i . Here, x0

i

is owned by S1, and x00
i is owned by S2. To perform the max

operation, S1 and S2 need to work collaboratively based on
our secure comparison protocol to obtain the index m of the
maximumnumberwithout revealing the actual numbers.

Specifically, for two numbers xi and xj, we have

ðxi < xjÞ ¼ MSBðxi � xjÞ
¼ MSBððx0i þ x00

i Þ � ðx0j þ x00
j ÞÞ

¼ MSBððx0i � x0
jÞ þ ðx00

i � x00
j ÞÞ:

1448 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2021



Correspondingly, S1 and S2 will compute Dx0 ¼ x0
i � x0

j and
Dx00 ¼ x00

i � x00j , respectively. Then, they will work together to

compute MSBðDx0;Dx00Þ by using the above bit-extraction pro-
tocol. If the output of MSB is 0, we will claim that xi � xj; oth-

erwise, xi < xj.
In this way, after iterating through all the n2 values and

performing n2 � 1 encrypted comparisons, S1 and S2 can
determine the indexm of the largest value. Correspondingly,
S1 will output

y0 ¼ x0
m; m ¼ argmax

i2f1;2;...;n2g
ðx0

i � x00
i Þ: (9)

And S2 will output

y00 ¼ x00
m; m ¼ argmax

i2f1;2;...;n2g
ðx0

i � x00i Þ: (10)

To reduce the interactions between the edge servers, S1

and S2 can compute Dx0 and Dx00 between any two numbers
within the n� n region simultaneously. Then, they can per-
form the secure comparison protocols for all Dx0s at once.

6.2.5 Remarks

Since we focus on the inference phase, many layers that
work during the learning phase would not make any differ-
ence to our scheme. In addition, some layers have since
fallen out of favor because their impact has been shown to
be limited in practice. For instance, it is shown that the Local
Response Normalisation (LRN) does not improve the per-
formance, but leads to increased memory consumption and
computation time [53]. Moreover, it is impractical to
describe all the layers here. Therefore, we just highlight the
building blocks that compose the current best CNN archi-
tectures such as ResNets [54].

In particular, the residual layers and the skip connections
in ResNets make the training of very deep networks possi-
ble. They have become indispensable components in a vari-
ety of neural network architectures [55] and have a very
positive effect in the practical application. Specifically, the
skip connections are added to perform identity mapping. A
residual block that consists of a few stacked non-linear
layers are learned to approximate the residual functions,
i.e., FðxÞ ¼ y� x, where x and y are the input and output of
the residual block. Then, the output of the residual block
will be y ¼ FðxÞ þ x. When the input x is split into two
shares x0 and x00 in our scheme, we let S1 compute

y0 ¼ Fðx0Þ þ x0: (11)

Meanwhile, we let S2 compute

y00 ¼ Fðx00Þ þ x00: (12)

Since the skip connections add neither extra parameter nor
computational complexity [54], the residual layers can be per-
formed by the two edge servers locally and simultaneously.

6.3 CNN Feature Decryption

After performing the series of interactive protocols corre-
sponding to the pre-trained CNN architecture, S1 and S2 will
take the outputs of some layer in the network as the

components of the CNN feature f. Thus, S1 will output one
component f0; and S2 will output the other component f00.
Both components f0 and f00 will then be sent to the image user
U. According to the nature of the additive secret sharing, U
can decrypt the CNN feature by simply computing
f ¼ f0 þ f00.

Note that we consider feature extraction as a fundamental
problem in the many visual tasks. Combined with some clas-
sifiers (e.g., the linear SVM classifier), or some distance met-
rics (e.g., the L2 distance), the decrypted f can be utilized to
tackle the various visual tasks of image classification, image
retrieval, and so on. Certainly, we can also combine these
classifier into the network and trained an end-to-end deep
learning model. Since we have constructed a series of build-
ing blocks and implemented the various secure computation
protocols, the privacy-preserving inference can also be fully
supported.

7 THEORETICAL ANALYSIS

7.1 Correctness

In the process of CNN feature extraction, the network trans-
forms the original image I layer by layer from the raw pixels
to a single vector f. In our scheme, I is divided into two com-
ponents by I ¼ I 0 þ I 00 based on the additive secret sharing.
Intuitively, we don’t necessarily have the output f ¼ f0 þ f00

after a sequence of linear and non-linear transformations.
However, through our collaborative design, we can ensure
that the systemwill return the exact feature vector.

First, the convolutional layers, the fully-connected layers,
and even the average pooling layers in the network essen-
tially perform linear dot products. For the input x ¼ x0 þ x00,
we naturally have the output y0 þ y00 ¼ y. Second, for the
ReLU layers, whether the input is larger than 0 or not is deter-
mined collaboratively by the two edge servers S1 and S2. For
the input that is larger than 0, both S1 and S2 will retain the
original x0 and x00. Then y0 þ y00 ¼ x0 þ x00 ¼ y.When the input
is less than 0, for the basic ReLU, the output of S1 and S2 will
both be 0; for the other generalizations of ReLU, we still have
y0 þ y00 ¼ ax0 þ ax00 ¼ ax ¼ y. Third, for the max-pooling
layers, since the index m of the largest value is also deter-
mined collaboratively by the two edge servers, we have
x0m þ x00

m ¼ y0 þ y00 ¼ y. Finally, for the residual layers in
ResNets, since the skip connections are identity mapping, we
have y0 þ y00 ¼ ½Fðx0Þ þ x0
 þ ½Fðx00Þ þ x00
 ¼ Fðx0 þ x00Þ þ
ðx0 þ x00Þ ¼ y. The second equality is from the above analysis
that the output of the non-linear layers can still preserve the
additive property. Therefore, the skip connections have no
effect on the results.

Note that we convert the decimal numbers into integers
when performing secure comparison. Normally, this will
not impact the comparison result except that the two num-
bers are very close to each other. However, to keep the
desired precision, e.g., p decimal places, we can scale up the
values by multiplying the original numbers by 10p. Mean-
while, to prevent overflow when representing the converted
integers in binary form, we should let 0 < p < ðl� nÞ 	 lg2,
where l and n are the bit-widths of the converted integers
and the generated random numbers, respectively.

Overall, although the inputs are divided into two shares,
the output of each layer and even the whole network still
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preserves the additive property. This ensures that the data
user will finally be able to extract the CNN features correctly.
Moreover, we don’t need to make any approximations for
recommended common CNN layers during the whole pro-
cess of our scheme like other schemes based on homomorphic
encryption. Thus, our scheme can be applied to any such
CNN architectureswithout loss in accuracy.

7.2 Security

We prove the security of our protocols in the universal com-
posability framework [56], [57]. In our honest-but-curious
model, the adversary is allowed to corrupt at most one of the
two edge serversS1 and S2. To prove that a protocol is secure,
it suffices to show that the view of the corrupted party is sim-
ulatable given its input and output [39]. Specifically, we use
the following definition.

Definition 1. We say that a protocol is secure if there exists a
probabilistic polynomial-time simulator S that can generate a
view for the adversary A in the real world and the view is com-
putationally indistinguishable from its real view.

To prove the security of our protocols, the following lem-
mas will be used.

Lemma 1. [39]. A protocol is perfectly simulatable if all its sub-
protocols are perfectly simulatable.

Lemma 2. If a random element r is uniformly distributed on Zn

and independent from any variable x 2 Zn, then r� x is also
uniformly random and independent from x.

We refer the reader to [39] and [37] for the proofs of Lem-
mas 1 and 2. Since most of the subprotocols in our scheme
are performed locally, they can be perfectly simulated.
Therefore, we mainly prove the security for the ones that
need interactions between S1 and S2 in the following.

Theorem 1. The protocol SecMul is secure in the honest-
but-curious model.

Proof. For S1, the view in the protocol execution will be
view1 ¼ ðu1; v1; a1; b1; c1;a2;b2Þ, where a2 ¼ u2 � a2 and
b2 ¼ v2 � b2. According to Lemma 2, it is trivial to see that
all these values are uniformly random. Besides, the out-
put of S1 will be output1 ¼ ðf1 ¼ c1 þ b1 	 aþ a1 	 bÞ,
where f1 is also uniformly random. Therefore, both view1

and output1 are simulatable by the simulator S and the
views of S and A will be computationally indistinguish-
able. Likewise, for S2, it is easy for the simulator S to gen-
erate a view that is computationally indistinguishable
from its real view. tu

Theorem 2. The protocol BitAdd is secure in the honest-but-
curious model.

Proof. For Si, the view during an execution of BitAdd will

be viewi ¼ ðvðjÞi ; r
ðjÞ
i ;b

ðjÞ
i ;a

ðjÞ
i Þ; 0 � j � l. Here, v

ðjÞ
i and r

ðjÞ
i

are uniformly random. Meanwhile, b
ðjÞ
i and a

ðjÞ
i are

obtained through the SecMul protocol that has been

proven secure in the honest-but-curious model. Therefore,

viewi is simulatable by the simulator S. Besides, the output
of Si will be outputi ¼ ðuðjÞ

i ¼ v
ðjÞ
i � r

ðjÞ
i � c

ðjÞ
i Þ, where c

ðjÞ
i ¼

a
ðj�1Þ
i � b

ðj�1Þ
i . Since the operations are performed locally

by S1 and S2, outputi is also simulatable by the simulator S.
Therefore, our protocol BitAdd is secure in the honest-

but-curiousmodel. tu

Theorem 3. The protocol BitExtra is secure in the honest-
but-curious model.

Proof. Before performing the BitAdd, the views of S1 and
S2 will be view1 ¼ ðu1; r1; v2Þ and view2 ¼ ðu2; r2;

v
ðl�1Þ
2 	 	 	 vð0Þ2 Þ, respectively. It’s trivial to see that they are

uniformly random and can be simulated by the simulator

S. Since the security of the protocol BitAdd has been

proven above, it’s trivial to prove the security of the whole

protocol BitExtra aswell. Correspondingly, the MSB pro-

tocol is also secure in the honest-but-curiousmodel. tu

Theorem 4. The CNN feature extraction protocol in our scheme
is secure in the honest-but-curious model.

Proof. For the convolutional layer and the fully-connected
layer, Si received no output. Thus, it’s trivial for a simula-
tor S to generate the view of the incoming messages
received by Si. For the ReLU layer and the Max-pooling
layer, the only interactions between S1 and S2 occur
when comparing two numbers. Note that our comparison
protocol is based on the MSB protocol that is actually the
simulatable building block BitExtra. For the other non-
linear activation layers, they are solved by representing
them as polynomials, which is also based on the simulat-
able building blocks BitExtra and SecMul. They are
simulatable by the simulator S. Therefore, we conclude
that our CNN feature extraction protocol is secure in
the honest-but-curious model. tu

7.3 Efficiency

Although there can be some trade-off between privacy and
efficiency, use of the additive secret sharing in our scheme
leads to substantial efficiency gains over the use of homomor-
phic encryption in previous work. On the one hand, the
image sensor just needs to perform random number genera-
tion and simple subtraction to encrypt the images before
moving the images to the edge servers. The computation time
will be only Oð1Þ. This greatly reduces the overhead on the
end devices. On the other hand, during the online phase of
the whole process of CNN feature extraction in our scheme,
all communication takes place between the two edge servers.
The end devices do not have to participate in an online phase
with unacceptable amounts ofwork and communication.

As to the communication cost between the two edge serv-
ers, it relies on the network architecture to some extent. How-
ever, communication takes place only when the non-linearity
happens. Since we don’t rely on any computation-intensive
cryptographic primitives like homomorphic encryption and
garbled circuits, our approach has a very small communica-
tion overhead. With regard to the number of rounds of com-
munication between the two edge servers, we take full
advantage of the nature of convolutional neural networks
and secret sharing techniques, and the operations in our
scheme can be performed in parallel. Correspondingly, the
number of rounds of communication in our scheme can be
reduced to OðlÞ, where l is the bit-width of the inputs. In
the following experiments, we will show that the latency
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would be very low since the message size in each round of
communication is very small.

Besides, we restrict the number of the participants and put
the computation-intensive work on just two edge servers in
our scheme. Correspondingly, on the mobile sensors and the
user side, we only need two thirds of the storage and band-
width resources in previous work [37], [39], [43], [44], [45]
that is designed for three parties. The decrease of the required
storage and transmission resources is considerable for the
resource-constrained end devices. Moreover, this can avoid
frequent interactions between themulti-parties, whichwould
bring extra delay and reduce the efficiency. We can see from
Table 1 that the rounds of communication and the total
amount of communication for the basic secure computation
protocols (including SecMul and SecCmp) in our scheme are
alsomuch less than previouswork.

8 EXPERIMENTAL RESULTS

In this section, we present the experimental results of our
scheme with regard to the secret-sharing based secure com-
parison protocols and the privacy-preserving CNN feature
extraction protocol.

Our mobile application was implemented in Java and was
run on a mobile phone (HUAWEI Honor 8 Lite) running
Android 7.0 with an octa-core Kirin 655 processor @ 1.7 GHz
and 4 GB of RAM. Our privacy-preserving CNN feature
extraction protocol was implemented in Python 3. The pack-
ageNumPywas used as a multi-dimensional container of the
numbers to implement our secret-sharing based secure com-
putation protocols in parallel. The CNN networks were
trained with the Caffe framework [58]. And we run the pri-
vacy-preserving CNN feature extraction protocol on two
servers running Ubuntu 18.04 in the LAN setting. Each
server was equipped with a 4-core Intel Core i7-6700 CPU @
3.40 GHz and 16 GB of RAM. The times reported are an aver-
age over 10 trials.

8.1 Performance of Secure Comparison

In our scheme, the operations in the non-linear ReLU layers
and the Max-pooling layers are both reduced to the secure
comparison of numbers. Since other linear layers that can be
performed locally and efficiently, the secure comparison
becomes the main part of the computation and communica-
tion. Therefore, we first evaluate the performance of the
secure comparison in our scheme.

Sincewe implement our secure comparison protocol based
on the bit-decompositionmethod, we evaluated the impact of
different bit-width l of the inputs on the runtime of doing one
secure comparison. The offline phase includes the generation

of random numbers and random multiplication triplets by
the trusted third party. And the online phase includes the
comparison of two l-bit numbers by the two edge servers. As
shown in Figs. 7a and 7b, the runtime and the communication
overhead both go up in the bit-width l. However, they are in a
matter of “milliseconds” and “bytes”. In particular, when we
choose the security parameter n < 30, it is enough to set
l ¼ 32. At this point, the runtime and the communication
overhead are less than 1ms and 100 B, respectively. Therefore,
to make a tradeoff between privacy and efficiency, we’ll use
l ¼ 32 in the following.

Instead of doing secure comparisons one by one, we put
the numbers in the NumPy ndarrays andmake use of vectori-
zation to apply operations in parallel. This is consistent with
the nature of CNN and secret sharing. Fig. 7c depicts the run-
time in ms when doing comparisons with different parallel
batch sizes. We can see that the runtime has not changed
much as the parallel batch size grows. Even when the batch
size is 104, the runtimes in the offline and online phase are just
34 ms and 83 ms, respectively. We also compared our results
with the well known Yao’s GC implemented in [59]. Its run-
time grows in proportion to the parallel batch size, which is
much less efficient than ours. Besides, we can see from Fig. 7d
that the communication overhead among the parties are just
several hundred KBwhen the batch size is 104, which ensures
the high efficiency of the communication in our scheme.

8.2 Performance of Privacy-Preserving CNN Feature
Extraction Protocol

To evaluate the performance of our scheme, we compare our
results with previous work including (1) CryptoNets [8],
which adopted the homomorphic encryption; (2) MiniONN
[9], which combined the garbled circuits with homomorphic
encryption; and (3) Chameleon [10], which proposed a more
complicated and mixed protocol framework combining the
garbled circuits, GMW, and additive secret-sharing.

TABLE 1
Comparison of the Protocol Complexities
(Here, l is the bit-width, andm ¼ log2l.)

Approach SecMul SecCmp

Rounds Comm (bits) Rounds Comm (bits)

[37] 1 15l 1
2 lm 30lmþ 32l

[43] 1 6l - -
Ours 1 2l lþ 1 10l� 4

Fig. 7. Performance of secure comparison: (a) Runtime for different
bit-width l of the inputs; (b) Communication overhead between the two
edge servers for different bit-width l of the inputs; (c) Runtime for
different parallel batch size; (d) Communication overhead between the
two edge servers for different parallel batch size.
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Network Architecture. As shown in Fig. 8, we tested our
approach on three kinds of network architectures. We repre-
sent them by Network I, II, and III, which include 5, 9, and 17
layers, respectively. Note that we use the output of the last
layer as our feature vector and meanwhile use the softmax to
further handle the extracted feature vector. Here, Network I
and II are trained for the MNIST recognition task. TheMNIST
dataset comprises 60,000 training and 10,000 test greyscale
images of size 28� 28. Network III is trained for the image
classification task on the CIFAR-10 dataset, which consists of
50,000 training and 10,000 test RGB images of size 3� 32� 32.

Accuracy. For Network I, II, and III, we can obtain the accu-
racy of 98.27, 99.14, and 82.45 percent, respectively, which are
consistent with the networks we trained in plaintext. Essen-
tially, this is due to the fact that we don’t need to make any
approximations for the common layers during the design of
the network architecture. Thus, our scheme can be applied
to the network that has any number of layers and can obtain
comparable accuracy to the CNN model in plaintext. More
importantly, to make the network compatible with homo-
morphic encryption, [8] simply replaces the activation func-
tion by the lowest-degree non-linear polynomial function,
i.e., the squared function. As admitted by the authors

themselves, the unbounded derivative of the square fun-
ctions leads to a strange behavior during training. As a result,
their protocols can only be applied to a shallow network and
its accuracy can be very low for networks with more than 2
non-linear layers.

We also evaluate the impact of the kept number of decimal
places pwhen performing secure comparison on the accuracy
of our networks. As illustrated in Fig. 9, when p > 0, we can
maintain the accuracy that is obtained in plaintext. It is consis-
tent with our accuracy analysis that converting the decimals
into integers when performing comparison has an impact on
the accuracy only when the two numbers are very close to
each other.

Efficiency. We first test the cost of the end devices for
image encryption. In particular, the power consumption
(measured in mAh) is collected with the tool Batterystats
included in the Android framework. We can see from
Table 2 that the runtime and the power consumption for
encryption increase almost linearly with the image size and
the batch size. However, both the runtime and the power
consumption are totally acceptable and the encryption pro-
cess does not cause any noticeable impact on the perfor-
mance. We also compare with CryptoNets the cost of the
end devices and the communication overhead between the
end devices and the servers for processing a batch of 4096
images from the MNIST. The results in Table 3 show that,
compared with CryptoNets, the time costs during the
encryption and decryption phases in our implementation
are almost negligible. Besides, we don’t need additional
time for every parallel instance to be encoded and decoded.
This is because the end devices just need to perform the ran-
dom number generation and simple subtraction to encrypt
the images and decrypt the final results. Thus, the overhead
of the end devices can be greatly reduced. With regard to
the communication costs in Table 4, CryptoNets need to
encrypt each pixel as five polynomials and each coefficient

Fig. 8. Our CNN architectures: (a) Network I, (b) Network II, and (c)
Network III.

Fig. 9. Relationship between accuracy and the kept number of decimal
places p.

TABLE 2
The Runtimes of the Encryption Phase for Different Batch

Sizes in the Mobile Device

Batch Size MNIST CIFAR-10

Runtime
(s)

Power usage
(mAh)

Runtime
(s)

Power usage
(mAh)

1 0.009 0.0429 0.015 0.0538
10 0.012 0.0487 0.018 0.0548
100 0.024 0.0515 0.052 0.0588
1000 0.103 0.0637 0.346 0.0740
10000 0.796 0.140 3.158 0.345

TABLE 3
Comparison of the Runtimes of the Encryption and Decryption

Phases for a Batch of 4096 Images from the MNIST

Approach
Encoding

+Encryption
(s)

Decryption
+Decoding

(s)

Runtime
Additional
latency

Runtime
Additional
latency

CryptoNets [8] 44.5 565.248 3 49.152
Our scheme 0.344 0 0.056 0
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in the polynomial requires 24 bytes, while each pixel just
requires 4 bytes in our scheme. Therefore, we can greatly
bring down the communication overhead between the end
devices and the edge servers.

We then test the performance of our privacy-preserving
feature extraction scheme that is performed by the two edge
servers. Table 5 shows the runtimes of different layers for
processing one instance with the three networks. We can
see that most layers are very efficient since they can be per-
formed by the servers locally, and the cost of our scheme is
led by the activation and max-pooling layers. Here, the run-
times in the online phase mainly include performing the
secure comparison protocols, while the generation of ran-
dom numbers and multiplication triplets are performed by
the trusted third party in the offline phase.

We compare the runtime and communication overhead of
processing one instance from Tables 6, 7, and 8. We can see
that our scheme outperforms previous work by several
orders of magnitude in terms of the runtime. This is
mainly due to the fact that we don’t rely on any heavy crypto-
graphic primitives. Thus, we avoid the heavy homomorphic

computation over the encrypted data. In addition, generation
and transmission of garbled circuits are time-consuming, par-
ticularly for such data and computation intensive task. More
importantly, by using the vectorization technique, we can
maintain the data structure of the network and perform the
operations in parallel to themaximum. The tables also exhibit
a very low communication overhead between the parties in
our scheme. This is for the same reason that we don’t need to
transmit large ciphertexts and garbled circuits.

9 CONCLUSIONS

When designing a privacy-preserving CNN feature extrac-
tion scheme for mobile sensing, it is not easy to simulta-
neously satisfy the three requirements: privacy, accuracy,
and efficiency. To achieve the privacy requirement, previous
work mostly relies on the heavy cryptographic primitives.
Due to the complexity of deep CNN, the accuracy and effi-
ciency of their schemeswere reduced inevitably.

In this paper, we proposed a novel lightweight framework
integrating mobile sensing and edge computing. The pri-
vacy-preserving CNN feature extraction could be performed
at the edge of the network.We first randomly split the images
into shares and outsourced them to two edge servers respec-
tively. By utilizing the secret-sharing based secure computa-
tion, we designed a series of secure interaction protocols
corresponding to the different layers in CNN. Thus, we
implemented the CNN feature extraction over the encrypted
data. Moreover, we could guarantee low overhead on the
mobile devices and low latency of the network bymoving the
data and processing to the edge. Through theoretical analysis
and empirical experiments, we demonstrated the security,
effectiveness, and efficiency of our scheme.
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TABLE 4
Comparison of the Communication Overhead Between

the End Devices and the Servers for a Batch of
4096 Images from the MNIST

Approach
Sensor! Server Server! User

Message
size
(MB)

Size per
instance
(KB)

Message
size
(MB)

Size per
instance
(KB)

CryptoNets [8] 367.5 91.975 4.70 1.17
Our scheme 12.25 3.063 0.16 0.04

TABLE 5
Comparison of the Runtimes (ms) of Different Layers

Layers Network I Network II Network III

Convolution Online 0.62 2.01 17.49

Square
Offline 0.839 - -
Online 0.82 - -

ReLU
Offline - 34.3 611.36
Online - 78.71 1541.44

Max-pooling
Offline - 50.13 -
Online - 121.58 -

Mean-pooling Online 0.37 - 1.85

FC Online 0.15 0.34 0.29

TABLE 6
Comparison of the Runtimes and Message Sizes with Network I

Approach
Runtime (s) Message sizes

(MB)

Offline Online Offline Online

CryptoNets [8] 0 297.5 0 372.2
MiniONN [9] 0.88 0.4 3.6 44
Our scheme 0.0009 0.002 0.022 0.015

TABLE 7
Comparison of the Runtimes and Message Sizes with

Network II

Approach
Runtime (s) Message sizes

(MB)

Offline Online Offline Online

MiniONN [9] 3.58 5.74 20.9 636.6
Our scheme 0.09 0.21 1.57 0.99

TABLE 8
Comparison of the Runtimes and Message Sizes with

Network III

Approach
Runtime (s) Message sizes

(MB)

Offline Online Offline Online

MiniONN [9] 472 72 3046 6226
Chameleon [10] 22.97 29.7 1210 1440
Our scheme 0.62 1.55 10.57 6.61
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