
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2020

Revisiting supervised and unsupervised methods for effort-aware Revisiting supervised and unsupervised methods for effort-aware

cross-project defect prediction cross-project defect prediction

Chao NI
Zhejiang University

Xin XIA
Monash University

David LO
Singapore Management University, davidlo@smu.edu.sg

Xiang CHEN
Nanjing University

Qing GU
Nanjing University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
NI, Chao; XIA, Xin; LO, David; CHEN, Xiang; and GU, Qing. Revisiting supervised and unsupervised methods
for effort-aware cross-project defect prediction. (2020). IEEE Transactions on Software Engineering. 1-16.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5927

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5927&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 1

Revisiting Supervised and Unsupervised
Methods for Effort-Aware Cross-Project Defect

Prediction
Chao Ni, Xin Xia, David Lo, Xiang Chen, and Qing Gu

Abstract—Cross-project defect prediction (CPDP), aiming to apply defect prediction models built on source projects to a target project,
has been an active research topic. A variety of supervised CPDP methods and some simple unsupervised CPDP methods have been
proposed. In a recent study, Zhou et al. found that simple unsupervised CPDP methods (i.e., ManualDown and ManualUp) have a
prediction performance comparable or even superior to complex supervised CPDP methods. Therefore, they suggested that the
ManualDown should be treated as the baseline when considering non-effort-aware performance measures (NPMs) and the ManualUp
should be treated as the baseline when considering effort-aware performance measures (EPMs) in future CPDP studies. However, in
that work, these unsupervised methods are only compared with existing supervised CPDP methods using a small subset of NPMs, and
the prediction results of baselines are directly collected from the primary literatures. Besides, the comparison has not considered other
recently proposed EPMs, which consider context switches and developer fatigue due to initial false alarms. These limitations may not
give a holistic comparison between the supervised methods and unsupervised methods. In this paper, we aim to revisit Zhou et al.’s
study. To the best of our knowledge, we are the first to make a comparison between the existing supervised CPDP methods and the
unsupervised methods proposed by Zhou et al. in the same experimental setting when considering both NPMs and EPMs. We also
propose an improved supervised CPDP method EASC and make a further comparison with the unsupervised methods. According to
the results on 82 projects in terms of 11 performance measures, we find that when considering NPMs, EASC can achieve prediction
performance comparable or even superior to unsupervised method ManualDown in most cases. Besides, when considering EPMs,
EASC can statistically significantly outperform the unsupervised method ManualUp with a large improvement in terms of Cliff’s delta in
most cases. Therefore, the supervised CPDP methods are more promising than the unsupervised method in practical application
scenarios, since the limitation of testing resource and the impact on developers cannot be ignored in these scenarios.

Index Terms—Defect prediction, cross-project, supervised model, unsupervised model

F

1 INTRODUCTION

Software defect prediction (SDP) [1]–[4] is a hot research
topic in software engineering research domain and aims
to help prioritizing testing resource allocation by predict-
ing defect-prone program modules in advance. Given the
prediction results, a project manager can (1) classify the
modules into two categories, high defect-prone or low
defect-prone [5], [6], or (2) rank the modules from the
highest to lowest in terms of defect-proneness [7], [8]. In
both scenarios, more resources can be allocated to perform

• Chao Ni is with School of Software Technology, Zhejiang University,
Ningbo, China and Ningbo Research Institute, Zhejiang University,
Ningbo, China and PengCheng Laboratory, Shenzhen, China.
E-mail: jacknichao920209@gmail.com.

• Xin Xia is with the Faculty of Information Technology, Monash Univer-
sity, Melbourne, Australia.
E-mail: xin.xia@monash.edu

• David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore.
E-mail: davidlo@smu.edu.sg

• Xiang Chen is with the School of Information Science and Technology
Science, Nantong University, China and Nanjing University, Nanjing,
China.
E-mail: xchencs@ntu.edu.cn

• Qing Gu is with State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China.
E-mail: guq@nju.edu.cn

• Xin Xia and Qing Gu are the corresponding authors.

Manuscript received ; revised.

code inspection or software testing on highly defect-prone
program modules. A large number of defect prediction
methods have been proposed, which mainly apply machine
learning techniques to build prediction model by mining
data stored in software repositories (such as version control
systems, bug tracking systems) [9], [10]. For a given project,
it is common to use the historical project data to build a
model. Besides, prior studies have shown that the model
can predict defects well on test data if a sufficiently large
amount of data is avaliable [11].

However, in practice, it is challenging that sufficient
training data is available for a new project. Thus, researchers
focus on cross-project defect prediction (CPDP) [3], [6], [12]–
[17] which builds a model using training data from other
projects (i.e., source projects) to predict defective modules
in a particular project (i.e., target project). Many methods
have been proposed for CPDP scenario and have achieved
promising prediction performance [6], [13], [18]. Most of
them are supervised methods which build models with the
help of labelled data. Recently, some researchers proposed
unsupervised methods [5], [19]. Most recently, Zhou et al.
[5] conducted large-scale empirical studies on comparison
between unsupervised and supervised methods. Their em-
pirical results showed that the simple module size based
methods (i.e., ManualDown and ManualUp that predicts
the defect-proneness of a module based on the lines of code)
have a prediction performance comparable or even superior

Published in IEEE Transactions on Software Engineering, 2020, Advance online
DOI: 10.1109/TSE.2020.3001739

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2

to existing supervised CPDP methods. The result is sur-
prising as supervised models which benefit from historical
data are expected to perform better than unsupervised ones.
Besides, their findings indicated that previous studies on
defect prediction have made a simple problem too complex
and consequently have a high influence on two-folds. For
practitioners, it will assist in determining whether it is worth
to apply the existing supervised CPDP methods in practice.
If simple module size methods perform similarly or even
better, there seems to have no practical reasons to adopt
complex supervised CPDP methods. For researchers, if sim-
ple module size methods perform similarly or even better,
they strongly need to improve the prediction performance
of the existing supervised CPDP methods.

However, there have a few limitations in Zhou et al.’s
study, such as no implementation of baseline methods,
non-uniform performance measures, and no recently pro-
posed effort-aware performance measures. In particular,
First, Zhou et al. did not re-implement the baseline CPDP
methods and just reported the baseline methods’ perfor-
mance values published in corresponding original papers.
Researchers may conduct experiments with different de-
fault experimental settings [20], which may result in unfair
comparisons and consequently draw unreliable conclusions.
For example, the experiments in these works [6], [21]–
[23] are conducted by Java programming language, and
the experiments in these works [24], [25] are conducted
by Matlab programming language. All of them are treated
as partial baseline methods in Zhou et al.’s work. How-
ever, Zhou et al. [5] conducted their own experiments by
R programming language. Second, different performance
measures have been used to investigate the effectiveness of
different CPDP methods. In particular, although Zhou et al.
discussed a large number of performance measures in their
work, they only use a small subset of them in a specific
comparison between supervised and unsupervised meth-
ods. For example, Ryu et al. [23] just reported AUC measure,
and Peters et al. [21] just reported G1 measure. Therefore,
Zhou et al. only compared with Ryu et al.’s work in terms
of AUC and compared with Peters et al.’s work in terms
of G1. They did not compare with these methods in terms
of any other performance measures. Limited performance
measures can barely provide a holistic comparison of these
methods’ ability in CPDP scenario. Third, recently proposed
effort-aware performance measures [26], [27], which con-
sider context switches and developer fatigue due to initial
false alarms, have not been considered. Since the limitation
of testing resources and the impact on developers cannot
be ignored in practice, their comparison should take these
measures into consideration.

Considering these limitations and yet the high impact
of Zhou et al.’s work [5], we want to revisit their work
by conducting a comprehensive comparison between su-
pervised and unsupervised methods considering the same
experimental settings and a more comprehensive set of
performance measures especially recently proposed effort-
aware performance measures [26], [27].

In this paper, we conduct a revisit study with the help
of CrossPare developed by Herbold et al. [28]. CrossPare
is the sole benchmark toolkit for cross-project defect pre-
diction comparison and has implemented all these existing

baselines in Zhou et al.’s work. We investigate the difference
between the top four comprehensive ranking supervised
CPDP methods [28], [29] and two unsupervised methods [5]
under the same experimental settings. We also take, for a
holistic view, recently proposed effort-aware performance
measures into consideration to compare supervised and un-
supervised methods since the limitation of testing resource
and the impact on developers cannot be ignored in practice.

Besides, different types of performance measures are
considered for different purposes. Non-effort-aware perfor-
mance measures (NPMs) consider merely how prediction
methods work on projects, while effort-aware performance
measures (EPMs) consider not only how prediction methods
work on projects but also how the prediction results of
methods affect participants. However, the existing CPDP
methods barely consider the influences on participants,
which will hinder the practical usage of CPDP methods.
Therefore, inspired by both Qiao et al.’s [26] and Zhou et
al.’s works [5], we would like to propose a new supervised
method EASC to boost the performance of a supervised
method. Notice EASC differs from Qiao et al.’s work [26],
[27]. Qiao et al. proposed their method for change-level
within-project defect prediction, while EASC is proposed
for file-level cross-project defect prediction.

Our study focuses on answering the following research
questions:
RQ1: What are the performance differences between the
supervised and unsupervised methods when different
types of performance measures are considered?

We revisit the comparison between state-of-the-art su-
pervised CPDP methods and recently proposed unsuper-
vised CPDP methods (i.e., ManualDown and ManualUp)
by Zhou et al. [5] considering two types of performance
measure: (1) non-effort-aware performance measures (i.e.,
F1 -score [6], [30], [31], AUC [22], [23], [32] and PF [33]–
[35]) and (2) effort-aware performance measures (i.e., IFA,
PII@L, CostEffort@L and Popt [27], [36]–[38]).

By revisiting Zhou et al.’s work with the same datasets
but more performance measures, we find that in terms of
NPMs, ManualDown outperforms the existing state-of-the-
art supervised methods in most cases. We further analyze
why the unsupervised method performs better than the ex-
isting supervised methods in terms of NPMs and figure out
that the unsupervised method achieves high performance at
the cost of higher inspection effort and higher false alarms,
which may cause developer fatigue and tool abandonment.
For EPMs, both the existing supervised methods and Man-
ualUp have their own advantages on different performance
measures.
RQ2: Could the supervised method be enhanced by lever-
aging the intuition of unsupervised methods?

We propose an improved supervised CPDP method
called EASC and make a deep comparison between EASC
and ManualDown (ManualUp) proposed by Zhou et al. [5].
Based on the large-scale experiment on 82 projects, we find
that (1) when considering NPMs, supervised method EASC
can achieve prediction performance comparable or even
superior to unsupervised method ManualDown; (2) when
considering EPMs, EASC can statistically significantly out-
perform ManualUp with a large improvement with respect
to the Cliff’s delta in most cases.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 3

The main contributions of our paper can be summarized
as follows:

(1) We make a comprehensive comparison between su-
pervised CPDP methods and unsupervised CPDP
methods (i.e., ManualDown and ManualUp) under
the same experiment settings using a more compre-
hensive set of performance measures.

(2) We perform an in-depth analysis of the experiment
results in Zhou et al.’s work, and analyze the reasons
why their simple module size method can obtain a
prediction performance comparable or even superior
to most of the existing supervised CPDP methods.
We figure out that unsupervised method achieves
high performance measures at the cost of higher
inspection cost and high false alarm, which may
cause developer fatigue and tool abandonment.

(3) We propose an enhanced supervised method EASC
and perform a holistic evaluation on EASC vs. un-
supervised methods. We find that EASC can outper-
form unsupervised methods when limited inspection
effort is considered.

The remainder of this paper is organized as follows. We
describe the problem and the general workflow of cross-
project defect prediction in Section 2. We introduce our
improved supervised method in Section 3. We describe the
non-effort-aware and effort-aware performance measures in
Section 4. We present the experimental design, including the
datasets, the research setting and the research questions in
Section 5. We analyse the experimental results in Section 6.
We analyse the potential threats to validity in our empirical
studies in Section 7. We summarize related work on cross-
project defect prediction in Section 8. We conclude this paper
and show future work in Section 9.

2 PROBLEM STATEMENT AND GENERAL WORK-
FLOW

Software defect prediction (SDP) [6], [16], [39], [40], a hot
research topic in current software engineering research do-
main, can help to optimize testing resource allocation by
predicting defect-prone modules 1 in advance [33]. A large
number of defect prediction methods have been proposed,
which mainly apply machine learning techniques to build
prediction methods by mining data stored in historical
software repositories [9], [10], [41]. These methods typically
extract various features (i.e., metrics) from repositories, e.g.,
process features, previous-defect features, source code fea-
tures, etc., to measure extracted modules and apply a ma-
chine learning algorithm to predict if a module is defective
or not. Most of the proposed methods work on within-
project defect prediction (WPDP) setting, i.e., the prediction
models are trained and then applied to modules from the
same project. These WPDP methods require sufficient train-
ing (historical) data from a project to achieve satisfactory
performance.

However, in practice, it is rare that sufficient training
data is available for a new project or those projects have a

1The granularity of extracted module can be set as package, class,
or code change as needed.

few or even no historical data. Thus, researchers focus on
cross-project defect prediction (CPDP) [3], [18], [22], [42]–
[44], which builds a model using training data from other
projects (i.e., source projects) to predict defective instances
in a particular project (i.e., target project). To predict defects
in the target project, it follows a two-phase process (i.e.,
model building phase and model application phase) which
is the same as WPDP. In the model building phase, the
metric data and the defect data are first collected from the
modules in historical releases of source projects. Then, a
specific prediction model is built based on these collected
data to capture the relationships between the metrics and
defect-proneness. In the model application phase, the same
metrics are first collected from the target projects. Then,
the prediction model built in the previous phase is used
to predict the defect-proneness of each module in the tar-
get project. After the prediction on the target project, the
predicted performance can be evaluated by comparing the
predicted defect-proneness with the actual defect informa-
tion for the target project.

There are at least four variants of CPDP studies, which
can be found in the literature [28]: strict CPDP, mixed
CPDP, mixed -project defect prediction, and pair -wise
CPDP. Different types of CPDP may have a different
general workflow. In this paper, we consider the setting of
strict CPDP [32] and its general workflow of the experiment
can be found in [28]. For a dataset with information about
software products, when one of these software products
is selected as the target product, the other products of
the dataset are used as the source projects and used for
the defect prediction model building. If other revisions
of the target product exist in the dataset, they are also
discarded such that no information from the same project
context remains. For example, consider a dataset D that
contains three projects (e.g., Pa , Pb and Pc) and each
project has two versions (e.g., 1.0 and 2.0). That means
D = {Pa.1 .0 ,Pa.2 .0 ,Pb.1 .0 ,Pb.2 .0 ,Pc.1 .0 and Pc.2 .0}.
When Pc.1 .0 is selected as the target project, then the rest
of the projects except for Pc.2 .0 in D are used as the source
projects (i.e., Pa.1 .0 , Pa.2 .0 , Pb.1 .0 and Pb.2 .0). Besides,
we consider the homogeneous CPDP as same as Zhou et
al.’s work.

3 EASC: AN IMPROVED SUPERVISED METHOD

In this section, we propose an improved and effective super-
vised method for CPDP scenario: EASC. We first introduce
the motivation of EASC, then we present the technical
details in the form of pseudo-codes.

Motivation. Labeled data can provide important infor-
mation for building a model, and previous studies have
made significant progress in the CPDP scenario [3], [6], [42].
Therefore, we propose a supervised method based on the
following findings in previous works:

• Finding 1: Unlimited inspection effort. When in-
specting instances without considering inspection
effort, a larger instance should be first considered
since previous studies report that a larger instance
tends to have more defects [5], [45].

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 4

• Finding 2: Limited inspection efforts. When in-
specting instances, taking into consideration inspec-
tion effort, an instance with a larger ratio between
each instance defect proneness (i.e., a probability
outputted by a classifier) and its inspection effort
(i.e., LOC) should be first considered. This is the case
since previous studies argue that a smaller instance
is proportionally more defect-prone [27], [46]–[48].

Ideally, we can inspect all defect-prone instances with-
out considering inspection effort. However, in practice, we
cannot ignore the limitation of inspection effort, context
switches and developer fatigue due to initial false alarms.
Therefore, we should consider different strategies for differ-
ent usage scenarios [5]. To benefit from the recent findings
of Huang et al. [27] and Zhou et al. [5], we propose EASC
(Effort-Aware Supervised Cross-project defect prediction).
EASC assumes that for these identified potential defective
instances, the instances with higher defect-proneness should
be inspected first.
Technical Details. EASC contains two phases: model build-
ing phase and model evaluating phase. A model can be
built with a specific classifier after some pre-processing in
the former phase, while in the latter phase, two types of
performance measure will be calculated after the prediction
using the specific classifier. The technical details of EASC
are presented in Algorithm 1 and Algorithm 2.

ALGORITHM 1: EASC: Model Building Phase
Input:

projects : all projects in a specific dataset;
classifier : the basic classifier;
effort : the available effort to decide whether a instance is
defective or not, the default is 20% total lines;

Output:
Results : a list which contains all performance pairs of
non-effort-aware measures and effort-aware measures (e.g.,
(NPM,EPM));

1: Filter unsuitable projects from projects ;
2: for all TestProject in projects do
3: TrainSet = Set(a copy of projects)-Set(TestProject , any

other versions of TestProject);
4: Build a predictor by using classifier on TrainSet ;
5: (NPM ,EPM)=EASC:Model

Evaluating(classifier ,TestProject ,effort), and append
them to Results ;

6: end for
7: return Results .

Algorithm 1 presents the pseudo-code to build a classi-
fier. First, projects will be removed if they do not have the
required minimum number of instances (i.e., 5; following
the same setting as Herbold et al. [28]) in each class (i.e.,
defective and non-defective) (Line 1). Then, each qualified
project will be treated as the target project (i.e., TestProject)
in order and be used to evaluate the performance of a
built model (Lines 2-6). As we consider the strict CPDP
scenario, the TestProject itself and any other versions of
the TestProject will be excluded from TrainSet (Line 3).
Then, a model can be built with a specific classifier (e.g.,
Naive Bayes) (Line 4). Followed that, the NPM and EPM
performance measures can be obtained and appended to
Results after a call of Model Evaluating (Line 5). Finally, all
NPM and EPM performance values will be returned after
the iteration in this dataset (Line 7).

ALGORITHM 2: EASC: Model Evaluating Phase
Input:

TestProject : test project to evaluate performance;
classifier : the classifier built on training projects;
effort : the effort available to decide whether a instance
is defective or not;

Output:
NPM : the performance value of non-effort-aware performance
measures;
EPM : the performance value of effort-aware performance
measures;

1: Initialize TargetList , Defective, NonDefective=φ;
2: for all testInstance ∈ TestProject do
3: Append testInstance into Defective if classifier predicts it

as defective instance, otherwise append testInstance into
NonDefective;

4: end for
/ ∗ ∗ ∗ Calculating EPMs ∗ ∗ ∗ /

5: Sort separately instances in Defective and NonDefective in
descending order by score/LOC;

6: Append NonDefective to the end of Defective;
7: Select those instances in front of Defective into TargetList and

make sure that the total cost of them accounts for effort ;
8: Calculate effort-aware performance based on TargetList ,

Defective and classifier , then save them into EPM ;
/ ∗ ∗ ∗ CalculatingNPMs ∗ ∗ ∗ /

9: Sort Defective in descending order by score × LOC , then
calculate non-effort-aware and save them into NPM ;

10: return (NPM ,EPM).

Algorithm 2 presents the pseudo-code of evaluating a
classifier. We first classify potentially defective and non-
defective instance with the classifier built on the train-
ing dataset (Lines 2-4). When classifying a new instance,
the classifier will output a probability score, which in-
dicates the defect-proneness of the instance. An instance
will be classified as potentially defective if its predicted
score is larger than 0.5; otherwise, it will be classified
as non-defective. After all the instances in the target
project (i.e.,TestProject) are predicted, we get two lists
(i.e., Defective and NonDefective) which contain defective-
prone instances and non-defective-prone instances sepa-
rately. Then we sort the instances in the two lists in de-
scending order (Line 5). In particular, when calculating
effort-aware performance measures, we sort the instances in
the two lists in descending order by score/LOC , in which
LOC represents the proxy of inspection effort and score
represents the defect-proneness outputted by a classifier.
After that, we append the sorted non-defective list to the
end of the defective list (Line 6). Then, we select those
instances to be inspected into TargetList from the top of
combined Defective list with limited inspection cost (i.e.,
effort) (Line 7). After that, effort-aware performance mea-
sures can be obtained (Line 8). Followed that, Defective ,
a combination of the original Defective in Line 5 and the
original NonDefective , are sorted again by score × LOC
in descending order for calculating non-effort-aware perfor-
mance (Line 9). Finally, two types of performance measures
will be returned (Line 10).

Notice that, inspired by Zhou et al.’s work, we use
different strategies for different usage scenarios. In this
paper, two scenarios are considered: unlimited inspection
efforts and limited inspection effort. Therefore, we use both
score × LOC and score/LOC in our proposed method
EASC for the two usage scenarios. In particular, when calcu-

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 5

lating NPMs, EASC sorts the instances in descending order
by score × LOC which is consistent with Finding 1, when
calculating EPMs, EASC sorts the instances in descending
order by score/LOC which is consistent with Finding 2.

4 EVALUATION PERFORMANCE MEASURES

In this section, we introduce 11 performance measures to
comprehensively evaluate the performances of both super-
vised and unsupervised methods. These measures can be
divided into two groups: 3 non-effort-aware performance
measures (NPMs) and 8 effort-aware performance measures
(EPMs).

We consider the three NPMs since this paper aims to re-
visit the Zhou et al.‘s work. Although Zhou et al. discussed
a large number of performance measures in their work, they
only used a small subset of them in a specific comparison
between supervised and unsupervised methods. Therefore,
we use a few but representative performance measures [6],
[22], [23], [30]–[32], [45], [49] to compare the difference
between supervised and unsupervised methods.

We consider additional eight EPMs since Zhou et al.’s
work did not consider most recently proposed EPMs, which
can effectively assess the value of the prediction model
to developers. Consequently, their work may not give a
holistic view on the comparison between supervised and
unsupervised methods.

4.1 Non-Effort-Aware Performance Measures

This group includes three widely used performance mea-
sures in SDP: F1 -score [6], [30], [31] , AUC [22], [23],
[32] and PF [33]–[35], which are the representative of
threshold-dependent performance measure and threshold-
independent performance measure, respectively [50]. There
are four possible outcomes for an instance in a target project:
An instance can be classified as defective when it is truly
defective (true positive, TP); it can be classified as defective
when it is actually non-defective (false positive, FP); it can
be classified as non-defective when it is actually defective
(false negative, FN); or it can be classified as non-defective
and it is truly non-defective (true negative, TN). Therefore,
based on the four possible outcomes, F1 -score and PF can
be defined as follows:

F1 -score : a summary measure that combines both
Precision = TP

TP+FP and Recall = TP
TP+FN . It is computed

as: F1−score = 2×Precision×Recall
Precision+Recall .

PF : The probability of false alarm is defined as the
ratio of false positives to all non-defective instances: PF =

FP
FP+TN .

AUC : the area under the receiver operating character-
istic (ROC) curve [51], which is a 2D illustration of true
positive rate (TPR) on the y-axis versus false positive rate
(FPR) on the x -axis. ROC curve is obtained by varying the
classification threshold over all possible values, separating
clean and buggy predictions. A well performed predictor
provides an AUC value close to 1. The ROC analysis is
robust in case of imbalanced class distributions and asym-
metric misclassification costs. It also represents the proba-
bility that a method will rank a randomly chosen defective
module higher than a randomly chosen not defective one.

4.2 Effort-Aware Performance Measures

In practical settings, non-effort-aware performance mea-
sures cannot provide enough information to help prac-
titioners to fully evaluate a CPDP method considering
limited testing resources. We consider a few additional
effort-aware performance measures which are proposed by
Qiao et al. [26], [27] and have not been investigated in
CPDP scenario. This group includes eight performance mea-
sures: IFA [52], [53], PII@20%, PII@1000 , PII@2000 [36],
CostEffort@20%, CostEffort@1000 , CostEffort@2000 and
Popt [27], [37], [38], [54]. We consider IFA because previous
studies [52], [53] have shown that developers are not willing
to use the prediction method if the value of IFA is quite large
which means the first few recommendations are all false
alarms and will seriously affect the confidence of develop-
ers. We consider PII@L to measure the additional effort
needed due to context switches between instances, since
context switching has been shown harmful to developer
productivity [36] and thus make developers’ work harder.
We consider CostEffort@L because we want to find more
detective instances under the limited inspection effort. We
also take Popt into consideration due to its widely usage in
previous works [27], [37], [38], [54].

For the convenience of the subsequent description, we
first give some notations to easily define these measures.
Suppose we have a dataset with M instances and N de-
fective instances in total. After inspecting L lines of code,
suppose we inspected m instances and observed n defective
instances. Additionally, let’s consider that we inspected k
instances when we find the first defective instance. Then
these evaluation measures can be defined as follows:

IFA: the number of Initial False Alarms encountered
before we find the first defective instance. It is computed
as: IFA = k.

PII@L: Proportion of Instances Inspected when L LOC
of all instances are inspected. A high PII@L indicates that,
under the same number of LOC to be inspected, developers
need to inspect more instances. For example, suppose that
team A and team B are planning to investigate instances
which have 500 LOC in total. For the team A, they had
to review 500 instances where each instance has only 1
LOC. For the team B, they only need to review one instance
where this instance has 500 LOC. Apparently, the number
of LOC that needs to be inspected by the two teams are
the same (i.e., 500 LOC in total). However, developers in the
team A would frequently switch between different instances
which consequently increase the time cost and effort spent.
For example, Meyer et al. [36] conducted a survey with
379 professional software developers and they found that
developers perceive their days as productive when they
complete many or big tasks without significant interrup-
tions or context switches. Also, a large number of instances
may cover many different localities (e.g., hundreds of files
and modules), and more coordination and communication
between developers with different expertise are required.
Thus, the additional effort required due to context switches
and additional communication overhead among developers
should not be ignored.

Besides, different instances may have different size. For
example, some instances may have a hundred of LOC, while

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 6

some instances may have a thousand of LOC. Therefore, to
comprehensively investigate PII@L, two kinds of PII@L
are considered: relative LOC of PII and absolute LOC of
PII . To the best of our knowledge, this is the first paper
that takes these factors into consideration to evaluate effort-
aware CPDP methods. PII@20%, PII@1000 , PII@2000
can be computed as follows:

PII@20% =
m

M
, where L accounts for 20% of total LOC (1)

PII@1000 =
m

M
, where L equals to 1000 LOC (2)

PII@2000 =
m

M
, where L equals to 2000 LOC (3)

Notice that the smaller of these measures’ value, the
better of these methods’ performance.

CostEffort@L: proportion of inspected defective in-
stances among all the actual defective instances when L
LOC of all instances are inspected. The high CostEffort@L
indicates more defective instances could be detected. Be-
sides, different instances may also have different sizes.
Therefore, to comprehensively investigate CostEffort@L,
two kinds of PII@L are considered: relative LOC
CostEffort and absolute LOC of CostEffort . To the best
of our knowledge, this also is the first paper that
takes these factors into consideration to evaluate effort-
aware CPDP methods. CostEffort@20%, CostEffort@1000 ,
CostEffort@2000 can be computed as follows:

CostEffort@20% =
n

N
, where L accounts for 20% of total LOC

(4)

CostEffort@1000 =
n

N
, where L equals to 1000 LOC (5)

CostEffort@2000 =
n

N
, where L equals to 2000 LOC (6)

Popt : is the normalized version of the effort-aware per-
formance measure originally introduced by Mende and
Koschke [54]. The Popt is based on the concept of the “code-
churn-based” Alberg diagram [55]. An Alberg diagram (see
Figure 1 for an example) shows the relationship between the
number of defect-including instance (e.g., y-axis) obtained
by a prediction model and the inspection cost for specific
prediction model (e.g., the effort LOCs in x -axis). Besides,
Popt is widely used effort-aware performance measure in
previous works [7], [27], [38], [56], and in their works, the
x-axis and y-axis have the same meaning. Therefore, in our
paper, we calculate Popt as same as they do.

To compute Popt , two additional curves are included:
the optimal model and the worst model. In the optimal
model and the worst model, instances are respectively
sorted in decreasing and ascending order according to
their actual defect densities. The actual prediction model
should outperform the random model and try best to
get close to the optimal model. For a given prediction
model m , its Popt can be computed as: Popt(m) = 1 −

Area(O,P)
Area(O,P)+Area(P,R)+Area(R,W) . O represents the optimal
curve, P represents the prediction curve, R represents the
random curve, and W represents the worst curve, respec-
tively. The function Area(parameter1 , parameter2) repre-
sents the corresponding area between two curves. For ex-
ample, Area(O ,P) represents the area between the optimal

A

B

C

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
% LOCs Inspected

de

fe
ct

−
in

cl
ud

in
g

in
st

an
ce

Models

Random model

Optimal model

Prediction model

Worst model

Fig. 1: An example of the relationship between the number
of defective instances and the inspection cost for different
prediction models.

curve and the prediction curve. Area(P ,R) represents the
area between the prediction curve and the random curve,
and Area(R,W) represents the area between the random
curve and the worst curve. Thus, a larger Popt value means
a smaller difference between the prediction model and the
optimal model. In this paper, we calculate Popt following
the previous works [27], [37], [57] when 20% of the LOC s
are inspected.

When calculating EPMs, different methods have dif-
ferent sorting strategies. In particular, for all state-of-the-
art CPDP methods, the testing instances will be sorted
in descending order of score (i.e., the probability of
defect-prone outputted by prediction model). For Manu-
alUp/ManualDown method, the testing instances will be
sorted in descending order of risk (i.e., 1/LOC for Manu-
alUp and LOC for ManualDown), which is consistent with
Zhou et al.‘s work [5]. For EASC method, the testing in-
stances are firstly divided into two groups: defective group
in which all instances are identified as defective ones, and
clean group in which all instances are identified as non-
defective ones. Then, instances in the two groups will be
sorted in descending order of score/LOC , respectively.

For a better understanding of how these methods calcu-
lating EPMs (i.e., IFA, PII@L and CostEffort@L), we de-
scribe the calculating process with an example. The details
can be found in the online APPENDIX A [58].

5 EXPERIMENTAL SETUP
In this section, we first introduce the characteristics of
datasets and then describe the experimental settings. Fol-
lowed that, we present our research questions.

5.1 Experimental Subjects

In our experimental studies, we evaluate CPDP methods on
four publicly available datasets: AEEEM [59], NASA [60],
[61], PROMISE [62] and RELINK [63], which are widely
used in [6], [21]–[23], [25], [28]. We also give an overview
of the datasets, including the number of products, statistical
values and the proxies of inspection effort for different
datasets. Notice that for a fair comparison and for consis-
tency with Zhou et al.‘s work, we also use LOC as the proxy

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 7

of inspection effort. The detailed information about these
datasets can be found in the online APPENDIX B [58].

We note that defect severity and module importance are
often taken into consideration when developers perform
corrective maintenance efforts. However, there is no infor-
mation about defect severity or module importance in the
four publicly-available and widely-used datasets. Besides,
in the current research of SDP, there is no clear instruction
about how to incorporate defect severity and importance of
software modules into the evaluation process. Therefore, in
this paper, we do not take the defect severity or module
importance into consideration, which is the same setting
that was followed by Zhou et al.’s work.

Data Set

Version 1
……

Version m

Version 1
……

Version m

Project 1
Version 1

……
Version m

Project 1

Supervised CPDP
Methods

Project Version
Data Set*

Building Model

Testing Data

Predicting

Training Data

Training Data Filter

Data Set*: Data Set except target project and all other versions of the same product

……

EASC
ManualDown

ManualUp

Descending Order by
score*LOCs (score/LOCs)

Descending Order
by Risk Value

Building Model

Non-Effort-Aware Measures / Effort-Aware Measures
Defect-Prone

Non-Defect-Prone

Project VersionsProject Versions

Version 1
……

Version m

Version 1
……

Version m

Project 2
Version 1

……
Version m

Project 2
Version 1

……
Version m

Version 1
……

Version m

Project m
Version 1

……
Version m

Project m

Descending Order
 by score

Fig. 2: The workflow of supervised methods and unsuper-
vised methods in CPDP scenario.

5.2 Experiment Setting

5.2.1 Baseline Methods

Selection Criterion. To evaluate the performance of su-
pervised methods and unsupervised methods in different
scenarios, we set up strict selection criterion for selecting
baseline methods which are considered in our experiments.

Criterion for selecting supervised methods: best per-
formance on both NPMs and EPMs. We choose four
methods: CamargoCruz09-DT proposed by Camargo and
Cruz [64],Turhan09-DT proposed by Turhan et al. [33],
Menzies11-RF proposed by Menzies et al. [65], Watanabe08-
DT proposed by Watanabe et al. [66]. The four methods
are supervised and their comprehensive good performances
have been verified by Herbold et al. [28], [29]. In particular,
Herbold et al. [28] conducted a large-scale comprehensive
comparison among 24 CPDP methods on 86 projects and
measured these CPDP methods with NPMs. According to
the results in their work, they found that the four methods
perform best in a holistic view in the CPDP scenario. Her-
bold et al. [29] further investigated how these CPDP meth-
ods performed when considering EPMs, and found that the
four methods still ranked at the top. Therefore, we choose

the four methods as the representatives of supervised meth-
ods and use the names of four supervised approaches as
same as the ones used in Herbold et al.‘s work. The brief
introduction to four state-of-the-art supervised methods can
be found in the online APPENDIX C [58].

Criterion for selecting unsupervised methods: best
performance on both NPMs and EPMs. We choose two
simple module size methods: ManualDown and ManualUp.
The two methods are proposed by Zhou et al. [5] and the
concept behinds the two methods can date back to [45], [46].
In particular, ManualDown considers a larger module as
more defect-prone, as previous study reports that a larger
module tends to have more defects [45]. However, Manu-
alUp considers a smaller module as more defect-prone, as
recent studies argue that a smaller module is proportionally
more defect-prone and hence should be inspected first [46]–
[48]. Zhou et al. found that ManualDown and ManualUp
have a prediction performance comparable or even superior
to complex supervised CPDP methods. Recently, Chen et
al.‘s work [43] further confirmed the competitiveness of the
two methods over other unsupervised ones.

5.2.2 Methods Implementation and Statistical Analysis

To avoid implementation errors, we utilize the CrossPare:
a cross project defect prediction tool developed and shared
by Herbold et al. [28]. The four supervised methods have
been implemented and we use them in this tool without
modification. We also extend it to implement ManualDown,
ManualUp and EASC. Besides, to overcome a possible bias
of randomness in Menzies11-RF, we run Menzies11-RF 10
times with different random seeds and report the average.

To check the significance of performance comparison, we
conduct the Wilcoxon signed-rank test [67], which is a non-
parametric statistical hypothesis test on the performance
measures. For all the statistical testings, the null hypotheses
are that there is no difference between two prediction meth-
ods, and the significance level α is set to 0.05. If p-value is
smaller than 0.05, we reject the null hypotheses; otherwise
we accept the null hypotheses.

We also use Cliff’s delta (δ) [68], which is a non-
parametric effect size measure that quantifies the amount
of difference between two methods. The range of Cliff’s
delta is [-1,1]. |δ| equals to 1 indicates the absence of
overlap between two methods. It means all data from one
group are higher than that from the other group, and vice
versa. |δ| equals to zero means that the two methods are
overlapping completely. We consider delta that are less than
0.147, between 0.147 and 0.33, between 0.33 and 0.474 and
above 0.474 as “Negligible (N)”, “Small (S)”, “Medium (M)”,
“Large (L)” effect size, respectively following [68].

5.3 Research Questions

Our study explores the following research questions:
RQ1: What are the performance differences between

the supervised and unsupervised methods when different
types of performance measures are considered?

RQ2: Could the supervised method be enhanced by
leveraging the intuition of unsupervised methods?

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 8

TABLE 1: Comparisons among supervised methods and ManualDown (ManualUp) on four datasets in terms of non-effort-
aware performance measures in the form of average±variance.

Measures Datasets CamargoCruz09-DT Menzies11-RF Turhan09-DT Watanabe08-DT ManualDown ManualUp

F1 -score↑

AEEEM 0.31±0.01 0.27±0.02 0.27±0.00 0.30±0.00 0.39±0.03 0.13±0.00
NASA 0.09±0.01(L)** 0.12±0.01(L)* 0.16±0.01(L)* 0.11±0.00(L)* 0.27±0.02 0.09±0.01
PROMISE 0.37±0.02(M)*** 0.33±0.03(L)*** 0.36±0.03(M)*** 0.37±0.01(M)*** 0.50±0.03 0.22±0.03
RELINK 0.54±0.00 0.59±0.03 0.53±0.09 0.49±0.03 0.64±0.01 0.24±0.00

AUC↑

AEEEM 0.60±0.01(L)* 0.58±0.00(L)* 0.53±0.00(L)** 0.59±0.00(L)* 0.73±0.00 0.27±0.00
NASA 0.70±0.01 0.53±0.00(L)*** 0.62±0.00(L)*** 0.67±0.01 0.74±0.01 0.26±0.01
PROMISE 0.58±0.01(L)*** 0.59±0.01(L)*** 0.59±0.01(L)*** 0.59±0.01(L)*** 0.73±0.01 0.27±0.01
RELINK 0.65±0.00 0.68±0.01 0.63±0.01 0.60±0.02 0.74±0.01 0.26±0.00

PF ↓

AEEEM 0.06±0.00(L)** 0.04±0.00(L)** 0.13±0.01(L)** 0.11±0.00(L)** 0.43±0.00 0.56±0.00
NASA 0.01±0.00(L)*** 0.03±0.00(L)*** 0.05±0.00(L)*** 0.02±0.00(L)*** 0.46±0.00 0.53±0.00
PROMISE 0.20±0.01(L)*** 0.13±0.01(L)*** 0.18±0.01(L)*** 0.26±0.02(L)*** 0.38±0.01 0.61±0.01
RELINK 0.21±0.01 0.20±0.00 0.17±0.02 0.17±0.01 0.33±0.01 0.64±0.00

Notes: (1) *** means p < 0 .001 , ** means p < 0 .01 , * means p < 0 .05 .
(2) L/M/S: Large/Medium/Small effect size according to Cliff’s delta.
(3) ’↓’ indicates ’the smaller the better’; ’↑’ indicates ’the larger the better’.

6 EXPERIMENT RESULTS
In this section, we first report in detail the experimental
results in terms of the comparison of the existing super-
vised CPDP methods and unsupervised CPDP methods
(i.e., ManualDown and ManualUp). Then, we make a deep
comparison between supervised method EASC proposed in
this paper and the unsupervised methods.

6.1 RQ1: What are the performance differences be-
tween the supervised and unsupervised methods when
different types of performance measures are consid-
ered?
Motivation. In the work of Zhou et al. [5], they compared
the performance of state-of-the-art supervised methods pro-
posed for the CPDP scenario and two novel unsupervised
methods proposed by themselves. They concluded that the
simple module size methods have a prediction performance
comparable or even superior to most of the existing CPDP
methods in the literature, including many newly proposed
models. However, there are a few limitations introduced
in Section 1 in Zhou et al.’s study. Considering these lim-
itations, we want to conduct a comprehensive comparison
between supervised and unsupervised methods using the
same experimental settings and the same performance
measures.
Method. In practical applications, these NPMs (i.e., F1 -
score , AUC and PF) cannot provide enough information
to help practitioners fully evaluate a prediction method
especially when the testing resources are limited. Thus,
we consider a few additional EPMs, namely IFA, PII@L,
CostEffort@L (i.e., L equals to 20%, 1000 or 2000) and Popt .

To answer this RQ, we investigate two specific sub-
questions:

• Question 1: What is the performance difference
between unsupervised methods and supervised
methods?

• Question 2: What is the relationship between the
inspection effort and instance quality?

In Question 1, we replicate the comparison between
state-of-the-art supervised CPDP methods and unsuper-
vised CPDP methods recently proposed by Zhou et al. [5].
To avoid implementation errors and make the compari-
son fairer, we comprehensively use CrossPare [28], a tool

for benchmarking CPDP, since it has implemented a large
number of CPDP methods and provided a full analysis in
terms of different performance measures. Besides, based on
this tool, we implement EASC, ManualDown and Manu-
alUp. We consider four CPDP methods due to their overall
better performance than other alternatives as confirmed
by a previous work [28]: CamargoCruz09-DT, Turhan09-
DT, Menzies11-RF and Watanabe08-DT. Besides, all classical
classification performance measures and recently proposed
performance measures are considered. The workflow of
these methods are presented in Figure 2.

In Question 2, we explore the characteristics of dataset
in each project. We want to explore how unsupervised
methods (i.e., ManualDown and ManualUp) perform on the
four datasets, and analyze why or why not unsupervised
method outperforms the supervised methods. Based on
our intuition, larger instances have higher possibility to be
defective. Therefore, we want to analyse the relationship
between instance inspection effort (e.g., LOC) and instance
quality (e.g., defective or non-defective). Notice that the
definition of inspection effort for each dataset can be found
in the online APPENDIX B [58]. We sort instances of each
project in descending/ascending order of inspection effort
(e.g., LOC) and want to figure out whether unsupervised
method requires developers to inspect more instances.
Results for Question 1:
What is the performance difference between unsupervised
methods and supervised methods?

To present the result in a comprehensible way, Table 1
and Table 2 present the average results 2 (i.e., the mean
performance value) of each method following previous
works [6], [26], [27], [38] and statistical analysis results of
supervised and unsupervised methods when NPMs and
EPMs are considered, respectively. In both of the two tables,
the first column lists the performance measures. The second
column lists the datasets we experiment on. In the following
four columns, the average performance of four supervised
methods are given. The last two columns list the average
performance of ManualDown and ManualUp. For columns
of supervised methods, we use different ways to present
the statistical analysis results. In particular, the cells are in
bold if the supervised method is significantly superior to the

2All the average performance in this paper represents the mean of
performance value in statistics.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 9

unsupervised method, the cells are in underline if the super-
vised method is significantly inferior to the unsupervised
method. Besides, we use different number of symbol “*”
to represent the level of p-value (i.e., *** means p < 0 .001 ,
** means p < 0 .01 , * means p < 0 .05). The effect sizes are
also indicated using the “L/M/S” character, which corre-
spondingly represents the Large/Medium/Small effect size
according to Cliff’s delta.

Notice that Zhou et al. [5] proposed two simple size
based methods ManualDown and ManualUp. They con-
cluded that ManualDown has better performance on NPMs,
while ManualUp has better performance on EPMs. There-
fore, they suggested ManualDown should be treated as a
baseline method when considering NPMs, while ManualUp
should be treated as a baseline method when considering
EPMs. Therefore, for a fair comparison, we present the
statistical information among four supervised methods and
ManualDown (ManualUp) in Table 1 (Table 2) in terms of
NPMs (EPMs). More statistical information between super-
vised methods and unsupervised methods can be found in
the online APPENDIX D [58].

Non-effort-aware Performance Measures Comparison.
From the results shown in Table 1, we make the following
observations:

(1) On average, ManualDown always performs better
than ManualUp in terms of all the three NPMs, which is
consistent with Zhou et al.‘s conclusion.

(2) ManualDown statistically significantly outperforms
supervised methods with a large effect size in terms of F1 -
score and AUC on the datasets of AEEEM, NASA, and
PROMISE in most cases. However, on RELINK, the differ-
ence between ManualDown and the supervised methods are
not statistically significant.

(3) Supervised methods always perform better than
ManualUp in terms of these NPMs.

(4) In terms of AUC , by analyzing the essence of Man-
ualDown and ManualUp, the results seem to confirm that
large size modules may have more possibility to be defect-
prone.

(5) In terms of PF , supervised methods statistically
significantly outperform ManualDown and ManualUp with
a large effect size in almost all cases except for RELINK.

Effort-aware Performance Measures Comparison.
From the results shown in Table 2 , we make the following
observations:

(1) When compared with ManualUp, supervised meth-
ods perform statistically significantly better than ManualUp
in terms of IFA and PII@L in most cases, and perform
worse than ManualUp in terms of CostEffort@L and Popt .
It means that in practice ManualUp may cause many false
alarms and require much context switch than supervised
methods.

(2) When compared with ManualDown, supervised
methods perform better than ManualDown in terms of
CostEffort@L and Popt in most cases. Besides, Manual-
Down obtains a better average performance of IFA and
PII@L. It means that even though ManulDown reduces the
number of initial false alarms and the number of context
switch, it also reduces the performance of CostEffort@L
and Popt , and consequently obtains lower returns.

(3) In terms of EPMs, both ManualDown and Manu-
alUp has their own advantages on different performance
measures. In particular, ManualDown has priority over
ManualUp in terms of IFA and PII@L, while ManualUp
has priority over ManualDown in terms of CostEffort@L
and Popt . However, in practice, from the perspective of
cost, we may not consider ManualDown to inspect larger
instances first although it has a good performance of IFA
and PII@L. We also find that ManualDown obtains a few
recalls when inspecting instances with 20% of total effort.
Besides, we may also not consider ManualUp as preferred
method since it may case developer fatigue due to larger
initial false alarms and more context switches.

(4) From the perspective of benefits (e.g., more returns
and no consideration of influence on developers), Manu-
alUp outperforms ManualDown since it has a better per-
formance of recall, which is consistent with Zhou et al.‘s
conclusion.
Results for Question 2:
What is the relationship between instance inspection
effort and instance quality?

Firstly, we sort instances of each project based on their
inspection effort (i.e., LOC) in descending order and anal-
yse the relationship between instance inspection effort and
instance quality. The sorting strategy is consistent with
ManualDown. The results are shown in Table 3.

In Table 3, the first column lists the name of the dataset.
The second column lists the number of projects in this
dataset. In the following five columns, we list the percentage
of defective instances in the top sorted instances when
inspecting T% of instances. In Zhou et al.’s method, they
used 50% as the classification threshold. We list the average
results of five different thresholds (i.e., 10%, 20%, 30%,
40% and 50%). Next, we list the total number of defective
instances in each dataset. In the following five columns,
we list the percentage of effort in the top sorted instances
when inspecting T% of instances. The last column lists total
number of inspection effort in each dataset. Take AEEEM as
an example (i.e., classification threshold set as 10%), there
are five projects with 853 defective instances. Inspecting all
instances in AEEEM, it needs to check 639,827 lines of code.
When sorting instances in descending order by LOC, on
average, we will identify 222 (i.e., 853 × 0.26) defective
instances and inspect 339,108 (i.e., 639, 827 × 0.53) lines of
codes.

According to the results in Table 3, for each dataset,
when we sort instances according to its inspection effort (i.e.,
LOC) in descending order and inspect the top 50% instances,
the majority of defective instances (i.e., at least more than
70%) will be ranked at the top. As for ManualDown method,
the classification threshold is set as 50%, which means the
top 50% instances will be classified as defective instances
and the rest will be classified as non-defective instances.
Therefore, when the classification threshold is set as 50%,
ManualDown will obtain a higher Recall (i.e., at least 70%
on average), which consequently contributes to a higher
AUC . Besides, for a dataset, if the majority of defective
instances are ranked in the top 50%, then the majority of
non-defective instances are ranked in the rest 50%. Man-
ualDown classifies the instances in the top 50% and the
instances in the last 50% as defect-prone and non-defect-

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 10

TABLE 2: Comparisons among supervised methods and ManualUp (ManualDown) on four datasets in terms of effort-
aware performance measures in the form of average±variance.

Measures Datasets CamargoCruz09-DT Menzies11-RF Turhan09-DT Watanabe08-DT ManualUp ManualDown

IFA↓

AEEEM 1±1(L)* 0±0(L)** 2±5(L)* 1±1(L)* 30±417 1±2
NASA 33±6341(L)** 28±5637(L)*** 5±43(L)*** 4±39(L)*** 1268±7251939 1±16
PROMISE 3±114(L)*** 5±194(L)*** 6±205(L)*** 3±50(L)*** 19±473 1±2
RELINK 0±0 0±0 0±0 1±0 8±1 0±0

PII@20%↓

AEEEM 0.22±0.00(L)** 0.22±0.00(L)** 0.22±0.00(L)** 0.22±0.00(L)** 0.69±0.00 0.02±0.00
NASA 0.18±0.00(L)*** 0.18±0.00(L)*** 0.18±0.00(L)*** 0.18±0.00(L)*** 0.54±0.02 0.03±0.00
PROMISE 0.22±0.00(L)*** 0.22±0.00(L)*** 0.22±0.00(L)*** 0.22±0.00(L)*** 0.68±0.01 0.03±0.00
RELINK 0.17±0.00 0.17±0.00 0.17±0.00 0.17±0.00 0.68±0.00 0.04±0.00

PII@1000↓

AEEEM 0.02±0.00(L)** 0.02±0.00(L)** 0.02±0.00(L)** 0.02±0.00(L)** 0.19±0.02 0.00±0.00
NASA 0.09±0.01(L)** 0.09±0.01(L)** 0.09±0.01(L)** 0.09±0.01(L)** 0.25±0.02 0.02±0.00
PROMISE 0.08±0.02(L)*** 0.08±0.02(L)*** 0.08±0.02(L)*** 0.08±0.02(L)*** 0.35±0.04 0.03±0.00
RELINK 0.08±0.00 0.08±0.00 0.08±0.00 0.08±0.00 0.48±0.05 0.02±0.00

PII@2000↓

AEEEM 0.02±0.00(L)** 0.02±0.00(L)** 0.02±0.00(L)** 0.02±0.00(L)** 0.26±0.02 0.00±0.00
NASA 0.18±0.05(L)* 0.18±0.05(L)* 0.18±0.05(L)* 0.18±0.05(L)* 0.39±0.05 0.05±0.01
PROMISE 0.14±0.05(L)*** 0.14±0.05(L)*** 0.14±0.05(L)*** 0.14±0.05(L)*** 0.45±0.05 0.06±0.03
RELINK 0.18±0.04 0.18±0.04 0.18±0.04 0.18±0.04 0.61±0.07 0.05±0.00

CostEffort@20%↑

AEEEM 0.26±0.00 0.20±0.03 0.24±0.01 0.30±0.01 0.26±0.00 0.05±0.00
NASA 0.07±0.01 0.09±0.00 0.13±0.01 0.11±0.02 0.18±0.02 0.10±0.00
PROMISE 0.29±0.02 0.27±0.02 0.28±0.02 0.26±0.01 0.27±0.02 0.08±0.00
RELINK 0.29±0.00 0.31±0.00 0.26±0.02 0.22±0.00 0.28±0.00 0.09±0.00

CostEffort@1000↑

AEEEM 0.04±0.00 0.05±0.00 0.03±0.00(L)* 0.04±0.00 0.08±0.00 0.00±0.00
NASA 0.06±0.00 0.06±0.00 0.08±0.01 0.05±0.00 0.08±0.02 0.05±0.00
PROMISE 0.09±0.02(M)*** 0.06±0.01(L)*** 0.06±0.01(L)*** 0.09±0.02(M)*** 0.15±0.01 0.05±0.01
RELINK 0.16±0.02 0.15±0.02 0.14±0.02 0.11±0.01 0.19±0.01 0.06±0.00

CostEffort@2000↑

AEEEM 0.05±0.00 0.07±0.00 0.05±0.00(L)* 0.04±0.00(L)* 0.12±0.01 0.01±0.00
NASA 0.06±0.00 0.08±0.00 0.10±0.01 0.06±0.00 0.11±0.02 0.11±0.02
PROMISE 0.12±0.02(M)*** 0.10±0.02(M)*** 0.10±0.03(M)*** 0.13±0.03(M)*** 0.18±0.02 0.08±0.02
RELINK 0.21±0.05 0.29±0.10 0.24±0.09 0.29±0.12 0.24±0.00 0.12±0.03

Popt
↑

AEEEM 0.49±0.01(L)* 0.49±0.02 0.40±0.00(L)** 0.51±0.02 0.65±0.00 0.22±0.03
NASA 0.34±0.04 0.36±0.04 0.34±0.04(L)* 0.35±0.03 0.49±0.04 0.41±0.04
PROMISE 0.45±0.04(L)*** 0.39±0.03(L)*** 0.39±0.04(L)*** 0.43±0.05(L)*** 0.63±0.04 0.20±0.08
RELINK 0.51±0.13 0.46±0.04 0.50±0.12 0.62±0.12 0.63±0.00 0.32±0.08

Notes: (1) *** means p < 0 .001 , ** means p < 0 .01 , * means p < 0 .05 .
(2) L/M/S: Large/Medium/Small effect size according to Cliff’s delta.
(3) ’↓’ indicates ’the smaller the better’; ’↑’ indicates ’the larger the better’.

TABLE 3: The relationship between instance inspection effort and instance quality when sorting testing instances by
ManualDown.

Dataset # Project
Percentage of Defects

Total Defect
Percentage of Efforts

Total Effort10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
AEEEM 5 0.26 0.44 0.58 0.67 0.74 853 0.53 0.69 0.80 0.87 0.92 639,827
NASA 12 0.34 0.49 0.61 0.70 0.78 3,199 0.44 0.61 0.72 0.80 0.86 630,912

PROMISE 62 0.24 0.40 0.53 0.63 0.72 6,062 0.49 0.66 0.77 0.85 0.91 5,249,888
RELINK 3 0.20 0.36 0.50 0.64 0.72 238 0.45 0.66 0.79 0.87 0.93 76,811

prone instances respectively. Therefore, ManualDown can
obtain a higher Recall , and consequently obtain a higher
F1 -measure . Besides, in most cases, ManualDown obtains
small values of PF , and only in some cases, ManualDown
achieves very high performance of PF , which consequently
results in a large average value of PF .

However, when analyzing the percentage of inspection
effort in the top 50% instances, the total inspection effort
accounts for the majority of all inspection effort (i.e., at least
86% on average). Thus, it is clear that unsupervised method
ManualDown obtains better NPMs at the cost of higher
inspection efforts. The detailed results of each project can
be found in the online APPENDIX E [58].

Secondly, we sort instances of each project based on
their inspection effort (i.e., LOC) in ascending order and
analyse the relationship between instance inspection effort
and instance quality. The sorting strategy is consistent with
ManualUp. The results are shown in Table 4.

From the results shown in Table 4, it can be found that
inspecting the top 50% instances will consume a few of
the total inspection effort. For example, inspecting the top
50% instances of AEEEM, NASA, PROMISE and RELINK

needs to consume only 8%, 14%, 10% and 7% of the total
inspection effort, respectively. In other words, inspecting
instances with 20% of the total inspection effort will inspect
much more than 50% of instances. That is the reason why
ManualUp performs bad in terms of IFA and PII@L
but performs well in terms of CostEffort@L. It also can
be found that, at least on the four datasets, the smaller
instances are more likely to be clean, while the larger
instance are more likely to be defective.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 11

TABLE 4: The relationship between instance inspection effort and instance quality when sorting testing instances by
ManualUp.

Dataset # Project
Percentage of Defects

Total Defect
Percentage of Efforts

Total Effort10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
AEEEM 5 0.05 0.09 0.12 0.19 0.26 853 0 0.01 0.03 0.05 0.08 639,827
NASA 12 0.02 0.04 0.09 0.14 0.2 3,199 0.01 0.03 0.06 0.1 0.14 630,912

PROMISE 62 0.05 0.1 0.15 0.21 0.29 6,062 0 0.01 0.03 0.06 0.1 5,249,888
RELINK 3 0.04 0.1 0.16 0.2 0.28 238 0 0.01 0.02 0.04 0.07 76,811

When considering NPMs, the unsupervised CPDP
method ManualDown performs significantly better
than supervised methods on most performance mea-
sures (i.e., F1 -score and AUC) at the cost of higher
inspection efforts and higher false alarms. When
considering EPMs, the supervised CPDP methods
1) perform significantly better than the unsuper-
vised method ManualUp on IFA and PII@L, and
2) perform significantly worse than the unsuper-
vised method ManualUp on CostEffort@L and
Popt . ManualDown always outperforms ManulaUp
in terms of NPMs, while ManualDown and Manu-
alUp have their own advantages in terms of EPMs.

6.2 RQ2: Could the supervised method be enhanced by
leveraging the intuition of unsupervised methods?
Motivation. Labeled data can provide useful information
for building a high-quality model, and previous supervised
works have made great progress in the CPDP scenario [3],
[6], [13], [42], [69]. Besides, inspired by Zhou et al. [5], we
should consider different methods for different scenarios.
When the inspection costs are unlimited, we should first
consider a larger instance since as previous study reports
that a larger instance tends to have more defects [45].
However, in practice, we cannot ignore the limitation of
inspection effort, context switches and developer fatigue
due to initial false alarms. Therefore, when the inspection
costs are limited, inspired by Huang et al. [27], we should
first inspect the instances with a larger ratio between each
instance defect proneness (i.e., a probability outputted by a
classifier) and its inspection effort (i.e., LOC) since recent
studies argue that a smaller instance is proportionally more
defect-prone and hence should be inspected first [46]–[48].
Consequently, both the findings of Huang et al.’ work [27]
and Zhou et al.’s work [5] should be further leveraged in
future work, and we want to investigate whether there exists
an enhanced supervised method having superiority over
the unsupervised methods when more NPMs and EPMs are
considered in the CPDP scenario.
Method. We first propose an improved supervised method
EASC (Effort-Aware Supervised Cross-project defect pre-
diction) which utilizes the advantage of classical super-
vised methods and takes inspection efforts into consider-
ation. Then, we make a comparison between the supervised
method (i.e., EASC) and the unsupervised methods (i.e.,
ManualDown and ManualUp) when NPMs and EPMs are
considered.

For a fair comparison, according to the suggestions of
Zhou et al. [5], we should compare EASC with Manual-
Down when the NPMs are considered, while we should

compare EASC with ManualUp when the EPMs are con-
sidered. Besides, in previous work [70], Lessmann et al. pro-
pose a framework for comparative software defect predic-
tion experiments about the inconsistent findings regarding
the superiority among different classifiers. They found that
the performance differences of classifier are not significant.
Therefore, Naive Bayes is used as the default classifier in
EASC and the effect of the choice of EASC’s underlying
classifier can be found in the online APPENDIX F [58].

Besides, Menzies et al. [45] found that manualUp tuned
with a defect predictor could achieve better performance. In
particular, in the phase of model building, a defect predictor
should be trained on training instances. In the phase of
model applying, the defect predictor firstly makes a binary
decision (e.g., defective or clean) on testing instances. Then,
all instances identified as defective are sorted in ascending
order of LOC. For convenience, we refer to the tuned
manualUp method as TunedmanualUp. In this section,
we will make a further comparison between EASC and
TunedmanualUp in terms of both NPMs and EPMs to fig-
ure out whether EASC has priority over TunedmanualUp.
Notice that Naive Bayes is used as the default classi-
fier in TunedmanualUp and the effect of the choice of
TunedmanualUp’s underlying classifier can be found in the
online APPENDIX F [58].
Results 1: Comparison between EASC and Manual-
Down/ManualUp.

Table 5 and Table 6 present the average results and the
statistical test results comparing EASC and ManualDown
(ManualUp). In Table 5 and Table 6 , the first column lists the
performance measures. The second column lists the datasets
we experiment on. The following two columns present the
average performance of EASC and ManualDown (Manu-
alUp) in Table 5 (Table 6), respectively. We also present
the results of TunedmanualUp in the last one column in
Table 5 and Table 6.

Non-effort-aware Performance Comparison. From the
results shown in Table 5, in terms of F1 -score and AUC , the
supervised method EASC can achieve similar performance
with ManualDown (with no statistically significant differ-
ence) in almost all datasets except for PROMISE. However,
EASC statistically significantly performs better than Manu-
alDown in terms of PF .

Effort-aware Performance Comparison. From the re-
sults shown in Table 6 , we make the following observations:

(1) In terms of IFA, EASC achieves the best results on
all datasets and statistically significantly improves Manu-
alUp with large effect size on almost all dataset except for
RELINK. On average, the IFA scores of EASC are no larger
than 6, while those of ManualUp vary in large range (i.e.,
8∼1268). For example, on AEEEM, EASC on average can
successfully detect the first defective instance with at most

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 12

TABLE 5: Comparisons between EASC and ManualDown (TunedmanualUp) on four datasets in terms of non-effort-aware
performance measures in the form of average±variance.

Measures Datasets EASC ManualDown EASC TunedmanualUp

F1 -score↑

AEEEM 0.32±0.02 0.39±0.03 0.32±0.02 0.42±0.02
NASA 0.26±0.01 0.27±0.02 0.26±0.01 0.30±0.02
PROMISE 0.28±0.02(L)*** 0.50±0.03 0.28±0.02(L)*** 0.49±0.03
RELINK 0.67±0.02 0.64±0.01 0.67±0.02 0.66±0.01

AUC↑

AEEEM 0.75±0.00 0.73±0.00 0.75±0.00(L)** 0.59±0.00
NASA 0.77±0.01 0.74±0.01 0.77±0.01(L)** 0.60±0.01
PROMISE 0.73±0.01 0.73±0.01 0.73±0.01(L)*** 0.60±0.01
RELINK 0.79±0.01 0.74±0.01 0.79±0.01 0.63±0.01

PF↓

AEEEM 0.07±0.01(L)** 0.43±0.00 0.07±0.01(L)** 0.29±0.03
NASA 0.07±0.00(L)*** 0.46±0.00 0.07±0.00(L)*** 0.47±0.06
PROMISE 0.07±0.00(L)*** 0.38±0.01 0.07±0.00(L)*** 0.28±0.02
RELINK 0.23±0.05 0.33±0.01 0.23±0.05 0.43±0.02

Notes: (1) *** means p < 0 .001 , ** means p < 0 .01 , * means p < 0 .05 .
(2) L/M/S: Large/Medium/Small effect size according to Cliff’s delta.
(3) ’↓’ indicates ’the smaller the better’; ’↑’ indicates ’the larger the better’.

TABLE 6: Comparisons between EASC and ManualUp (TunedmanualUp) on four datasets in terms of effort-aware
performance measures in the form of average±variance.

Measures Dataset EASC ManualUp EASC TunedmanualUp

IFA↓

AEEEM 1±2(L)** 30±417 1±2 2±0
NASA 5±50(L)*** 1268±7251939 5±50 21±745
PROMISE 6±118(L)*** 20±538 6±118 6±247
RELINK 1±2 8±1 1±2 4±26

PII@20%↓

AEEEM 0.08±0.00(L)** 0.69±0.00 0.08±0.00(L)* 0.23±0.02
NASA 0.07±0.00(L)*** 0.54±0.02 0.07±0.00(L)*** 0.25±0.01
PROMISE 0.11±0.00(L)*** 0.68±0.01 0.11±0.00(L)*** 0.24±0.00
RELINK 0.22±0.01 0.68±0.00 0.22±0.01 0.32±0.01

PII@1000↓

AEEEM 0.02±0.00(L)** 0.19±0.02 0.02±0.00 0.04±0.00
NASA 0.04±0.00(L)*** 0.25±0.02 0.04±0.00(L)* 0.14±0.02
PROMISE 0.06±0.01(L)*** 0.35±0.04 0.06±0.01(L)*** 0.08±0.01
RELINK 0.12±0.00 0.48±0.05 0.12±0.00 0.18±0.01

PII@2000↓

AEEEM 0.02±0.00(L)** 0.26±0.02 0.02±0.00 0.06±0.00
NASA 0.07±0.01(L)*** 0.39±0.05 0.07±0.01(L)* 0.22±0.03
PROMISE 0.10±0.04(L)*** 0.45±0.05 0.10±0.04(L)*** 0.16±0.04
RELINK 0.18±0.00 0.61±0.07 0.18±0.00 0.27±0.01

CostEffort@20%↑

AEEEM 0.18±0.01 0.26±0.00 0.18±0.01 0.31±0.00
NASA 0.20±0.01 0.18±0.02 0.20±0.01(L)* 0.31±0.02
PROMISE 0.17±0.01(M)*** 0.27±0.02 0.17±0.01(L)* 0.28±0.01
RELINK 0.33±0.00 0.28±0.00 0.33±0.00 0.38±0.00

CostEffort@1000↑

AEEEM 0.04±0.00 0.08±0.00 0.04±0.00 0.07±0.00
NASA 0.11±0.02 0.08±0.02 0.11±0.02 0.17±0.05
PROMISE 0.05±0.00(L)*** 0.15±0.01 0.05±0.00 0.10±0.02
RELINK 0.22±0.04 0.19±0.01 0.22±0.04 0.20±0.02

CostEffort@2000↑

AEEEM 0.05±0.00 0.12±0.01 0.05±0.00 0.08±0.00
NASA 0.16±0.02 0.11±0.02 0.16±0.02 0.25±0.08
PROMISE 0.07±0.01(L)*** 0.18±0.02 0.07±0.01 0.15±0.03
RELINK 0.32±0.06 0.24±0.00 0.32±0.06 0.32±0.06

Popt
↑

AEEEM 0.73±0.02 0.65±0.00 0.73±0.02 0.63±0.01
NASA 0.62±0.02 0.49±0.04 0.62±0.02 0.59±0.01
PROMISE 0.66±0.08 0.63±0.04 0.66±0.08 0.62±0.06
RELINK 0.74±0.02 0.64±0.00 0.74±0.02 0.58±0.00

Notes: (1) *** means p < 0 .001 , ** means p < 0 .01 , * means p < 0 .05 .
(2) L/M/S: Large/Medium/Small effect size according to Cliff’s delta.
(3) ’↓’ indicates ’the smaller the better’; ’↑’ indicates ’the larger the better’.

one initial false alarm, while ManualUp on average gets
30 initial false alarms before the first defective instance is
found. Besides, ManualUp has thousands of initial false
alarms on NASA (i.e., 1268) which may cause developer
fatigue in using a defect prediction tool.

(2) In terms of PII@20%, EASC statistically significantly
outperforms ManualUp with a large improvement with
respect to Cliff’s delta on almost all datasets except for RE-
LINK. In particular, the performance of ManualUp is many
times that of EASC, which may cause more context switches.
For a comprehensive comparison with ManualUp, we also
consider another two performance measures: PII@1000
and PII@2000 . According to the results in Table 6, we can

draw similar conclusions as with PII@20%.
(3) In terms of CostEffort@20%, the difference between

EASC and ManualUp are not statistically significant in
almost all cases except for PROMISE. In addition, for a com-
prehensive comparison with ManualUp, we also consider
another two performance measures: CostEffort@1000 and
CostEffort@2000 . According to the results in Table 6, we
can draw similar conclusions as with PII@20%.

(4) In terms of Popt , EASC also outperforms ManualUp
in all cases since EASC (i.e., 0.69) obtains higher perfor-
mance than ManualUp (i.e., 0.60) on average.
Results 2: Comparison between EASC and Tunedmanu-
alUp.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 13

Non-effort-aware Performance Comparison. From the
results shown in Table 5, we find that EASC achieves similar
performance with TunedmanualUp in terms of F1 -score
and the difference is not statistically significant except for
PROMISE. However, in terms of AUC and PF , EASC sta-
tistically significantly outperforms TunedmanualUp with
a large improvement with respect to Cliff’s delta in most
cases.

Effort-aware Performance Comparison. From the
results shown in Table 6, we find that in terms of PII@L,
EASC statistically significantly performs better than
TunedmanualUp in most cases. In terms of IFA and
Popt , EASC also achieve better average performance
than TunedmanualUp. On NASA and PROMISE, EASC
performs worse than TunedmanualUp in terms of
CostEffort@20%. Besides, in terms of CostEffort@L, the
difference between EASC and TunedmanualUp is not
statistically significant.

When considering NPMs, supervised method EASC
achieves prediction performance comparable or even
superior to unsupervised method ManualDown.
When considering EPMs, EASC can significantly
outperform ManualUp with a large improvement
with respect to Cliff’s delta in most cases. Besides,
EASC can obtain better performance than Tuned-
manualUp in most cases in terms of both NPMs and
EPMs.

7 THREATS TO VALIDITY

Threats to internal validity relate to faults in the imple-
mentation of the methods when we revisit the supervised
and unsupervised methods, especially for the unsupervised
methods (i.e., ManualDown and ManualUp) which are both
published by their authors using R language. To minimize
the internal threats, we not only implement these methods
by pair programming but also make full use of third-party
implementations such as the CrossPare [28] and Weka [71].
We use the default hyper-parameters suggested by Cross-
Pare and Weka. For the unsupervised method, although our
code is written in Java, we have carefully read the published
paper and strictly follow the description of these methods.
All of the datasets used in our paper are publicly available
from previous works, and most datasets are cleaned for
quality or manually verified in previous works.

Threats to external validity relate to the quality and
generalizability of our datasets. We use four datasets with
82 projects, which belong to different application domains,
vary in size, cover a long period of time and are written
in different programming languages. However, there are
still many other projects in other domains using other
programming languages, which are not considered in our
study. Besides, in our experiment, most of these projects are
open source projects. Thus, it is still unclear whether our
conclusions are generalizable for commercial projects. In the
future, we plan to reduce this threat by considering more
additional software projects especial commercial projects.

Threats to construct validity relate to the suitability
of our performance measures. In addition to state-of-the-
art NPMs, we consider another eight EPMs, namely IFA,
PII@L, CoftEffort@L and Popt . We use IFA because pre-
vious studies have shown that developers are not willing
to use the prediction method if its IFA is quite large which
will heavily depress the confidence of developer. We use
PII@L because the developers are always in heavy work.
The high value of PII@L means developers need to inspect
more instances under the same inspection effort, which will
make developers’ work harder. We use CostEffort because
we want to find more detective instances under the limited
inspection effort. We use Popt because it has been widely
used in previous works [27], [37], [38] as the effort-aware
performance measure. We have carefully discussed the
motivation for using these additional evaluation measures
and cited previous studies to support our assumptions.
However, it is difficult to accurately measure the inspection
effort of an instance in practice. In this paper, we treat
number of lines of code inspected as the proxy of inspection
effort, which is widely used in previous works [5], [27], [38].
However, number of lines of code inspected may not be
appropriate to measure the true effort associated with code
inspections activities. In this future, we want to investigate
other proxies of inspection effort. Besides, we use the non-
parametric statistical hypothesis Wilcoxon signed-rank test
and compute non-parametric effect size measure Cliff’s δ to
compare the performance of different methods, and ensure
that the differences are statistically significant and substan-
tial. These tests have been used by past studies [5], [6]. Thus,
we believe we have little threats to construct validity.

8 RELATED WORK

Since the target software projects usually lack the labelled
modules, a possible solution is to use other historical
projects with labelled modules to train the prediction mod-
els. This issue is called the cross-project defect prediction
(CPDP) [18], [22], [44]. However, the dataset distribution
of the target and source projects is usually different, which
makes CPDP a challenging task. Zimmermann et al. [72]
conducted a large-scale empirical study to investigate the
feasibility of CPDP and their results were not optimistic.

Consequently, many supervised CPDP methods are pro-
posed in past decades to improve the performance of CPDP
[5], [28]. Most researchers focus on homogeneous CPDP,
which assumes that the source and target projects have the
same feature sets. Turhan et al. [33] proposed Burak filter to
first transform the metric data with the logarithm and then
applied a relevancy filter to the available training data based
on the k (i.e., 10) nearest instances algorithm. Through the
relevancy filter, the k nearest instances to each instance in
the target data are selected. Peters et al. [21] improved the
filter mechanism, which took in the infra-structure of source
projects. Menzies et al. [65] created a local model through
clustering of the training data with the WHICH algorithm.
Separate WHICH rules are created for each cluster to create
local models. In addition to WHICH, random forest is used
in this paper due to its better performance. Ma et al. [22]
proposed a method which assigns higher weights to the

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 14

source instances that are similar to the target instances. Ca-
margo Cruz and Ochimizu [64] proposed to apply a power
transformation to the metric data and then standardize it.
The power transformation is based on the logarithm and
the observation that software metrics, especially the size and
complexity, often follow exponential distributions, which is
the same as what Turhan et al. [33] do for the treatment of
the data. Besides, they considered a single training product
as reference. Watanabe et al. [66] proposed to compensate
differences between products through a standardization
technique that rescales the data. In a scenario with only
one candidate product as training data, they proposed to
use this product as reference for the standardization of the
target data. This shall increase the homogeneity between
the target product and the candidate product. As formula
for standardization, the authors proposed to multiply each
metric value of the target product with the mean value of the
candidate product and divide this by the mean of the target
product itself. Wang et al. [73] leveraged a representation-
learning algorithm (i.e., deep learning) to learn semantic
representation of the modules from the projects. Nam et al.
propose [18] TCA+ which extends TCA [74] which trans-
forms data from source and target projects to a latent space
where the two datasets are close to each other with some
data pre-processing options and a heuristic to decide the
best pre-processing option to use. Xia et al. [6] proposed a
two-layer framework Hydra, which combined the genetic
algorithm and ensemble learning to capture general prop-
erties between the source and target projects and merits of
multiple prediction models. Zhang et al. [75] investigated
seven composite algorithms that integrate multiple machine
learning classifiers to improve cross-project defect predic-
tion.

Some researchers investigate heterogeneous CPDP,
which assumes that the source and target projects have
different feature sets. Nam and Kim [16] proposed the
heterogeneous CPDP method, including feature selection
phase and feature mapping phase. Jing et al. [76] solved
the problem by defining unified feature space and applying
CCA (Canonical Correlation Analysis)-based transfer learn-
ing. Li et al. [77] proposed multiple kernel learning and
ensemble learning to improve heterogeneous CPDP perfor-
mance. Then they [78], [79] further studied two importance
issues (i.e., privacy preservation and cost) in heterogeneous
CPDP.

Other researchers considered unsupervised learning
methods. Nam and Kim [19] performed defect prediction
on unlabelled data using a cluster based method which has
two phases. They further used feature selection and instance
selection to remove noises in dataset to improve CLA and
proposed CLAMI. Zhang et al. [80] designed a connectivity-
based unsupervised prediction method. Recently, Zhou et
al. [5] proposed two unsupervised methods (ManualDown
and ManualUp) and they suggested that these two simple
methods should be set as baseline methods in the future
CPDP research.

Ideally, we can inspect all defect-prone instances during
the process of development. However, in practice, a devel-
oper has a limited time and can only inspect a limited num-
ber of lines of code. Therefore, in this paper, we propose an
improved supervised method EASC based on the findings

of Huang et al. [27] and Zhou et al. [5]. EASC takes both
NPMs and EPMs into consideration. The results analyzed
in previous Sections prove that supervised methods have
priority over unsupervised methods.

9 CONCLUSIONS AND FUTURE WORK
In this paper, we first revisit a comparison between the
state-of-the-art supervised CPDP methods and unsuper-
vised methods (i.e., ManualUp and ManualDown) recently
proposed by Zhou et al. [5] under the same experimental
settings. We conduct this experiment based on CrossPare
which was developed and shared by Herbold et al. [28]
to make CPDP method comparisons easier. The experi-
mental results show that 1) when considering NPMs, the
unsupervised method (i.e., ManualDown) performs better
than state-of-the-art supervised methods in most cases in
terms of F1 -score and AUC ; 2) when considering EPMs,
the supervised CPDP methods perform better than the un-
supervised method (i.e., ManualUp) in most cases in terms
of IFA and PII@L while perform worse than ManualUp in
terms of CostEffort@L and Popt . We further analyze why
the unsupervised method performs better than the existing
supervised methods in terms of NPMs and figure out that
the unsupervised method achieve higher performance at the
cost of higher inspection effort and false alarms which may
cause developer fatigue and tool abandonment. In addition,
since we cannot ignore the limited inspection efforts in
practical applications, we propose an improved supervised
method EASC to compare with the unsupervised method
especially for the scenario when limited inspection cost
is considered. EASC contains two phases: model building
phase and model evaluating phase. In the former phase,
a model can be built with a specific basic classifier (i.e.,
Naive Bayes is used as the default classifier) after some
pre-processing. In the latter phase, it sorts the testing set in
descending order by score×LOC when considering NPMs,
or it separately sorts instances predicted as defective and
instances predicted as non-defective in descending order
by score/LOC when considering EPMs. In which, score
is the probability outputted by a classifier to indicate the
proneness of an instance to be defective, and LOC is the
inspection effort of an instance. The experimental results
proved that EASC can significantly outperform ManualUp
in most cases with medium or large effect size and its
performance does not heavily rely on the trained classifiers.

In the future, firstly, we plan to collect more datasets,
especially datasets gathered from commercial projects, to
verify the generality of our empirical results of EASC.
Secondly, we plan to design more new EPMs to guide our
work on improving the performance in the practical usage
scenario.

ACKNOWLEDGMENTS

We would like to thank Herbold et al. [28] for sharing the
tool and datasets in their study. This research was partially
supported by the Australian Research Council’s Discovery
Early Career Researcher Award (DECRA) funding scheme
(DE200100021), the National Natural Science Foundation of
China (61872057, 61972192, 61872263 and 61702041), and the

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 15

Open Project of State Key Laboratory for Novel Software
Technology at Nanjing University (KFKT2019B14).

REFERENCES

[1] Y. Kamei and E. Shihab, “Defect prediction: Accomplishments
and future challenges,” in Proceedings of 23rd Software Analysis,
Evolution, and Reengineering (SANER), vol. 5. IEEE, 2016, pp.
33–45.

[2] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and X. Yang, “Per-
ceptions, expectations, and challenges in defect prediction,” IEEE
Transactions on Software Engineering, 2018.

[3] C. Ni, W.-S. Liu, X. Chen, Q. Gu, D.-X. Chen, and Q.-G. Huang, “A
cluster based feature selection method for cross-project software
defect prediction,” Journal of Computer Science and Technology,
vol. 32, no. 6, pp. 1090–1107, 2017.

[4] W. Fu and T. Menzies, “Revisiting unsupervised learning for
defect prediction,” in Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE). ACM, 2017,
pp. 72–83.

[5] Y. Zhou, Y. Yang, H. Lu, L. Chen, Y. Li, Y. Zhao, J. Qian, and
B. Xu, “How far we have progressed in the journey? an exami-
nation of cross-project defect prediction,” ACM Trans. Softw. Eng.
Methodol., vol. 27, no. 1, pp. 1:1–1:51, 2018.

[6] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “Hydra: Mas-
sively compositional model for cross-project defect prediction,”
IEEE Transactions on Software Engineering, vol. 42, no. 10, pp.
977–998, 2016.

[7] X. Yu, K. E. Bennin, J. Liu, J. W. Keung, X. Yin, and Z. Xu,
“An empirical study of learning to rank techniques for effort-
aware defect prediction,” in Proceedings of the 26th International
Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2019, pp. 298–309.

[8] X. Yang, K. Tang, and X. Yao, “A learning-to-rank approach
to software defect prediction,” IEEE Transactions on Reliability,
vol. 64, no. 1, pp. 234–246, 2014.

[9] S. Kim, E. J. Whitehead Jr, and Y. Zhang, “Classifying soft-
ware changes: Clean or buggy?” IEEE Transactions on Software
Engineering, vol. 34, no. 2, pp. 181–196, 2008.

[10] T. Menzies, J. Greenwald, and A. Frank, “Data mining static
code attributes to learn defect predictors,” IEEE transactions on
software engineering, no. 1, pp. 2–13, 2007.

[11] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A sys-
tematic literature review on fault prediction performance in soft-
ware engineering,” IEEE Transactions on Software Engineering,
vol. 38, no. 6, pp. 1276–1304, 2012.

[12] A. Boucher and M. Badri, “Software metrics thresholds calculation
techniques to predict fault-proneness: An empirical comparison,”
Information and Software Technology, vol. 96, pp. 38–67, 2018.

[13] F. Wu, X.-Y. Jing, Y. Sun, J. Sun, L. Huang, F. Cui, and Y. Sun,
“Cross-project and within-project semisupervised software defect
prediction: A unified approach,” IEEE Transactions on Reliability,
2018.

[14] R. Krishna and T. Menzies, “Bellwethers: A baseline method for
transfer learning,” IEEE Transactions on Software Engineering,
2018.

[15] S. Hosseini, B. Turhan, and D. Gunarathna, “A systematic litera-
ture review and meta-analysis on cross project defect prediction,”
IEEE Transactions on Software Engineering (TSE), 2017.

[16] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan, “Heterogeneous
defect prediction,” IEEE Transactions on Software Engineering
(TSE), 2017.

[17] X.-Y. Jing, F. Wu, X. Dong, and B. Xu, “An improved sda based
defect prediction framework for both within-project and cross-
project class-imbalance problems,” IEEE Transactions on Software
Engineering, vol. 43, no. 4, pp. 321–339, 2017.

[18] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in
Proceedings of the 35th International Conference on Software
Engineering (ICSE). IEEE, 2013, pp. 382–391.

[19] J. Nam and S. Kim, “Clami: Defect prediction on unlabeled
datasets,” in Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE,
2015, pp. 452–463.

[20] C. Tantithamthavorn, “Towards a better understanding of the im-
pact of experimental components on defect prediction modelling,”
in Proceedings of the 38th International Conference on Software
Engineering (ICSE), 2016, pp. 867–870.

[21] F. Peters, T. Menzies, and A. Marcus, “Better cross company defect
prediction,” in Proceedings of the 10th Working Conference on
Mining Software Repositories, 2013, pp. 409–418.

[22] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-
company software defect prediction,” Information and Software
Technology, vol. 54, no. 3, pp. 248–256, 2012.

[23] D. Ryu, O. Choi, and J. Baik, “Value-cognitive boosting with
a support vector machine for cross-project defect prediction,”
Empirical Software Engineering, vol. 21, no. 1, pp. 43–71, 2016.

[24] B. Turhan, A. Tosun, and A. Bener, “Empirical evaluation
of mixed-project defect prediction models,” in Proceedings of
37th EUROMICRO Conference on Software Engineering and
Advanced Applications. IEEE, 2011, pp. 396–403.

[25] D. Ryu and J. Baik, “Effective multi-objective naı̈ve bayes learn-
ing for cross-project defect prediction,” Applied Soft Computing,
vol. 49, pp. 1062–1077, 2016.

[26] Q. Huang, X. Xia, and D. Lo, “Supervised vs unsupervised models:
A holistic look at effort-aware just-in-time defect prediction,”
in Proceedings of the 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2017, pp. 159–170.

[27] ——, “Revisiting supervised and unsupervised models for
effort-aware just-in-time defect prediction,” Empirical Software
Engineering, pp. 1–40, 2018.

[28] S. Herbold, A. Trautsch, and J. Grabowski, “A comparative study
to benchmark cross-project defect prediction approaches,” IEEE
Trans. Software Eng., vol. 44, no. 9, pp. 811–833, 2018.

[29] S. Herbold, “Benchmarking cross-project defect prediction ap-
proaches with costs metrics,” arXiv preprint arXiv:1801.04107,
2018.

[30] J. Stuckman, J. Walden, and R. Scandariato, “The effect of dimen-
sionality reduction on software vulnerability prediction models,”
IEEE Transactions on Reliability, vol. 66, no. 1, pp. 17–37, 2017.

[31] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation
on the feasibility of cross-project defect prediction,” Automated
Software Engineering, vol. 19, no. 2, pp. 167–199, 2012.

[32] S. Herbold, A. Trautsch, and J. Grabowski, “Global vs. local
models for cross-project defect prediction,” Empirical Software
Engineering, vol. 22, no. 4, pp. 1866–1902, 2017.

[33] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the
relative value of cross-company and within-company data for
defect prediction,” Empirical Software Engineering, vol. 14, no. 5,
pp. 540–578, 2009.

[34] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and
Y. Jiang, “Implications of ceiling effects in defect predictors,”
in Proceedings of the 4th international workshop on Predictor
models in software engineering, 2008, pp. 47–54.

[35] W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is it
really necessary?” Information and Software Technology, vol. 76,
pp. 135–146, 2016.

[36] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Soft-
ware developers’ perceptions of productivity,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 19–29.

[37] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and H. Leung,
“Effort-aware just-in-time defect prediction: simple unsupervised
models could be better than supervised models,” in Proceedings
of 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 2016, pp. 157–168.

[38] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time
quality assurance,” IEEE Transactions on Software Engineering,
vol. 39, no. 6, pp. 757–773, 2013.

[39] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and S. Men-
sah, “MAHAKIL: diversity based oversampling approach to al-
leviate the class imbalance issue in software defect prediction,”
in Proceedings of the 40th International Conference on Software
Engineering, 2018, p. 699.

[40] A. Agrawal and T. Menzies, “Is ”better data” better than ”better
data miners”?: on the benefits of tuning SMOTE for defect pre-
diction,” in Proceedings of the 40th International Conference on
Software Engineering, 2018, pp. 1050–1061.

[41] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in Proceedings of the 31st International Conference on
Software Engineering. IEEE Computer Society, 2009, pp. 78–88.

[42] C. Ni, W. Liu, Q. Gu, X. Chen, and D. Chen, “Fesch: A feature
selection method using clusters of hybrid-data for cross-project
defect prediction,” in Proceedings of the 41st Annual Computer

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001739, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 16

Software and Applications Conference (COMPSAC). IEEE, 2017,
pp. 51–56.

[43] X. Chen, D. Zhang, Y. Zhao, Z. Cui, and C. Ni, “Software de-
fect number prediction: Unsupervised vs supervised methods,”
Information and Software Technology, vol. 106, pp. 161–181, 2019.

[44] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the imprecision
of cross-project defect prediction,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of
Software Engineering. ACM, 2012, p. 61.

[45] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener,
“Defect prediction from static code features: current results, limita-
tions, new approaches,” Automated Software Engineering, vol. 17,
no. 4, pp. 375–407, 2010.

[46] A. G. Koru, K. El Emam, D. Zhang, H. Liu, and D. Mathew, “The-
ory of relative defect proneness,” Empirical Software Engineering,
vol. 13, no. 5, p. 473, 2008.

[47] G. Koru, H. Liu, D. Zhang, and K. El Emam, “Testing the theory
of relative defect proneness for closed-source software,” Empirical
Software Engineering, vol. 15, no. 6, pp. 577–598, 2010.

[48] A. G. Koru, D. Zhang, K. El Emam, and H. Liu, “An investigation
into the functional form of the size-defect relationship for software
modules,” IEEE Transactions on Software Engineering, vol. 35,
no. 2, pp. 293–304, 2009.

[49] Y. Jiang, B. Cukic, and T. Menzies, “Fault prediction using early
lifecycle data,” in Proceeding of the 18th IEEE International
Symposium on Software Reliability (ISSRE). IEEE, 2007, pp. 237–
246.

[50] C. Tantithamthavorn and A. E. Hassan, “An experience report
on defect modelling in practice: pitfalls and challenges,” in
Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice, ICSE (SEIP),
F. Paulisch and J. Bosch, Eds. ACM, 2018, pp. 286–295.

[51] J. A. Hanley and B. J. McNeil, “The meaning and use of the area
under a receiver operating characteristic (roc) curve.” Radiology,
vol. 143, no. 1, pp. 29–36, 1982.

[52] C. Parnin and A. Orso, “Are automated debugging techniques ac-
tually helping programmers?” in Proceedings of the international
symposium on software testing and analysis. ACM, 2011, pp.
199–209.

[53] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expec-
tations on automated fault localization,” in Proceedings of the
25th International Symposium on Software Testing and Analysis.
ACM, 2016, pp. 165–176.

[54] T. Mende and R. Koschke, “Effort-aware defect prediction mod-
els,” in Proceedings of the 14th European Conference on Software
Maintenance and Reengineering. IEEE, 2010, pp. 107–116.

[55] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic
and comprehensive investigation of methods to build and eval-
uate fault prediction models,” Journal of Systems and Software,
vol. 83, no. 1, pp. 2–17, 2010.

[56] Y. Yang, M. Harman, J. Krinke, S. Islam, D. Binkley, Y. Zhou,
and B. Xu, “An empirical study on dependence clusters for
effort-aware fault-proneness prediction,” in Proceeding of the
31st IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2016, pp. 296–307.

[57] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams,
and A. E. Hassan, “Revisiting common bug prediction find-
ings using effort-aware models,” in Proceedings of 2010 IEEE
International Conference on Software Maintenance. IEEE, 2010,
pp. 1–10.

[58] N. Chao, X. Xin, L. David, C. Xiang, and G. Qing, “Online
appendix for ”revisiting supervised and unsupervised methods
for effort-aware cross-project defect prediction”,” 2020. [Online].
Available: https://github.com/jacknichao/EASC

[59] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive compar-
ison of bug prediction approaches,” in Proceedings of the 7th
Mining Software Repositories (MSR). IEEE, 2010, pp. 31–41.

[60] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality:
Some comments on the nasa software defect datasets,” IEEE
Transactions on Software Engineering, vol. 39, no. 9, pp. 1208–
1215, 2013.

[61] D. Gray, D. Bowes, N. Davey, and Y. Sun, “The misuse of the
nasa metrics data program data sets for automated software
defect prediction,” in Proceedings of Evaluation & Assessment in
Software Engineering, 2011, pp. 96–103.

[62] M. Jureczko and L. Madeyski, “Towards identifying software
project clusters with regard to defect prediction,” in Proceeding

of International Conference on Predictive MODELS in Software
Engineering, 2010, pp. 1–10.

[63] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: recovering
links between bugs and changes,” in Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering. ACM, 2011, pp. 15–25.

[64] A. E. Camargo Cruz and K. Ochimizu, “Towards logistic re-
gression models for predicting fault-prone code across software
projects,” in Proceedings of the 3rd International Symposium
on Empirical Software Engineering and Measurement. IEEE
Computer Society, 2009, pp. 460–463.

[65] T. Menzies, A. Butcher, A. Marcus, and D. Zimmermann, Thomas
a nd Cok, “Local vs. global models for effort estimation and defect
prediction,” in Proceedings of the 26th IEEE/ACM International
Conference on Automated Software Engineering. IEEE Computer
Society, 2011, pp. 343–351.

[66] S. Watanabe, H. Kaiya, and K. Kaijiri, “Adapting a fault pre-
diction model to allow inter languagereuse,” in Proceedings of
the 4th international workshop on Predictor models in software
engineering. ACM, 2008, pp. 19–24.

[67] F. Wilcoxon, “Individual comparisons by ranking methods,”
Biometrics bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[68] N. Cliff, Ordinal methods for behavioral data analysis. Psychol-
ogy Press, 2014.

[69] S. Amasaki, “Cross-version defect prediction using cross-project
defect prediction approaches: Does it work?” in Proceedings of
the 14th International Conference on Predictive Models and Data
Analytics in Software Engineering. ACM, 2018, pp. 32–41.

[70] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmark-
ing classification models for software defect prediction: A pro-
posed framework and novel findings,” IEEE Trans. Software Eng.,
vol. 34, no. 4, pp. 485–496, 2008.

[71] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: an update,” ACM
SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[72] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data
vs. domain vs. process,” in Proceedings of the the 7th joint meeting
of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering.
ACM, 2009, pp. 91–100.

[73] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic fea-
tures for defect prediction,” in Proceeding of the 38th International
Conference on Software Engineering (ICSE). IEEE, 2016, pp. 297–
308.

[74] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation
via transfer component analysis,” IEEE Transactions on Neural
Networks, vol. 22, no. 2, pp. 199–210, 2011.

[75] Y. Zhang, D. Lo, X. Xia, and J. Sun, “Combined classifier for cross-
project defect prediction: an extended empirical study,” Frontiers
of Computer Science, vol. 12, no. 2, pp. 280–296, 2018.

[76] X. Jing, F. Wu, X. Dong, F. Qi, and B. Xu, “Heterogeneous cross-
company defect prediction by unified metric representation and
cca-based transfer learning,” in Proceedings of the 10th Joint
Meeting on Foundations of Software Engineering. ACM, 2015,
pp. 496–507.

[77] Z. Li, X.-Y. Jing, X. Zhu, and H. Zhang, “Heterogeneous defect
prediction through multiple kernel learning and ensemble learn-
ing,” in Proceedings of IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2017, pp. 91–102.

[78] Z. Li, X.-Y. Jing, X. Zhu, H. Zhang, B. Xu, and S. Ying, “On the mul-
tiple sources and privacy preservation issues for heterogeneous
defect prediction,” IEEE Transactions on Software Engineering
(TSE), 2017.

[79] Z. Li, X.-Y. Jing, F. Wu, X. Zhu, B. Xu, and S. Ying, “Cost-sensitive
transfer kernel canonical correlation analysis for heterogeneous
defect prediction,” Automated Software Engineering, vol. 25,
no. 2, pp. 201–245, 2018.

[80] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan, “Cross-project
defect prediction using a connectivity-based unsupervised clas-
sifier,” in Proceedings of the 38th International Conference on
Software Engineering. ACM, 2016, pp. 309–320.

https://github.com/jacknichao/EASC

	Revisiting supervised and unsupervised methods for effort-aware cross-project defect prediction
	Citation

	Revisiting Supervised and Unsupervised Methods for Effort-Aware Cross-Project Defect Prediction

