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Abstract. Transport Layer Security Inspection (TLSI) enables enter-
prises to decrypt, inspect and then re-encrypt users’ traffic before it is
routed to the destination. This breaks the end-to-end security guarantee
of the TLS specification and implementation. It also raises privacy con-
cerns since users’ traffic is now known by the enterprises, and third-party
middlebox providers providing the inspection services may additionally
learn the inspection or attack rules, policies of the enterprises. Two recent
works, BlindBox (SIGCOMM 2015) and PrivDPI (CCS 2019) propose
privacy-preserving approaches that inspect encrypted traffic directly to
address the privacy concern of users’ traffic. However, BlindBox incurs
high preprocessing overhead during TLS connection establishment, and
while PrivDPI reduces the overhead substantially, it is still notable com-
pared to that of TLSI. Furthermore, the underlying assumption in both
approaches is that the middlebox knows the rule sets. Nevertheless, with
the services increasingly migrating to third-party cloud-based setting,
rule privacy should be preserved. Also, both approaches are static in
nature in the sense that addition of any rules requires significant amount
of preprocessing and re-instantiation of the protocols.

In this paper we propose Pine, a new Privacy-preserving inspection
of encrypted traffic protocol that (1) simplifies the preprocessing step of
PrivDPI thus further reduces the computation time and communication
overhead of establishing the TLS connection between a user and a server;
(2) supports rule hiding ; and (3) enables dynamic rule addition without
the need to re-execute the protocol from scratch. We demonstrate the
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superior performance of Pine when compared to PrivDPI through exten-
sive experimentations. In particular, for a connection from a client to a
server with 5,000 tokens and 6,000 rules, Pine is approximately 27%
faster and saves approximately 92.3% communication cost.

Keywords: Network privacy · Traffic inspection · Encrypted traffic

1 Introduction

According to the recent Internet trends report [11], 87% of today’s web traf-
fic was encrypted, compared to 53% in 2016. Similarly, over 94% of web traffic
across Google uses HTTPS encryption [7]. The increasing use of end-to-end
encryption to secure web traffic has hampered the ability of existing middle-
boxes to detect malicious packets via deep packet inspection on the traffic. As
a result, security service providers and enterprises deploy tools that perform
Man-in-the-Middle (MitM) to decrypt, inspect and re-encrypt traffic before the
traffic is sent to the designated server. Such approach is termed as Transport
Layer Security Inspection (TLSI) by the National Security Agency (NSA), which
recently issued an advisory on TLSI [12] citing potential security issues includ-
ing insider threats. TLSI introduces additional risks whereby administrators may
abuse their authorities to obtain sensitive information from the decrypted traffic.
On the other hand, there exists growing privacy concern on the access to users’
data by middleboxes as well as the enterprise gateways. According to a recent
survey on TLSI in the US [16], more than 70% of the participants are concerned
that middleboxes (or TLS proxies) performing TLSI can be exploited by hackers
or used by governments, and close to 50% think it is an invasion to privacy. In
general, participants are acceptable to the use of middleboxes by their employers
or universities for security purposes but also want assurance that these would
not be used by governments for surveillance or by exploited hackers.

To alleviate the above concerns on maintaining security of TLS while ensur-
ing privacy of the encrypted traffic, Sherry et al. [20] introduced a solution called
BlindBox to perform inspection on encrypted traffic directly. However, BlindBox
needs a setup phase that is executed between the middlebox and the client. The
setup phase performs two-party computation where the input of the middlebox
are the rules, which means that the privacy of rules against the middlebox is
not assured. In addition, this setup phase is built based on garbled circuit, and
needs to be executed for every session. Due to the properties of garble circuit,
such setup phase incurs significant computation and communication overheads.
To overcome this limitation, Ning et al. [15] recently proposed PrivDPI with an
improved setup phase. A new obfuscated rule generation technique was intro-
duced, which enables the reuse of intermediate values generated during the first
TLS session across subsequent sessions. This greatly reduces the computation
and communication overheads over a series of sessions. However, there still exists
considerable delay during the establishment of a TLS connection since each client
is required to run a preprocessing protocol for each new connection. In addition,
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as we will show in Sect. 4.1, when the domain of the inspection or attack rules
is small, the middlebox could perform brute force guessing for the rules in the
setting of PrivDPI. This means that, as in BlindBox, PrivDPI does not provide
privacy of rules against the middlebox. However, as noted in [20], most solution
providers, such as McAfee, rely on the privacy of their rules in their business
model. More so given the increasingly popular cloud-based middlebox services,
the privacy of the rules should be preserved against the middleboxes.

Given the security and privacy concerns on TLSI, and the current status of
the state-of-the-arts, we seek to introduce a new solution that addresses the fol-
lowing issues, in addition to maintaining the security and privacy provisions of
BlindBox and PrivDPI: (1) Fast TLS connection establishment without prepro-
cessing in order to eliminate the session setup delay incurred in both BlindBox
and PrivDPI; (2) Resisting brute force guessing of the rule sets even for small
rule domains; (3) Supporting lightweight rule addition.
Our Contributions. We propose Pine, a new protocol for privacy-preserving
deep packet inspection on encrypted traffic, for a practical enterprise network
setting, where clients connect to the Internet through an enterprise gateway. The
main contributions are summarized as follows.
– Identifying limitation of PrivDPI. We revisit PrivDPI and demonstrate

that in PrivDPI, when the rule domain is small, the middlebox could forge
new encrypted rules that gives the middlebox the ability to detect the
encrypted traffic with any encrypted rules it generates.

– New solution with stronger privacy guarantee. We propose Pine as the
new solution for the problem of privacy-preserving deep packet inspection,
where stronger privacy is guaranteed. First of all, the privacy of the traffic is
protected unless there exists an attack in the traffic. Furthermore, privacy of
rules is assured against the middlebox, we call this property rule hiding. This
property ensures privacy of rules even when the rule domain is small (e.g.
approximately 3000 rules as in existing Network Intrusion Detection (IDS)
rules), which addresses the limitation of PrivDPI. In addition, privacy of rules
is also assured against the enterprise gateway and the endpoints, we term this
property rule privacy.

– Amortized setup, fast connection establishment. Pine enables the
establishment of a TLS connection with low latency and without the need
for an interactive preprocessing protocol as in PrivDPI and BlindBox. The
latency-incurring preprocessing protocol is performed offline and is only exe-
cuted once. Consequently, there is no per-user-connection overhead. Any
client can setup a secure TLS connection with a remote server without prepro-
cessing delay. In contrast, in PrivDPI and BlindBox, the more rules there are,
the higher the per-connection setup cost is. The speed up of the connection
is crucial for low-latency applications.

– Lightweight rule addition. Pine is a dynamic protocol in that it allows new
rules being added on the fly without affecting the connection between a client
and a server. The rule addition is seamless to the clients in the sense that
the gateway can locally execute the rule addition phase with the middlebox
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Fig. 1. Pine system architecture.

without any client involvement. This is beneficial as compared to BlindBox
and PrivDPI, where the client would need to re-run the preprocessing protocol
from scratch for every connection.
In addition to stronger privacy protection, we conduct extensive experiments

to demonstrate the superior performance of Pine when compared to PrivDPI.
For a connection from a client to a server with 5,000 tokens and a ruleset of
6,000, Pine is approximately 27% faster than PrivDPI, and saves approximately
92.3% communication cost. In particular, the communication cost of Pine is
independent of the number of rules, while the communication cost of PrivDPI
grows linear with the number of rules.

2 Protocol Overview

Pine shares a similar architecture with BlindBox and PrivDPI, as illustrated
in Fig. 1. There are five entities in Pine: Client, Server, Gateway (GW), Rule
Generator (RG) and Middlebox (MB). Client and server are the endpoints
that send and receive network traffic protected by TLS. GW is a device located
between a set of clients and servers that allows network traffic to flow from one
endpoint to another endpoint. RG generates the attack rule tuples for MB.
The attack rule tuples will be used by MB to detect attacks in the network
traffic. Each attack rule describes an attack and contains one or more keywords
to be matched in the network communication. Hereafter, we will use the terms
“rule” and “attack rule” interchangeably. The role of RG can be performed by
organization such as McAfee [18]. MB is a network device that inspects and
filters network traffic using the attack rule tuples issued by RG.
System Requirements. The primary aim is to provide a privacy-preserving
mechanism that can detect any suspicious traffic while at the same time ensure
the privacy of endpoint’s traffic. In particular, the system requirements include:

– Traffic inspection: Pine retains similar functionality of traditional IDS, i.e.,
to find a suspicious keyword in the packet.

– Rule privacy : The endpoints and GW should not learn the attack rules (i.e.,
the keywords). This is required especially for security solution providers that
generate comprehensive and proprietary rule sets as their unique proposition
that help to detect malicious traffic more effectively.
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– Traffic privacy : On one hand, MB is not supposed to learn the plaintexts of
the network traffic, except for the portions of the traffic that match the rules.
On the other hand, GW is not allowed to read the content of the traffic.

– Rule hiding : MB is not supposed to learn the attack rules from the attack
rule tuples issued by RG in a cloud-based setting where MB resides on a
cloud platform. In such a case the cloud-based middlebox is not fully trusted.
The security solution providers would want to protect the privacy of their
unique rule sets, as was discussed previously in describing rule privacy.

Threat Model. There are three types of attackers described as follows.
– Malicious endpoint. The first type of attacker is the endpoint (i.e., the client

or the server). Similar to BlindBox [20] and PrivDPI [15], at most one of the
two endpoints is assumed to be malicious but not both. Such an attacker is
the same as the attacker in the traditional IDS whose main goal is to evade
detection. As in the traditional IDS [17], it is a fundamental requirement
that at least one of the two endpoints is honest. This is because if two mali-
cious endpoints agree on a private key and send the traffic encrypted by this
particular key, detection of malicious traffic would be infeasible.

– The attacker at the gateway. As in conventional network setting, GW is
assumed to be semi-honest. That is, GW honestly follows the protocol spec-
ification but may try to learn the plaintexts of the traffic. GW may also try
to infer the rules from the messages it received.

– The attacker at the middlebox. MB is assumed to be semi-honest, which
follows the protocol but may attempt to learn more than allowed from the
messages it received. In particular, it may try to read the content of the traffic
that passed through it. In addition, it may try to learn the underlying rules
of the attack rule tuples issued by RG.

Protocol Flow. We present how each phase functions at a high level as follows.

– Initialization. RG initializes the system by setting the public parameters.
– Setup. GW subscribes the inspection service from RG, in which RG receives

a shared secret from GW. RG issues the attack rule tuples to MB. The client
and the server will derive some parameters from the key of the primary TLS
handshake protocol and install a Pine HTTPS configuration, respectively.

– Preprocessing. In this phase, GW interacts with MB to generate a set of
reusable randomized rules. In addition, GW generates and sends the initial-
ization parameters to the clients within its domain.

– Preparation of Session Detection Rule. In this phase, the reusable randomized
rules will be used to generate session detection rules.

– Token Encryption. In this phase, a client generates the encrypted token for
each token in the payload. The encrypted tokens will be sent along with the
traffic encrypted from the payload using regular TLS.

– Gateway Checking. For the first session, GW checks whether the attached
parameters sent by the client is well-formed. This phase will be run when a
client connects to a server for the first time.
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– Traffic Inspection. MB generates a set of encrypted rules and performs inspec-
tion using these encrypted rules.

– Traffic Validation. One endpoint performs traffic validation in case the other
endpoint is malicious.

– Rule Addition. A set of new attack rules will be added in this phase. GW
interacts with MB to generate the reusable randomized rule set corresponding
to these new attack rules.

3 Preliminaries

Complexity Assumption. The decision Diffie-Hellman (DDH) problem is
stated as follows: given g, gx, gy, gz, decide whether z = xy (modulo the order
of g), where x, y, z ∈ Zp. We say that a PPT algorithm B has advantage ε in
solving the DDH problem if |Pr[B(g,gx,gy,gxy) = 1] − Pr[B(g,gx,gy,gz) = 1]| ≥ ε,
where the probability above is taken over the coins of B, g, x, y, z.

Definition 1. The DDH assumption holds if no PPT adversary has advantage
at least ε in solving the DDH problem.

Pseudorandom function. A pseudorandom function family PRF is a family
of functions {PRFa : U → V |a ∈ A} such that A could be efficiently samplable
and all PRF, U , V , A are indexed by a security parameter λ. The security
property of a PRF is: for any PPT algorithm B running in λ, it holds that
|Pr[BPRFa(·) = 1]−Pr[BR(·) = 1]| = negl(λ), where negl is a negligible function
of λ, a and R are uniform over A and (U → V ) respectively. The probability
above is taken over the coins of B, a and R. For notational simplicity, we consider
one version of the general pseudorandom function notion that is custom-made to
fit our implementation. Specifically, the pseudorandom function PRF considered
in this paper maps λ-bit strings to elements of Zp. Namely, PRFa : {0, 1}λ → Zp,
where a ∈ G.
Payload Tokenization. As in BlindBox and PrivDPI, we deploy window-based
tokenization to tokenize keywords of a client’s payload. Window-based tokeniza-
tion follows a simple sliding window algorithm. We adopt 8 bytes per token when
we implement the protocol. That is, given a payload “secret key”, an endpoint
will generate the tokens “secret k”, “ecret ke” and “cret key”.

4 Protocol

In this section, we first point out the limitation of PrivDPI. To address this prob-
lem and further reduce the connection delay, we then present our new protocol.

4.1 Limitation of PrivDPI

We show how PrivDPI fails when the domain of rule is small. We say that
the domain of rule is small if one can launch brute force attack to guess the
underlying rules given the public parameters. We first recall the setup phase of
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PrivDPI. In the setup phase, a middlebox receives (si, Ri, sig(Ri)) for rule ri,
where Ri = gαri+si and sig(Ri) is the signature of Ri. With si and Ri, MB
obtains the value gαri . Recall that in PrivDPI, the value A = gα is included in
the PrivDPI HTTPS configuration, MB could obtain this value via installing a
PrivDPI HTTPS configuration. Since the domain of rule is small, with A and
gαri , MB can launch brute force attack to obtain the value of ri via trying every
candidate value v by checking Av ?= gαri within the rule domain. In this way,
MB could obtain the value ri for Ri and rj for Rj . After the completion of
preprocessing protocol, MB obtains the reusable obfuscated rule Ii = gkαri+k2

for rule ri. Now, MB knows values ri, rj , Ii = gkαri+k2
, Ij = gkαrj+k2

. It
can then computes (Ii/Ij)(ri−rj)

−1
to obtain a value gkα. With gkα, ri and

Ii = gkαri+k2
, it can compute Ii/(gkα)ri = gk2

. With gk2
and gkα, MB could

forge the reusable obfuscated rule successfully for any rule it chooses. With the
forged (but valid) reusable obfuscated rule, MB could detect more than it is
allowed, which violates the privacy requirement of the encrypted traffic.

4.2 Description of Our Protocol

Initialization. Let R be the domain of rules, PRF be a pseudorandom function,
n be the number of rules and [n] be the set {1, ..., n}. Let AESa(salt) be the AES
encryption with key a and message salt. Let Enca(salt) = AESa(salt) mod R,
where R is an integer used to reduce the ciphertext size [20]. The initialization
phase takes in a security parameter λ and chooses a group G of prime order p.
It then chooses a generator g of G, and sets the public parameters as (G, p, g).

Setup. GW chooses a key gw for the pseudorandom function PRF, where w ∈
Z

∗
p. It subscribes the service from RG and sends w to RG. RG first computes

W = gw. For a rule set {ri ∈ R}i∈[n], for i ∈ [n], RG chooses a randomness
ki ∈ Zp, calculates rw,i = PRFW (ri) and Ri = grw,i+ki . RG chooses a signature
scheme with sk as the secret key and pk as the public key. It then signs {Ri}i∈[n]

with sk and generates the signature of Ri for i ∈ [n], denote by σi. Finally,
it sends the attack rule tuples {(Ri, σi, ki)}i∈[n] to MB. Here, gw is the key
ingredient for ensuring the property of rule hiding. The key observation here is
that since MB does not know gw or w, it cannot guess the underlying ri of Ri via
brute forcing all the possible keywords it chooses. In particular, for a given attack
rule tuple (Ri, σi, ki), MB could obtain the value grw,i by computing Ri/gki .
Due to the property of pseudorandom function, rw,i is pseudorandom, and hence
grw,i is pseudorandom. Without the knowledge of gw or w, it is impossible to
obtain ri even if MB brute forces all possible keywords it chooses.

On the other hand, the client and the server install a Pine HTTPS configura-
tion which contains a value R. Let ksk be the key of the regular TLS handshake
protocol established by a client and a server. With ksk, the client (resp. the
server) derives three keys kT , c, ks. Specifically, kT is a standard TLS key, which
is used to encrypt the traffic; c is a random value from Zp, which is used for
generating session detection rules; ks is a random value from Zp, which is used
as a randomness to mask the parameters sent from the client to the server.
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Preprocessing. In order to accelerate the network connection between a client
and a server (compared to PrivDPI), we introduce a new approach that enables
fast connection establishment without executing the preprocessing process per
client as in PrivDPI. We start from the common networking scenario in an
enterprise setting where there exists a gateway located between a set of clients
and a server. The main idea is to let the gateway be the representative of the
clients within its domain, who will run the preprocessing protocol with MB for
only once. Both the clients and the gateway share the initialization parameters
required for connection with the server. In this case, the connection between
a client and a server can be established instantly without needing any prepro-
cessing as in PrivDPI since the preprocessing is performed by the gateway and
MB beforehand. In other words, we offload the operation of preprocessing to
the gateway, which dramatically reduces the computation and communication
overhead for the connection between a client and a server.

Specifically, in this phase, GW runs a preprocessing protocol with MB to
generate a reusable randomized rule set as well as the initialization parameters
for the clients within the domain of GW. The preprocessing protocol is run after
the TLS handshake protocol, which is described in Fig. 2. Upon the completion
of this phase, MB obtains a set of reusable randomized rules which enable MB
to perform deep packet detection over the encrypted traffic across a series of
sessions. The values I0, I1 and I2 enable each client within the domain of GW to
generate the encrypted tokens. Hence, for any network connection with a server,
a client does not need to run the preprocessing phase with MB as compared to
BlindBox and PrivDPI. This substantially reduces the delay and communication
cost for the network connection between the client and the server, especially for
large rule set. Furthermore, in case of adding new rules, a client does not need
to re-run the preprocessing protocol as BlindBox and PrivDPI does. This means
rule addition has no effect on the client side.

Preparation of Session Detection Rule. A set of session detection rules
will be generated in this phase. These session detection rules are computed,
tailored for every session, from the reusable randomized rules generated from
the preprocessing protocol. The generated session detection rules are used as the
inputs to generate the corresponding encrypted rules. The protocol is described
in Fig. 3, and it is executed for every new session.

Token Encryption. Similar to BlindBox and PrivDPI, we adopt the window-
based tokenization approach as described in Sect. 3. After the tokenization step,
a client obtains a set of tokens corresponding to the payload. For the first time
that a client connects with a server, the client derives a salt from c and stores the
salt for future use, where c is the key derived from the key ksk of the TLS hand-
shake protocol. For each token t, a client runs the token encryption algorithm
as described in Fig. 4. To prevent the count table T from growing too large, the
client will clear T every Z sessions (e.g., Z = 1, 000). In this case, the client will
send a new salt to MB, where salt ← salt + maxtcountt + 1.
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In the above, we describe the token encryption when the endpoint is a client.
When the endpoint is a server, the server will first run the same tokenization
step, and encrypts the tokens as the step 1 and step 2 described in Fig. 4.

Gateway Checking. This phase will be executed when a client connects to
a server for the first time. For the traffic sent from the client to a server for
the first time, the client attaches (salt, Cks, Cw, Cx, Cy). This enables the server
to perform the validation of the encrypted traffic during the traffic validation
phase. Cks and ks serve as the randomness to mask the values gw, gx and gxy. The
correctness of Cks will be checked once the traffic reached the server. To ensure
that gw, gx and gxy are masked by Cks correctly, GW simply checks whether
the following equations hold: Cw = (Cks)w, Cx = (Cks)x and Cy = (Cks)xy.

Traffic Detection. During the traffic detection phase, MB performs the equal-
ity check between the encrypted tokens in the traffic and the encrypted rules it
kept. The traffic detection algorithm is described as follows. MB first initial-
izes a counter table CTr to record the encrypted rule Eri

for each rule ri. The
encrypted rule Eri

for rule ri is computed as Eri
= EncSi

(salt + countri
), where

countri
is initialized to be 0. MB then generates a search tree that contains the

encrypted rules. If a match is found, MB takes the corresponding action, deletes
the old Eri

corresponding to ri, increases countri
by 1, computes and inserts a

new Eri
into the tree, where the new Eri

is computes as EncSi
(salt + countri

).

Traffic Validation. If it is the first session between a client and a server, upon
receiving (salt, Cks, Cw, Cx, Cy), the server checks whether the equation Cks =
gks holds, where ks is derived (by the server) from the key ksk of the regular TLS
handshake protocol. If the equation holds, the server computes (Cw)(ks)

−1
= gw,

(Cx)(ks)
−1

= gx, (Cy)(ks)
−1

= gxy. With the computed (gw, gx, gxy), the server
runs the same token encryption algorithm on the plaintext decrypted from the

Input: MB has inputs {(Ri, σi, ki)}i∈[n], where Ri = grw,i+ki ; GW has input pk.

The protocol is run between GW and MB:
1. GW chooses a random x ∈ Z

∗
p, computes X = gx, and sends X to MB.

2. MB sends {(Ri, σi)}i∈[n] to GW.
3. Upon receiving {(Ri, σi)}i∈[n], GW does:
(1) Check if σi is a valid signature on Ri using pk for i ∈ [n]; if not, halt and

output ⊥.
(2) Choose a random y ∈ Z

∗
p and compute Y = gy. Compute Xi = (Ri · Y )x =

gxrw,i+xki+xy for i ∈ [n], and return {Xi}i∈[n] to MB.
4. MB computes Ki = Xi/(X)ki = gxrw,i+xy for i ∈ [n] as the reusable randomized

rule for rule ri.
5. GW sets I0 = xy, I1 = x, I2 = gw as the initialization parameters, and sends

(I0, I1, I2) to the clients within its domain.

Fig. 2. Preprocessing protocol
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Input: The client (resp. the server) has input c. MB has input {Ki}i∈[n].

The protocol is run among a client, a server and MB:

1. The client computes C = gc and sends C to MB (through GW). Meanwhile,
the server sets Cs = c and sends Cs to MB.

2. MB checks whether C equals gCs . If yes, for i ∈ [n], it calculates Si = (Ki·C)Cs =
gc(xrw,i+xy+c) as the session detection rule for rule ri.

Fig. 3. Session detection rule preparation protocol

encrypted TLS traffic as the client does. The server then checks whether the
resulting encrypted tokens equal the encrypted tokens received from MB. If
not, it indicates that the client is malicious. On the other hand, if it is the traffic
sent from the server to the client, the client will do the same token encryption
algorithm as the server does, and compares the resulting encrypted tokens with
the received encrypted tokens from MB as well.

Rule Addition. In practice, new rules may be required to be added into the
system. For a new rule r′

i ∈ R for i ∈ [n′], RG randomly chooses k′
i ∈ Zp,

calculates r′
w,i = PRFW (r′

i) and R′
i = gr′

w,i+k′
i . It then signs the generated R′

i

with sk to generate the signature σ′
i of R′

i. Finally, it sends the newly added
attack rule tuples {R′

i, σ
′
i, k

′
i}i∈[n′] to MB. For the newly added attack rule

tuples, the rule addition protocol is described in Fig. 5, which is a simplified
protocol of the preprocessing protocol.

Input: The client has inputs (I0, I1, I2), a token t, the random keys ks and c, the value
R, a salt salt and a counter table T, where I0 = xy, I1 = x and I2 = gw.

The algorithm is run by the client as follows:

1. Compute I = I0 + c = xy + c.
2. For each token t:

• If there exists no tuple corresponding to t in T: compute tw = PRFI2(t), Tt =
gc(I1tw+I) = gc(xtw+xy+c), set countt = 0, compute the encryption of t as
Et = EncTt(salt). Finally, insert tuple (t, Tt, countt) into T.

• If there exists a tuple (t′, Tt′ , countt′) in T where t′ = t: update countt′ =
countt′ + 1, and compute the encryption of t as Et = EncTt′ (salt+ countt′).

3. If it is the first session, compute Cks = gks , Cw = (I2)ks = gwks , Cx = gI1ks =
gxks and Cy = gI0ks = gxyks . The parameters (salt, Cks, Cw, Cx, Cy) will be sent
along with the encrypted token Et for token t.

Fig. 4. Token encryption algorithm
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Input: MB has newly added attack rule tuple set {(R′
i, σ

′
i, k

′
i)}i∈[n′], where R′

i =
gr′

w,i+k′
i ; GW has inputs Y , x.

The protocol is run between GW and MB:
1. MB sends {(R′

i, σ
′
i)}i∈[n′] to GW.

2. Upon receiving {(R′
i, σ

′
i)}i∈[n′], GW does: (1) Check if σ′

i is a valid signature on
R′

i using pk for i ∈ [n′]; if not, halt and output ⊥. (2) Compute X ′
i = (R′

i ·Y )x =
gxr′

w,i+xk′
i+xy for i ∈ [n′], and send {X ′

i}i∈[n′] to MB.
3. MB computes the reusable randomized rule K′

i = X ′
i/(X)k

′
i for i ∈ [n′].

Fig. 5. Rule addition protocol

5 Security

5.1 Middlebox Searchable Encryption

Definition. For a message space M, a middlebox searchable encryption scheme
consists of the following algorithms:

– Setup(λ): Takes a security parameter λ, outputs a key sk.
– TokenEnc(t1, ..., tn, sk): Takes a token set {ti ∈ M}i∈[n] and the key sk, out-

puts a set of ciphertexts (c1, ..., cn) and a salt salt.
– RuleEnc(r, sk): Takes a rule r ∈ M, the key sk, outputs an encrypted rule er.
– Match(er, (c1, ..., cn), salt): Takes an encrypted rule er, ciphertexts {ci}i∈[n]

and salt, outputs the set of indexes {indi}i∈[l], where indi ∈ [n] for i ∈ [l].

Correctness. We refer the reader to Appendix A for its definition.

Security. It is defined between a challenger C and an adversary A.

– Setup. C runs Setup(λ) and obtains the key sk.
– Challenge. A randomly chooses two sets of tokens S0 = {t0,1, ..., t0,n}, S1 =

{t1,1, ..., t1,n} from M and gives the two sets to C. Upon receiving S0 and
S1, C flips a random coin b, runs TokenEnc(tb,1, ..., tb,n, sk) to obtain a set of
ciphertexts (c1, ..., cn) and a salt salt. It then gives (c1, ..., cn) and salt to A.

– Query. A randomly chooses a set of rules (r1, ..., rm) from M and gives the
rules to C. Upon receiving the set of rules, for i ∈ [m], C runs RuleEnc(ri, sk)
to obtain encrypted rule eri

. C then gives the encrypted rules {eri
}i∈[m] to A.

– Guess. A outputs a guess b′ of b.

Let I0,i be the index set that match ri in S0 and I1,i be the index set that match
ri in S1. If I0,i = I1,i and b′ = b for all i, we say that the adversary wins the above
game. The advantage of the adversary in the game is defined as Pr[b′ = b]−1/2.

Definition 2. A middlebox searchable encryption scheme is secure if no PPT
adversary has a non-negligible advantage in the game.
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Construction. The construction below captures the main structure from the
security point of view.

– Setup(λ): Let PRF be a pseudorandom function. Generate x, y, c, w ∈ Zp, set
(x, y, c, gw) as the key.

– TokenEnc(t1, ..., tn, sk): Let salt be a random salt. For i ∈ [n], do: (a) Let
count be the number of times that token ti repeats in the sequence t1,...,ti−1;
(b) Calculate tw,i = PRFgw(ti), Tti = gc(xtw,i+xy+c), ci = H(Tti , salt+count).
Finally, the algorithm outputs (c1, ..., cn) and salt.

– RuleEnc(r, sk): Compute rw = PRFgw(r), S = gc(xrw+xy+c), output H(S).

Theorem 1. Suppose H is a random oracle, the construction in Sect. 5.1 is a
secure middlebox searchable encryption scheme.

The proof of this theorem is provided in Appendix B.1.

5.2 Preprocessing Protocol

Definition. The preprocessing protocol is a two-party computation between
GW and MB. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be the process of the
computation, where for every inputs (a, b), the outputs are (f1(a, b), f2(a, b)). In
our protocol, the input of GW is x and the input of MB is a derivation of r,
and only MB receives the output.
Security. The security requirements include: (a) GW should not learn the
value of each rule; (b) MB cannot forge any new reusable randomized rule that
is different from the reusable randomized rules obtained during the preprocessing
protocol. Intuitively, the second requirement is satisfied if MB cannot obtain
the value x. Since both of GW and MB are assumed to be semi-honest, we
adopt the security definition with static semi-honest adversaries as in [6]. Let π
be the two-party protocol for computing f , Viewπ

i be the ith party’s view during
the execution of π, and Outputπ be the joint output of GW and MB from
the execution of π. For our protocol, since f is a deterministic functionality, we
adopt the security definition for deterministic functionality as shown below.

Definition 3. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a deterministic
functionality. We say that π securely computes f in the presence of static semi-
honest adversaries if (a) Outputπ equals f(a, b); (b) there exist PPT algorithms
B1 and B2 such that (1) {B1(a, f1(a, b))} c≡ {Viewπ

1 (a, b)}, (2) {B2(b, f2(a, b))} c≡
{Viewπ

2 (a, b)}, where a, b ∈ {0, 1}∗ and |a| = |b|.
Protocol. In Fig. 6, we provide a simplified protocol that outlines the main
structure of the preprocessing protocol.

Lemma 1. No computationally unbounded adversary can guess a rule ri with
probability greater than 1/|R| with input Ri.

The proof of this lemma is provided in Appendix B.2.

Theorem 2. The preprocessing protocol securely computes f in the presence of
static semi-honest adversaries assuming the DDH assumption holds.

The proof of this theorem is provided in Appendix B.3.
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Inputs: GW has inputs x, y ∈ Zp;MB has inputs ({Ri, ki}i∈[n]), where Ri = grw,i+ki .

The protocol is run between GW and MB:
1. GW computes X = gx, and sends X to MB.
2. MB sends {Ri}i∈[n] to GW.
3. GW computes Xi = (Ri · gy)x for i ∈ [n], and send {Xi}i∈[n] to MB.
4. MB computes Ki = Xi/(X)ki as the reusable randomized rule for rule ri.

Fig. 6. Simplified preprocessing protocol

5.3 Token Encryption

It captures the security requirement that GW cannot learn the underlying token
when given an encrypted token.

Definition. For a message space M, a token encryption scheme is as follows:

• Setup(λ): Takes as input a security parameter λ, outputs a secret key sk and
the public parameters pk.

• Enc(pk, sk, t): Takes as input the public parameters pk, a secret key sk and a
token t ∈ M, outputs a ciphertext c.

Security. It is defined between a challenger C and an adversary A.

– Setup: C runs Setup(λ) and sends the public parameters pk to A.
– Challenge: A randomly chooses two tokens t0, t1 from M and sends them to

C. C flips a random coin b ∈ {0, 1}, runs c ← Enc(pk, sk, tb), and sends c to A.
– Guess: A outputs a guess b′ of b.

The advantage of an adversary is defined to be Pr[b′ = b] − 1/2.

Definition 4. A token encryption scheme is secure if no PPT adversary has a
non-negligible advantage in the security game.

Construction. The construction presented below outlines the main structure
from the security point of view.

– Setup(λ): Let PRF be a pseudorandom function. Choose random value
x, y, c, w ∈ Zp, calculate p1 = gc, p2 = gw, p3 = x and p4 = y. Finally,
set c as sk and (p1, p2, p3, p4) as pk.

– Enc(pk, sk, t): Let salt be a random salt. Calculate tw = PRFp2(t), Tt =
gc(xtw+xy+c), c = H(Tt, salt). Output c and salt.

Theorem 3. Suppose H is a random oracle, the construction in Sect. 5.3 is a
secure token encryption scheme.

The proof of this theorem is provided in Appendix B.4.
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5.4 Rule Hiding

It captures the security requirement that MB cannot learn the underlying rule
when given an attack rule tuple (issued by RG).

Definition. For a message space M, a rule hiding scheme is defined as follows:

– Setup(λ): Takes as input a security parameter λ, outputs a secret key sk and
the public parameters pk.

– RuleHide(pk, sk, r): Takes as input the public parameters pk, a secret key sk
and a rule r ∈ M, outputs a hidden rule.

Security. The security definition for a rule hiding scheme is defined between a
challenger C and an adversary A as follows.

– Setup: C runs Setup(λ) and gives the public parameters to A.
– Challenge: A chooses two random rules r0, r1 from M, and sends them to C.

Upon receiving r0 and r1, C flips a random coin b, runs RuleHide(pk, sk,rb)
and returns the resulting hidden rule to A.

– Guess: A outputs a guess b′ of b.

Construction.

– Setup(λ): Let PRF be a pseudorandom function. Choose random k,w ∈ Zp,
set gw as sk, k as pk.

– RuleHide(pk, sk, r): Calculate rw = PRFsk(r), R = grw+k, and output R.

Theorem 4. Suppose PRF is a pseudorandom function, the construction in
Sect. 5.4 is a secure rule hiding scheme.

The proof of this theorem is provided in Appendix B.5.

6 Performance Evaluations

We investigate the performance of the network connection between a client and
a server. Since PrivDPI perfoms better than BlindBox, we only present the
comparison with PrivDPI. Let an one-round connection be a connection from
the client to the server. The running time of a one-round connection reflects
how fast a client can be connected to a server, and the communication cost
captures the amount of overhead data need to be transferred for establishing
this connection. Ideally, the running time for one-round connection should be
as small as possible. The less running time it incurs, the faster a client can
connect to a server. Similarly, it is desirable to minimize network communication
overhead. We test the running time and the communication cost of one-round
connection for our protocol and PrivDPI respectively. Our experiments are run
on a Intel(R) Core i7-8700 CPU running at 3.20 Ghz with 8 GB RAM under
64bit Linux operating system. The CPU supports AES-NI instructions, where
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Fig. 7. Experimental performances

the encryption of token and the encryption of rule reflect this hardware support.
The experiments are built on Charm-crypto [1], and is based on NIST Curve
P-256. As stated in Sect. 3, both the rules and the tokens consist of 8 bytes. For
simplicity, the payload that we test does not contain repeated tokens. We test
each case for 20 times and takes the average.
How does the number of rules influence the one-round connection?
Figure 7a illustrates the running time for one-round connection with 5,000 tokens
when the number of rules range from 600 to 6,000. It is demonstrated that Pine
takes less time than PrivDPI for each case, the more rules, the less time Pine
takes compared to PrivDPI. This means that it takes less time for a client in Pine
to connect to a server. In particular, for 5,000 tokens and 6,000 rules, it takes
approximately 665 ms for Pine, while PrivDPI takes approximately 912 ms. That
is, the delay for one-round connection of Pine is 27% less than PrivDPI; for 5,000
tokens and 3,000 rules, it takes approximately 488 ms for Pine, while PrivDPI
takes approximately 616 ms. In other words, a client in Pine connects to a server
with 20.7% faster speed than PrivDPI. Figure 7b shows the communication cost
for one-round connection with 5,000 tokens when the number of rules range from
600 to 6,000. The communication cost of PrivDPI grows linearly with the number
of rules, while for Pine it is constant. The more rules, the more communication
cost PrivDPI incurs. This is because the client in PrivDPI needs to run the
preprocessing protocol with MB, and the communication cost incurred by this
preprocessing protocol is linear with the number of rules.
How does the number of tokens influence the one-round connec-
tion?We fix the number of rules to be 3,000, and test the running time and
communication cost when the number of tokens range from 1,000 to 10,000.
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Figure 7c shows that the running time of Pine is linear with the number of tokens
in the payload, the same as PrivDPI. However, for each case, the time consumed
of Pine is less than PrivDPI, this is due to the following two reasons. The first
is that a client in Pine does not need to perform the preprocessing protocol for
the 3,000 rules. The second is that, the encryption of a token in PrivDPI mainly
takes one multiplication in G, one exponentiation in G, and one AES encryption.
While in Pine, the encryption of a token mainly takes one hash operation, one
exponentiation in G, and one AES encryption. That is, the token encryption of
Pine is faster than that of PrivDPI. Figure 7d shows the communication cost of
one-round connection with 3,000 rules when the number of tokens range from
1,000 to 10,000. Similar to the running time, the communication costs of Pine
and PrivDPI are both linear with the number of tokens, but Pine incurs less
communication than PrivDPI. This is due to the additional communication cost
of the preprocessing protocol in PrivDPI for 3,000 rules.
How does the number of newly added rules influence the one-round
connection?We test the running time and communication cost with 3,000 rules
and 5,000 tokens when the number of newly added rules range from 300, to
3,000. Figure 7e shows that Pine takes less time than PrivDPI. For 3,000 newly
added rules, Pine takes 424.96 ms, while PrivDPI takes 913.52 ms. That is, Pine
is 53.48% faster than PrivDPI. Figure 7f shows that the communication cost
of Pine is less than PrivDPI. In particular, the communication cost of Pine is
independent of the number of newly added rules, while PrivDPI is linear with
the number of newly added rules. This is because the client in Pine does not
need to perform preprocessing protocol online.

7 Related Work

Our protocol is constructed based on BlindBox proposed by Sherry et al. [20] and
PrivDPI proposed by Ning et al. [15], as was stated in the introduction. Blind-
Box introduces privacy-preserving deep packet inspection on encrypted traffic
directly, while PrivDPI utilises an obfuscated rule generation mechanism with
improved performance compared to BlindBox. Using the construction in Blind-
Box as the underlying component, Lan et al. [9] further proposed Embark that
leverages on a trusted enterprise gateway to perform privacy-preserving detec-
tion in a cloud-based middlebox setting. In Embark, the enterprise gateway needs
to be fully trusted and learns the content of the traffic and the detection rules,
although in this case the client does not need to perform any operation as in our
protocol. Our work focuses on the original setting of BlindBox and PrivDPI with
further performance improvements, new properties and stronger privacy guar-
antee, while considering the practical enterprise gateway setting, in which the
gateway needs not be fully trusted. Canard et al. [4] also proposed a protocol,
BlindIDS, based on the concept of BlindBox, that has a better performance. The
protocol consists of a token-matching mechanism that is based on pairing-based
public key operation. Though practical, it is not compatible to TLS protocol.
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Another related line of work focuses on accountability of the middlebox.
This means the client and the server are aware of the middlebox that performs
inspection on the encrypted traffic and are able to verify the authenticity of these
middleboxes. Naylor et al. [14] first proposed such a scheme, termed mcTLS,
where the existing TLS protocol is modified in order to achieve the accountability
properties. However, Bhargavan et al. [3] showed that mcTLS can be tampered
by an attacker to create confusion on the identity of the server that a middlebox
is connected to, as well as the possibility for the attacker to inject its own data
to the network. Due to this, a formal model on analyzing this type of protocols
was proposed. Naylor et al. [13] further proposed a scheme, termed mbTLS,
which does not modify the TLS protocol, thus allowing authentication of the
middleboxes without needing to replace the existing TLS protocol. More recently,
Lee et al. [10] proposed maTLS, a protocol that performs explicit authentication
and verification of security parameters.

There are also proposals that analyse encrypted traffic without decrypting
or inspecting the encrypted payloads. Machine learning models were utilised
to detect anomalies based on the meta data of the encrypted traffic. Anderson
et al. [2] proposed such techniques for malware detection on encrypted Traffic.
Trusted hardware has also been deployed for privacy-preserving deep packet
inspection. Most of the proposals utilize the secure enclave of Intel SGX. The
main idea is to give the trusted hardware, resided in the middlebox, the session
key. These include SGX-Box proposed by Han et al. [8], SafeBricks by Poddar
et al. [19] and ShieldBox by Trach et al. [21] and LightBox by Duan et al. [5].

We note that our work can be combined with the accountability protocols,
as well as the machine learning based works to provide comprehensive encrypted
inspection that encompasses authentication and privacy.

8 Conclusion

In this paper, we proposed Pine, a protocol that allows inspection of encrypted
traffic in a privacy-preserving manner. Pine builds upon the settings of BlindBox
and techniques of PrivDPI in a practical setting, yet enables hiding of rule sets
from the middleboxes with significantly improved performance compared to the
two prior works. Furthermore, the protocol allows lightweight rules addition on
the fly, which to the best of our knowledge has not been considered previously.
Pine utilises the common practical enterprise setting where clients establish con-
nections to Internet servers via an enterprise gateway, in such a way that the
gateway assists in establishing the encrypted rule sets without learning the con-
tent of the client’s traffic. At the same time, a middlebox inspects the encrypted
traffic without learning both the underlying rules and content of the traffic. We
demonstrated the improved performance of Pine over PrivDPI through extensive
experiments. We believe Pine is a promising approach to detect malicious traffic
amid growing privacy concerns for both corporate and individual users.
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A Correctness of Middlebox Searchable Encryption

On one hand, for every token that matches a rule r, the match should be detected
with probability 1; on the other hand, for a token that does not match r,
the probability of the match should be negligibly small. For every sufficiently
large security parameter λ and any polynomial n(·) such that n = n(λ), for all
t1, ..., tn ∈ Mn, for each rule r ∈ M, for each index indi satisfying r = tindi and
for each index indj satisfying r �= tindj , let Exp1(λ) and Exp2(λ) be experiments
defined as follows:

Experiment Exp1(λ):

sk ← Setup(λ); (c1, ..., cn), salt ← TokenEnc(t1, ..., tn, sk); er ← RuleEnc(r, sk);
{indk}k∈[l] ← Match(er, (c1, ..., cn), salt) : indi ∈ {indk}k∈[l]

Experiment Exp2(λ):

sk ← Setup(λ); (c1, ..., cn), salt ← TokenEnc(t1, ..., tn, sk); er ← RuleEnc(r, sk);
{indk}k∈[l] ← Match(er, (c1, ..., cn), salt) : indj /∈ {indk}k∈[l]

We have Pr [Exp1(λ)] = 1, Pr [Exp2(λ)] = negl(λ).

B Proofs

B.1 Proof of Theorem 1

The security is proved via one hybrid, which replaces the random oracle with
deterministic random values. In particular, the algorithm TokenEnc now is mod-
ified as follows: Hybrid.TokenEnc(t1, ..., tn, sk): Let salt be a random salt. For
i ∈ [n], sample a random value Ti in the ciphertext space and set ci = Ti.
Finally, output (c1, ..., cn) and salt. The algorithm RuleEnc(r, sk) is defined to
output a random value R from the ciphertext space with the restriction that: (1)
if r equals ti for some ti, R is set to be Ti; (2) for any future r′ such that r equals
r′, the output is set to be R. We have that the outputs of algorithm TokenEnc
and algorithm RuleEnc are random, while the the pattern of matching between
tokens and rules are preserved. Clearly, the distributions for S0 = {t0,1, ..., t0,n},
S1 = {t1,1, ..., t1,n} are the same. Hence, any PPT adversary has a change of
distinguishing the two sets of exactly half.
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B.2 Proof of Lemma 1

Fix a random R = gr, where r ∈ Zp. We have that the probability for R = Ri is
the probability for ki = r − rw,i. Hence, for ∀R ∈ G, Pr[R = Ri] = 1/p.

B.3 Proof of Theorem 2

We construct a simulator for each of the parties, B1 for GW and B2 for MB. For
the case when GW is corrupted, B1 needs to generate the view of the incoming
messages for GW. The message that GW received is Ri for i ∈ [n]. To simulate
Ri for rule ri, B1 chooses a random ui ∈ Zp, calculate Ui = gui and sets Ui as the
incoming message for rule ri which simulates the incoming message from MB to
GW. Following Lemma 1, the distribution of the simulated incoming message
for GW (i.e., Ui) is indistinguishable from a real execution of the protocol. We
next consider the case when MB is corrupted. The first and the third messages
are the incoming message that MB received. For the first message, B2 randomly
chooses a value v ∈ Zp, computes V = gv, and sets V as the first incoming
message for MB. For the third message, B2 randomly chooses a value vi ∈ Zp

for i ∈ [n], computes Vi = gvi and sets Vi as the incoming message during the
third step of the protocol. The view of MB for a rule ri in an real execution of the
protocol is (ki, Ri;X,Xi). The distributions of the real view and the simulated
view are (ki, g

rw,i+ki ; gx, gxrw,i+xki+xy) and (ki, g
rw,i+ki ; gv, gvi). Clearly, a PPT

adversary cannot distinguish these two distributions if DDH assumption holds.

B.4 Proof of Theorem 3

We prove the security by one hybrid, where we replace the random oracle with
random values. In particular, the modified algorithm Enc is described as follows:
Enc(pk, sk, t): Let salt be a random salt. Sample a random value c∗ from the
ciphertext space, and output c∗ and salt. Now we have that the output of algo-
rithm Enc is random. The distributions for challenge tokens t0 and t1 are the
same. Hence, there exists no PPT adversary that has a chance of distinguishing
the two tokes of exactly half.

B.5 Proof of Theorem 4

We proof the security via one hybrid, which replaces the output of PRF with a
random value. In particular, during the challenge phase, the challenger chooses
a random value v, computes R∗ = gv+k (where k is publicly known to the adver-
sary), returns R∗ to the adversary. Clearly, if the adversary wins the security
game, one can build a simulator that utilizes the ability of the adversary to break
the pseudorandom property of PRF.
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