
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2020

Catch you if you deceive me: Verifiable and privacy-aware truth Catch you if you deceive me: Verifiable and privacy-aware truth

discovery in crowdsensing systems discovery in crowdsensing systems

Guowen XU
University of Electronic Science and Technology of China

Hongwei LI
University of Electronic Science and Technology of China

Shengmin XU
Singapore University of Technology and Design

Hao REN
University of Electronic Science and Technology of China

Yonghui ZHANG
Singapore Management University, yhzhang@smu.edu.sg

See next page for additional authors Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
XU, Guowen; LI, Hongwei; XU, Shengmin; REN, Hao; ZHANG, Yonghui; SUN, Jianfei; and DENG, Robert H..
Catch you if you deceive me: Verifiable and privacy-aware truth discovery in crowdsensing systems.
(2020). ASIA CCS '20: Proceedings of the 15th ACM Asia Conference on Computer and Communications
Security: Virtual, Taiwan, October 5-9. 178-192.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5922

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5922&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Guowen XU, Hongwei LI, Shengmin XU, Hao REN, Yonghui ZHANG, Jianfei SUN, and Robert H. DENG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/5922

https://ink.library.smu.edu.sg/sis_research/5922

Catch You If You Deceive Me: Verifiable and Privacy-Aware
Truth Discovery in Crowdsensing Systems

Guowen Xu
guowen.xu@foxmail.com

University of Electronic Science
and Technology of China

Hongwei Li*

hongweili@uestc.edu.cn
University of Electronic Science

and Technology of China

Shengmin Xu
shengmin xu@stud.edu.sg

Singapore University of Technology
and Design

Hao Ren
renhao.uestc@gmail.com

University of Electronic Science
and Technology of China

Yinghui Zhang
yhzhaang@163.com

Singapore Management University

Jianfei Sun
sjf215.uestc@gmail.com

University of Electronic Science
and Technology of China

Robert H. Deng
robertdeng@smu.edu.sg

Singapore Management University

ABSTRACT

Truth Discovery (TD) is to infer truthful information by
estimating the reliability of users in crowdsensing systems.
To protect data privacy, many Privacy-Preserving Truth Dis-
covery (PPTD) approaches have been proposed. However,
all existing PPTD solutions do not consider a fundamental
issue of trust. That is, if the data aggregator (e.g., the cloud
server) is not trustworthy, how can an entity be convinced
that the data aggregator has correctly performed the PPTD?
A “lazy” cloud server may partially follow the deployed pro-
tocols to save its computing and communication resources,
or worse, maliciously forge the results for some shady deal-
s. In this paper, we propose V-PATD, the first Verifiable
and Privacy-Aware Truth Discovery protocol in crowdsens-
ing systems. In V-PATD, a publicly verifiable approach is
designed enabling any entity to verify the correctness of ag-
gregated results returned from the server. Since most of the
computation burdens are carried by the cloud server, our
verification approach is efficient and scalable. Moreover, users’
data is perturbed with the principles of local differential pri-
vacy. Security analysis shows that the proposed perturbation
mechanism guarantees a high aggregation accuracy even if
large noises are added. Compared to existing solutions, ex-
tensive experiments conducted on real crowdsensing systems
demonstrate the superior performance of V-PATD in terms
of accuracy, computation and communication overheads.

*Corresponding author

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ASIA CCS ’20, October 5–9, 2020, Taipei, Taiwan

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6750-9/20/10. . . $15.00
https://doi.org/10.1145/3320269.3384720

CCS CONCEPTS

• Security and privacy → Public key (asymmetric)
techniques; Digital signatures; Security protocols.

KEYWORDS

Truth Discovery; Verifiable Computation; Privacy Protection;
Crowdsensing Systems

ACM Reference Format:
Guowen Xu, Hongwei Li, Shengmin Xu, Hao Ren, Yinghui Zhang,

Jianfei Sun, and Robert H. Deng. 2020. Catch You If You Deceive
Me: Verifiable and Privacy-Aware Truth Discovery in Crowdsens-
ing Systems. In Proceedings of the 15th ACM Asia Conference

on Computer and Communications Security (ASIA CCS ’20),
October 5–9, 2020, Taipei, Taiwan. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3320269.3384720

1 INTRODUCTION

The rapid growth in the number of mobile devices has made
crowdsensing system a popular data collection paradigm [10,
32], where the cloud server can pay to assign data collection
tasks to a group of mobile users, and ask them to upload the
sensory data (such as road conditions and air indicators) that
they have recorded using the various sensors embedded in
mobile devices. Such crowdsensing systems have been widely
applied in healthcare, smart transportation, and many others.

Although users’ sensory data serves a wide range of data-
driven applications, there still exists an unresolved challenge
of extracting truthful data from noise-filled, heterogeneous,
large-scale data generated from various mobile devices [33]. In
reality, the uncontrollable crowdsensing environments always
result in the uneven quality of the collected data. Some
users will provide high-quality data while others may upload
incorrect data due to hardware issues or environmental noise.
In this context, traditional data truth inference methods, such
as averaging and voting, may fail to work as they typically
assume that all users are equal in reliability (i.e., weight).
Truth Discovery (TD) [13, 17, 21] overcomes this problem,

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

178

https://doi.org/10.1145/3320269.3384720
https://doi.org/10.1145/3320269.3384720

which aims to find truthful information among conflicting
data based on each user’s weight. In general, existing TD
algorithms obey the following two principles: (1) If a data
item provided by a user is closer to the aggregated result,
this user will be assigned a higher weight. (2) If a user holds
a higher weight, the data of this user will be counted more
in the execution. Based on this, TD algorithms take as input
the users’ sensory data, and then iteratively estimate each
user’s weight to eventually find the optimal aggregated result
(i.e., ground truth).

Undoubtedly, the TD method provides a powerful chan-
nel to find real data in complex crowdsensing environments.
However, it neglects two fundamental problems in real-world
scenarios. i.e., data privacy protection and verifiability of
aggregated results. First of all, users’ data privacy may be
compromised once they upload sensory data to the untrusted
cloud server. For example, sharing personal real-time GPS
information can help with traffic monitoring, navigation and
transportation control, but also increases the risk of expos-
ing user’s location privacy to the public. Aggregating the
healthcare data submitted from various wearable devices can
improve the analysis of the therapeutic effects of new drugs.
However, a malicious server may abuse healthcare data be-
cause it has full access to individual users’ data [30, 35]. On
the other hand, how to verify the correctness of the aggregat-
ed data is another critical issue. In a typical crowdsensing
system, a task requester pays for the server to collect data
and find truthful values through a truth discovery algorithm.
However, a dishonest server may deviate from the aggrega-
tion protocol in order to reduce its computation overhead, or
worse, maliciously forge the results for some shady deals.

To protect data privacy, many PPTD approaches [13, 17,
21] have been proposed and widely applied in diverse field-
s. Miao et al. [21] proposed the first PPTD framework in
crowdsensing systems. It can execute TD procedures in the
ciphertext domain while guaranteeing the confidentiality of
users’ data. Xu et al. [31] designed EPTD, an efficient PPTD
mechanism to solve the problem of privacy leakage during
the truth discovery process. Moreover, EPTD can ensure
that the entire process is smoothly executed even if there
is a certain number of users offline. Recently, Tang et al.
[28] presented a non-interactive PPTD scheme by utilizing
the Yao’s Garbled Circuit (GC) under the two non-colluding
servers assumption. However, these cryptographic primitive-
based techniques always involve expensive cost among mobile
device users, which makes it difficult to achieve low latency
for large-scale data or user sets. Other technologies, such
as data perturbation based on differential privacy [17], is a
feasible approach to protect users’ privacy while preserving
the efficiency. The fly in the ointment is that traditional
centralized differential privacy mechanisms usually require
a trusted server to perform the data perturbation [7, 20],
that is, relying on the server to add pre-calculated noise to
the aggregated results. This contradicts the assumption of
untrusted server setting in many real-life scenarios. Moreover,
to the best of our knowledge, existing solutions do not con-
sider the verifiability of aggregated results returned from the

untrusted cloud server. Therefore, it is critical to propose a
PPTD approach, which can efficiently verify the correctness
of results returned from the server, while protecting each
user’s data privacy.

However, it is challenging to design a satisfactory solution
that meets the above requirements. First, local differential
privacy based technology [18] has been demonstrated as a
potential way to alleviate the above problems. However, com-
pared with centralized differential privacy, it requires each
user adding noise to their local data, which inevitably incurs
larger errors in the aggregated results. Therefore, to reduce
the impact of large noises on the aggregated results, one chal-
lenge that needs to be conquered is to carefully design the
PPTD protocol, so as to achieve the elegant balance between
security and aggregation accuracy. On the other hand, in
TD process, the sensory data collected by the server is often
sourced from multiple users. Besides, the outsourced function
performed by the server changes as the number of users/data
set size changes. As a consequence, the intrinsic nature of the
truth discovery requires that a qualified verifiable algorithm
should satisfy the following characteristics: (1) Verifiability:
the cloud server can provide evidence (proof message) to the
task requester for verifying the correctness of the returned
results. (2) Efficiency: the cost of the task requester to verify
the correctness of the result 𝑅 is significantly less than the
cost of computing 𝑅 locally. (3) Scalability: the verifying time
is independent of the size of the outsourced function’s inputs.
(4) No prefixed functions: the outsourced function does not
require to be fixed, and each user does not need to know
the function before outsourcing data. (5) Public verification:
any entity can verify the correctness of the server’s calcula-
tion results. (6) Support of multiple data sources: the inputs
of the outsourced function can be contributed by multiple
independent users.

To the best of our knowledge, most existing verifiable com-
putation schemes [9, 14, 24, 25, 34] only support verification
with a single data source or fixed outsourced functions, and
hard to keep a small overhead when dealing with large-scale
data and users. Recently, Song et al. [27] proposed the first
publicly verifiable computation of polynomials framework
over outsourced data. The authors claimed that their verifi-
able approach satisfied the above characteristics. Regrettably,
Wang et al. [29] showed that a core building block of their
protocol allows an adversary to forge the signatures on the
outsourced data, so as to invalidate the security of the proto-
col. Therefore, it is also challenging to propose a light-weight
verifiable approach which is highly supportive for verifying
the correctness of results generated in TD process.

To address the above challenges, in this paper, we propose
V-PATD, the first verifiable and privacy-aware truth discovery
protocol in crowdsensing systems. We first perturb each user’s
sensory data independently under the definition of local
differential privacy. Then, we design a publicly verifiable
approach to enable any entity to verify the correctness of
aggregated results returned from the server. In summary, the
contributions of our V-PATD can be summarized as follows:

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

179

∙ We propose a novel perturbation scheme to protect
the user’s data privacy based on local differential pri-
vacy. By fully considering the characteristics of truth
discovery, we demonstrate the ability of the proposed
mechanism guaranteeing high aggregation accuracy
even if large noise is added.
∙ We propose a publicly verifiable approach in the privacy-
preserving truth discovery process. Our solution is the
first approach meeting the requirements of publicly
verifiable, low cost, support for non-fixed outsourced
functions and multiple data contributors.
∙ We conduct extensive analysis to show that our V-
PATD has high security and data utility. Besides, ex-
tensive experiments conducted on real-world data also
demonstrate the high performance of V-PATD in terms
of aggregated accuracy, computation and communica-
tion overheads.

The remainder of this paper is organized as follows. In
Section 2, we describe the background and problem statement.
In Section 3, we review some important concepts used in this
paper. Then we present the technical details of our V-PATD
in Section 4. Security analysis and performance evaluation
are shown in Section 5 and Section 6. Finally, we introduce
the related works in Section 7 and conclude the paper in
Section 8.

2 PROBLEM STATEMENT

2.1 System Model

�

�

�

�

Figure 1: System Model

As shown in Figure 1, the system model in our scenario
consists of three generic entities: users, a task requester and
a cloud server. Specifically, the task requester first submits
its truth discovery request (such as air quality monitoring
and healthcare data collection) to the cloud server. Then,
the cloud server assigns data collection tasks to a group
of users with mobile devices, and asks them to upload the
sensory data recorded through the various sensors embedded
in mobile devices. In order to find the truthful data, the

server performs the truth discovery algorithm on the cloud
and returns the final aggregated result to the task requester.

2.2 Threat Model and Security and
Privacy Requirements

Based on the system model, there are two potential security
and privacy threats in the truth discovery process. One is
that by exploiting the weaknesses in the truth discovery
process, the server and certain users may violate the data
privacy of honest users. The other is that the server may
return incorrect aggregated results to the task requester for
some improper benefits. In our V-PATD, we assume that
the task requester is trustworthy and will not collude with
any entity. All users are considered to be honest-but-curious
[16, 26], which means that every user will honestly upload
its local sensory data required by the server, however, it
may also try to compromise other users’ data privacy by
utilizing the mastered prior knowledge. The cloud server is
considered to be dishonest and may compromise our V-PATD
model. Specifically, we consider the following attacks launched
by the server: 1○The cloud server can exploit the potential
vulnerabilities in the network and the service interface to infer
the privacy of sensory data submitted by users. 2○The cloud
server may corrupt the sensory data uploaded by each user,
thereby breaking the correctness of aggregated results and
gaining additional user’s data privacy. 3○The cloud server may
launch data integrity attacks by compromising the agreed
computing protocol or maliciously forging the aggregated
results.

Under the above threat model, we formulate the security
and privacy requirements as follows.

∙ Protect the integrity of aggregated result : As explained
above, the cloud server is fully capable of modifying the
aggregated results to deceive the task requester. The
goal of our proposed model is to verify the integrity of
aggregated results in an efficient manner.
∙ Privacy protection of user’s sensory data: User-uploaded
sensory data may contain certain sensitive information
such as healthcare, location and credit. Consider the
user’s personal privacy, all user’s sensory data should
be protected from being disclosed to other parties (such
as the server and malicious users).

3 PRELIMINARIES

3.1 Truth Discovery

The goal of truth discovery is to find truthful information
among conflicting data based on each user’s weight. Various
truth discovery approaches [13, 17, 21] have been proposed
for different scenarios. In this paper, we adopt the truth dis-
covery algorithm designed by Li et al. [15] due to its superior
aggregated accuracy and efficiency in crowdsensing systems.
In general, a truth discovery algorithm can be divided into
two interactive parts: Weight Update and Truth Update.

Specifically, assume that there are a total of ℳ distinc-
tive objects observed by 𝒩 users (each user is denoted as

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

180

𝑛, 𝑛 = (1, 2, · · · 𝒩)). We use the symbol 𝑥𝑚
𝑛 to represent the

recorded sensory data of the 𝑛-th user for the 𝑚-th object.
Similarly, the aggregated result (i.e., ground truth) of object
𝑚 is denoted as 𝑥𝑚

* .
Weight Update: Given 𝑥𝑚

* , each user’s weight 𝑤𝑛 can
be updated as below.

𝑤𝑛 = f

(︃ ℳ∑︁
𝑚=1

𝑑𝑖𝑠𝑡 (𝑥
𝑚
𝑛 , 𝑥𝑚

*)

)︃
(1)

𝑓 is a monotonically decreasing function, and 𝑑𝑖𝑠𝑡(𝑥
𝑚
𝑛 , 𝑥𝑚

*) is
the distance function for measuring the distance between 𝑥𝑚

𝑛

and 𝑥𝑚
* . Usually, 𝑑𝑖𝑠𝑡(𝑥

𝑚
𝑛 , 𝑥𝑚

*) is computed as 𝑑𝑖𝑠𝑡(𝑥
𝑚
𝑛 , 𝑥𝑚

*) =
(𝑥𝑚

𝑛 − 𝑥𝑚
*)

2. Based on the definition of 𝑓 in [15], the above
formula can be expanded as follows.

𝑤𝑛 = log

(︃∑︀𝒩
𝑛′=1

∑︀ℳ
𝑚=1 𝑑𝑖𝑠𝑡(𝑥

𝑚
𝑛′ , 𝑥

𝑚
*)∑︀ℳ

𝑚=1 𝑑𝑖𝑠𝑡(𝑥
𝑚
𝑛 , 𝑥𝑚

*)

)︃
(2)

From the above formula, we can see that a user 𝑛 will be
assigned a higher weight 𝑤𝑛 if the data provided by this
user is closer (i.e., 𝑑𝑖𝑠𝑡 (𝑥

𝑚
𝑛 , 𝑥𝑚

*) is smaller) to the aggregated
result.

Truth Update: Similarly, given the weight 𝑤𝑛 of each
user, the ground truth 𝑥𝑚

* of each object can be updated as
below.

𝑥𝑚
* =

∑︀𝒩
𝑛=1 𝑤𝑛 · 𝑥𝑚

𝑛∑︀𝒩
𝑛=1 𝑤𝑛

(3)

Obviously, those users holding higher weights will be counted
more in the truth update process. In truth discovery, the cloud
server and all users iteratively perform the above two phases
until the final results satisfy the agreed-upon convergence
conditions.

3.2 Arithmetic Circuit

Arithmetic circuit [2, 27] is a basic architecture that can
be exploited to compute arbitrary polynomials. In our V-
PATD, the arithmetic circuit is an important aid to verify the
integrity of the results returned by the server. We describe
the definition of the arithmetic circuit as follows.

Definition 1: Given a finite field ℱ and a set of variables
𝒳 = (𝑥1, 𝑥2, · · · , 𝑥𝒩), the arithmetic circuit Ψ can be ex-
pressed as a directed acyclic graph (shown in Figure 2). The
vertices of Ψ are called “gates”, where gates with in-degree 0
are input gates, and gates with out-degree 0 are output gates.
Other gates are labeled by either ’×’ or ’+’ with in-degree 2.
Specifically, a gate labeled by ’×’ is called a product gate, and
a gate labeled by ’+’ is called a sum gate.

3.3 Bilinear Map

A bilinear map 𝑒 [11] is denoted as 𝑒: 𝐺1 ×𝐺1 → 𝐺2, where
both 𝐺1 and 𝐺2 are groups with prime order 𝑝. Suppose that
𝑔 and ℎ are the generator of the group 𝐺1, the bilinear map
𝑒 has following properties.

(1) Bilinearity: For any integer 𝑎, 𝑏 ∈ 𝑍𝑝, and 𝑔𝑎, ℎ𝑏 ∈
𝐺1, we have 𝑒(𝑔𝑎, ℎ𝑏) = 𝑒(𝑔, ℎ)𝑎𝑏.

(2) Computability: 𝑒(𝑔𝑎, ℎ𝑏) is computed efficiently for
any {𝑔𝑎, ℎ𝑏} ∈ 𝐺1.

Figure 2: A example of arithmetic circuit to express
a polynomial, i.e., 𝑦 = 2𝑥1𝑥2𝑥3 + 𝑥1𝑥

3
4.

(3) Non-degeneracy: 𝑒(𝑔, ℎ) ̸= 1, where 𝑔 and ℎ are the
generator of 𝐺1.

4 PROPOSED SCHEME

In this section, we describe the technical details of our V-
PATD.

4.1 Overview

At a high level, before submitting raw sensory data to the
cloud, each user first perturbs its sensory data independently
by adding noises obeying a pre-set Gaussian distribution,
where the perturbation mechanism strictly satisfies the def-
inition of local differential privacy. In addition, each user
is required to sign its data to facilitate subsequent genera-
tion of proof by the server. Then, the server executes the
privacy-preserving truth discovery algorithm to find the op-
timal aggregated results. In the end, the server returns the
aggregated results along with corresponding proof s to the
task requester. The task requester can choose to accept or
reject the results by only checking the proof s. In general,
our V-PATD can be divided into two interactive parts: Per-
turbation Mechanism and Verification Mechanism. In the
following subsections, we will present the technical details of
these two parts.

4.2 Perturbation Mechanism
Assume that there are a total ofℳ distinctive objects ob-
served by 𝒩 users (denoted as 𝑛, 𝑛 = (1, 2, · · · ,𝒩)). We use
the symbol 𝑥𝑚

𝑛 to represent the recorded sensory data of the
𝑛-th user for the 𝑚-th object. Before uploading 𝑥𝑚

𝑛 to the
cloud, each user 𝑛 first adds noise 𝜁𝑚𝑛 selected from 𝑁(0, 𝛾2

𝑛)
to 𝑥𝑚

𝑛 as follows, ̂︀𝑥𝑚
𝑛 = 𝑥𝑚

𝑛 + 𝜁𝑚𝑛 (4)

where 𝛾2
𝑛 is the variance of Gaussian distribution selected

by the 𝑛-th user for uploading all its data items. Obviously,
the amount of noise added to raw data is closely related to
the level of data privacy protection and the accuracy of the
aggregation. In general, adding larger noise helps provide a
higher level of privacy protection, but bounds to impair the
accuracy of the aggregated results. For the controllability of

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

181

accuracy, we ask all users to select the variance independently
from an exponential distribution with hyper parameter 𝜂2.
Then, each user submits the perturbed data ̂︀𝑥𝑚

𝑛 to the server.
Clearly, our perturbation mechanism is very simple. How-

ever, it has the following outstanding advantages that make
it ideal for practical privacy-preserving truth discovery.

∙ We support each user to randomly select the distri-
bution of noise’s variance independently. It ensures
that the server and other users are unable to know the
distribution of target users’ noise. To control the ac-
curacy of aggregated results, the variance of all noises
is chosen from an exponential distribution with hyper
parameter 𝜂2. This is feasible and we will prove that
our perturbation mechanism meets the requirements
of local differential privacy in Section 5.
∙ By combining the principles of truth discovery, the
sensory data added with large noise will be counted
less in the truth discovery process. This will benefit our
perturbation mechanism to achieve better aggregation
accuracy.
∙ Our perturbation mechanism is simple, which only
requires each user to generate noise and adds it to the
raw sensory data. Compared with techniques based
on cryptographic primitives, the proposed mechanism
is very efficient and easy to implement in real-world
applications.

4.3 Verification Mechanism

In the perturbation process, each user has distorted its da-
ta before outsourcing to the server. To support verifiable
computation, we also require each user to upload addition-
al information to the server. Based on this, the server can
generate proof s of the aggregated results returned to the
task requester. Referring to Eqn.(2) and Eqn.(3), we know
that the server needs to perform polynomial and logarithmic
operations during the truth discovery process. However, it
usually involves expensive cost to generate proof s for ex-
ponential results [2, 27]. In our V-PATD, we only require
the server to compute the polynomials in Eqn.(2) and E-

qn.(3) (i.e.,
∑︀𝒩

𝑛′=1

∑︀ℳ
𝑚=1 𝑑𝑖𝑠𝑡(𝑥

𝑚
𝑛′ , 𝑥𝑚

*),
∑︀ℳ

𝑚=1 𝑑𝑖𝑠𝑡(𝑥
𝑚
𝑛 , 𝑥𝑚

*),∑︀𝒩
𝑛=1 𝑤𝑛 · 𝑥𝑚

𝑛 and
∑︀𝒩

𝑛=1 𝑤𝑛) and the corresponding proof s.
The logarithmic operations (i.e., 𝑙𝑜𝑔(·)) can be computed by
each user after verifying the integrity of the above compu-
tations. This is feasible and requires only a small amount
of communication and computation overheads for each user.
For the convenience of description, here we assume that each
user 𝑛, 𝑛 = (1, 2, · · · 𝒩) has only one data item 𝑥𝑛, where
𝑥𝑛 represents the sensory data of a target object that all
users need to record. Besides, our verification mechanism
works on integer domains due to the inherent requirements
of embedded cryptographic primitives. To handle each float-
ing point number ̂︀𝑥𝑛, we use a large rounding factor ℒ to
scale each ̂︀𝑥𝑛 to an integer ℒ · ̂︀𝑥𝑛 whenever needed. ̂︀𝑥𝑛 can
be recovered by simply removing ℒ in the final verification
process. This is a common trick widely adopted in works
such as [21, 22, 31, 32, 35, 36]. For simplicity, we omit the

above operation and default to all ̂︀𝑥𝑛 being integers in the
following description.

In general, our verification mechanism uses as a basis the
publicly verifiable computation from [27], that we modify
significantly to improve the unforgeability of signatures in [27],
thus resisting the attacks proposed in work [29]. Specifically, it
consists of six algorithms, i.e., Setup, Gen key, Gen sign,
Gate eval, Gen proof and Proof verify.

Setup(1𝜆)→ (𝑝𝑝). Given a security parameter 𝜆, the al-
gorithm Setup(1𝜆) outputs the global security parameters
𝑝𝑝 = (𝑒, 𝑝, 𝐺1, 𝐺2, 𝑔, ℎ,𝐻,𝐻 ′) used in our verification mech-
anism. 𝐺1 and 𝐺2 are two groups with prime order 𝑝, 𝑒 is
a bilinear map denoted as 𝑒: 𝐺1 × 𝐺1 → 𝐺2, where 𝑔 and
ℎ are the generator of the group 𝐺1. 𝐻 : {0, 1}* → 𝑍𝑝 and
𝐻 ′ : {0, 1}* → 𝑍𝑝 are two different collision-resistant hash
functions which map arbitrary strings to the elements in 𝑍𝑝,
respectively.

Gen key(𝑝𝑝)→ (𝑠𝑘, 𝑝𝑘). Given the public parameter 𝑝𝑝,
the algorithm Gen key(𝑝𝑝) outputs the secret key 𝑠𝑘 and
public key 𝑝𝑘 for each user. The secret key 𝑠𝑘𝑛 = (𝛽𝑛, 𝛽

′
𝑛, 𝛽

′′
𝑛)

are randomly selected by each user 𝑛. The public key is 𝑝𝑘𝑛

= {(𝑔𝛽𝑛 , ℎ𝛽𝑛 , ℎ
1

𝛽𝑛),(𝑔𝛽
′
𝑛 , ℎ𝛽′

𝑛 , ℎ
1

𝛽′
𝑛), (𝑔𝛽

′′
𝑛 , ℎ𝛽′′

𝑛 , ℎ
1

𝛽′′
𝑛)}. Then,

each user 𝑛 keeps the secret key locally and submits the
public key to the cloud.

Gen sign(̂︀𝑥𝑛, 𝑠𝑘𝑛)→ 𝜌𝑥𝑛 . Take the perturbed sensory da-
ta ̂︀𝑥𝑛 (with label 𝜏 , denote the description of ̂︀𝑥𝑛) and the se-
cret key 𝑠𝑘𝑛 as the inputs, the algorithm Gen sign(̂︀𝑥𝑛, 𝑠𝑘𝑛)
outputs the signature 𝜌𝑥𝑛 . Specifically, the user 𝑛 first com-
putes 𝜙𝜏 = 𝐻(𝜏) and z𝜏 = 𝐻 ′(𝜏). Then, it randomly

chooses an integer 𝑡𝑛 ∈ 𝑍𝑝 and sets 𝜇𝑛 = ℎ𝑡𝑛 , 𝜈
(1)
𝑛 =

𝛽𝑛(𝜙𝜏 + 𝑡𝑛) mod 𝑝, 𝜈
(2)
𝑛 = 𝛽′𝑛(z𝜏 + 𝑡𝑛) mod 𝑝, and 𝜈

(3)
𝑛 =

𝛽′′𝑛(̂︀𝑥𝑛 + 𝑡𝑛) mod 𝑝. Then the signature 𝜌𝑥𝑛 is denoted as
follows.

𝜌𝑥𝑛 = (𝜇𝑛, 𝜈
(1)
𝑛 , 𝜈

(2)
𝑛 , 𝜈

(3)
𝑛). (5)

In the end, each user 𝑛 sends 𝜌𝑥𝑛 as well as label 𝜏 to the
cloud.

After receiving the signature 𝜌𝑥𝑛 and 𝜏 from each user 𝑛,
the server verifies the authenticity of 𝜌𝑥𝑛 as follows.

𝑒(𝑔, ℎ𝜈
(1)
𝑛)

?
= 𝑒(𝑔𝛽𝑛 , 𝜇𝑛 × ℎ𝜙𝜏) = 𝑒(𝑝𝑘

(1)
𝑛 , 𝜇𝑛 × ℎ𝜙𝜏)

𝑒(𝑔, ℎ𝜈
(2)
𝑛)

?
= 𝑒(𝑔𝛽

′
𝑛 , 𝜇𝑛 × ℎz𝜏) = 𝑒(𝑝𝑘

(2)
𝑛 , 𝜇𝑛 × ℎz𝜏)

𝑒(𝑔, ℎ𝜈
(3)
𝑛)

?
= 𝑒(𝑔𝛽

′′
𝑛 , 𝜇𝑛 × ℎ̂︀𝑥𝑛) = 𝑒(𝑝𝑘

(3)
𝑛 , 𝜇𝑛 × ℎ̂︀𝑥𝑛)

(6)

where 𝑝𝑘
(1)
𝑛 = 𝑔𝛽𝑛 , 𝑝𝑘

(2)
𝑛 = 𝑔𝛽

′
𝑛 and 𝑝𝑘

(3)
𝑛 = 𝑔𝛽

′′
𝑛 . If verified,

the server stores ̂︀𝑥𝑛 and 𝜌𝑥𝑛 . Otherwise, outputs ⊥.
Gate eval(̂︀𝑠1, ̂︀𝑠2, 𝜎1, 𝜎2)→ 𝜎′. Gate eval is a bit compli-

cated but the core of our verification mechanism. Here we first
introduce some preliminary knowledge before introducing it.
Concretely, as described before, we only require the server to
compute the polynomial in Eqn.(2) and Eqn.(3). Here we use
the symbol 𝑓(̂︀𝑥1, ̂︀𝑥2, · · · , ̂︀𝑥𝒩) to represent the polynomials
executed by the server, where ̂︀𝑥𝑛 is the perturbed data of
user 𝑛. 𝑓(̂︀𝑥1, ̂︀𝑥2, · · · , ̂︀𝑥𝒩) can be denoted as follows.

𝑓(̂︀𝑥1, ̂︀𝑥2, · · · , ̂︀𝑥𝒩) =
∑︁

(𝑐𝑖 ×
∏︁

𝑛∈[1,𝒩]

̂︀𝑥𝑒𝑛
𝑛)

(7)

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

182

where 𝑐𝑖 is the constant-coefficient and 𝑒𝑛 denotes the expo-
nent of ̂︀𝑥𝑛. Then, we adopt the arithmetic circuit to express
the 𝑓(̂︀𝑥1, ̂︀𝑥2, · · · , ̂︀𝑥𝒩) (See Figure 2 for an example).

Therefore, the algorithm Gate eval is run by the server
to compute the verification tags 𝜎′ for the outputs of gates in
the arithmetic circuit, where the tag 𝜎′ is used to verify the
correctness of gates’ output. For example, given a product
or a sum gate G, the input wires ̂︀𝑠1 and ̂︀𝑠2 of G, and the
corresponding verification tags 𝜎1 and 𝜎2, the algorithm
Gate eval(̂︀𝑠1, ̂︀𝑠2, 𝜎1, 𝜎2) outputs the verification tag 𝜎′ of
G’s output.

Based on the structure of the arithmetic circuit, we divide
the verification tags into two categories: i.e., category-1 veri-
fication tag and category-2 verification tag. We describe the
concepts of these two types of verification tags as below.

Definition 2: The category-1 verification tag includes the
following tags: 1○the verification tag of each user’s perturbed
data. 2○the verification tag of the product gate’s output. 3○the
verification tag of the sum gate G’s output, where the in-
put wires of G hold category-1 verification tag signed by the
same public key. Taking ̂︀𝑠1 (with label 𝜏1) as an example,
the category-1 verification tag 𝜎1 = (𝑝𝑘̂︀𝑠1 , 𝜌̂︀𝑠1) of ̂︀𝑠1 can be
denoted as below.

𝑝𝑘̂︀𝑠1 = {(𝑔𝛽̂︀𝑠1 , ℎ𝛽̂︀𝑠1 , ℎ 1
𝛽̂︀𝑠1), (𝑔

𝛽′̂︀𝑠1 , ℎ𝛽′̂︀𝑠1 , ℎ
1

𝛽′̂︀𝑠1), (𝑔
𝛽′′̂︀𝑠1 , ℎ𝛽′′̂︀𝑠1 , ℎ

1
𝛽′′̂︀𝑠1)}

𝜌̂︀𝑠1 = (𝜇̂︀𝑠1 , 𝜈(1)̂︀𝑠1 , 𝜈
(2)̂︀𝑠1 , 𝜈

(3)̂︀𝑠1)

(8)

where the secret key of variable ̂︀𝑠1 is (𝛽̂︀𝑠1 , 𝛽′̂︀𝑠1 , 𝛽′′̂︀𝑠1). 𝜇̂︀𝑠1 =

ℎ𝑡̂︀𝑠1 , 𝜈(1)̂︀𝑠1 = 𝛽̂︀𝑠1(𝜙𝜏1 + 𝑡̂︀𝑠1) mod 𝑝, 𝜈
(2)̂︀𝑠1 = 𝛽′̂︀𝑠1(z𝜏1 + 𝑡̂︀𝑠1) mod 𝑝,

and 𝜈
(3)̂︀𝑠1 = 𝛽′′̂︀𝑠1(̂︀𝑠1+𝑡̂︀𝑠1) mod 𝑝, 𝑡̂︀𝑠1 is a random integer selected

from 𝑍𝑝.
Definition 3: The category-2 verification tag includes the

verification tag of the sum gate G’s output, except the input
wires of G hold category-1 verification tag signed by the same
public key. In our verification mechanism, the category-1
verification tag can be transformed into the category-2 verifi-
cation tag. However, the category-2 verification tag cannot
be transformed into the category-1 verification tag. Similarly,
taking the ̂︀𝑠1 as an example, the category-2 verification tag
𝜎1 = (𝑝𝑘̂︀𝑠1 , 𝜌̂︀𝑠1) of ̂︀𝑠1 can be denoted as below.

𝑝𝑘̂︀𝑠1 = {(𝑔𝛽̂︀𝑠1 , ℎ𝛽̂︀𝑠1 , ℎ 1
𝛽̂︀𝑠1), (𝑔

𝛽′̂︀𝑠1 , ℎ𝛽′̂︀𝑠1 , ℎ
1

𝛽′̂︀𝑠1), (𝑔
𝛽′′̂︀𝑠1 , ℎ𝛽′′̂︀𝑠1 , ℎ

1
𝛽′′̂︀𝑠1)}

𝜌̂︀𝑠1 = (𝜇̂︀𝑠1 , 𝜈(1)̂︀𝑠1 , 𝜈
(2)̂︀𝑠1 , 𝜈

(3)̂︀𝑠1)

(9)

where the secret key of variable ̂︀𝑠1 is (𝛽̂︀𝑠1 , 𝛽′̂︀𝑠1 , 𝛽′′̂︀𝑠1). 𝜇̂︀𝑠1 =

ℎ𝑡̂︀𝑠1 , 𝜈(1)̂︀𝑠1 = ℎ𝛽̂︀𝑠1 (𝜙𝜏+𝑡̂︀𝑠1), 𝜈
(2)̂︀𝑠1 = ℎ

𝛽′̂︀𝑠1 (z𝜏+𝑡̂︀𝑠1)
, and 𝜈

(3)̂︀𝑠1 =

ℎ
𝛽′′̂︀𝑠1 (̂︀𝑠1+𝑡̂︀𝑠1)

, 𝑡̂︀𝑠1 is a random integer selected from 𝑍𝑝.
Therefore, given the input wires ̂︀𝑠1 and ̂︀𝑠2 of a gate G, and

the corresponding verification tags 𝜎1 and 𝜎2, Gate eval is
to generate the verification tag 𝜎′ of G’s output. Please note
that 𝜎′ will be in turn transmitted as an input to calculate
the verification tag of the next gate’s output.

Specifically, if G is a sum gate, then
Case 1: The inputs of G are a variable ̂︀𝑠1 and a constant̂︀𝑠2 = 𝑐, where ̂︀𝑠1 possesses the category-1 verification tag

𝜎1 = (𝑝𝑘̂︀𝑠1 , 𝜌̂︀𝑠1). The verification tag 𝜎′ = (𝑝𝑘′, 𝜌′) of G’s

output (i.e., 𝑦 = 𝑐+ ̂︀𝑠1) can be computed as follows.

𝑝𝑘′ = 𝑝𝑘̂︀𝑠1 , 𝜙′𝜏 = 𝑐+ 𝜙𝜏1 ,z
′
𝜏 = 𝑐+ z𝜏1

𝜌′ = (𝜇′, 𝜈′) = (𝜇̂︀𝑠1 , 𝜈′(1), 𝜈′(2), 𝜈′(3)) (10)

where 𝜈′(1) = ℎ𝛽̂︀𝑠1×𝑐 × ℎ
𝜈
(1)̂︀𝑠1 , 𝜈′(2) = ℎ

𝛽′̂︀𝑠1×𝑐 × ℎ
𝜈
(2)̂︀𝑠1 and

𝜈′(3) = ℎ
𝛽′′̂︀𝑠1×𝑐 × ℎ

𝜈
(3)̂︀𝑠1 .

Case 2: The inputs of G are a variable ̂︀𝑠1 and a constant̂︀𝑠2 = 𝑐, where ̂︀𝑠1 possesses the category-2 verification tag
𝜎1 = (𝑝𝑘̂︀𝑠1 , 𝜌̂︀𝑠1). The verification tag 𝜎′ = (𝑝𝑘′, 𝜌′) of the G’s
output (i.e., 𝑦 = 𝑐+ ̂︀𝑠1) can be computed as follows.

𝑝𝑘′ = 𝑝𝑘̂︀𝑠1 , 𝜙′𝜏 = 𝑐+ 𝜙𝜏1 ,z
′
𝜏 = 𝑐+ z𝜏1

𝜌′ = (𝜇′, 𝜈′) = (𝜇̂︀𝑠1 , 𝜈′(1), 𝜈′(2), 𝜈′(3)) (11)

where 𝜈′(1) = ℎ𝛽̂︀𝑠1×𝑐×𝜈
(1)̂︀𝑠1 , 𝜈′(2) = ℎ

𝛽′̂︀𝑠1×𝑐×𝜈
(2)̂︀𝑠1 and 𝜈′(3) =

ℎ
𝛽′′̂︀𝑠1×𝑐 × 𝜈

(3)̂︀𝑠1 .

Case 3: The inputs of G (e.g., the gate 7 in Figure 2) are
two variables ̂︀𝑠1 and ̂︀𝑠2, both of which possess category-1
verification tag 𝜎1 = (𝑝𝑘̂︀𝑠1 , 𝜌̂︀𝑠1) and 𝜎2 = (𝑝𝑘̂︀𝑠2 , 𝜌̂︀𝑠2), respec-
tively. The verification tag 𝜎′ = (𝑝𝑘′, 𝜌′) of the G’s output
(i.e., 𝑦 = ̂︀𝑠1 + ̂︀𝑠2) can be computed as follows.

If 𝑝𝑘̂︀𝑠1 = 𝑝𝑘̂︀𝑠2 , which means that 𝜎1 and 𝜎2 are signed
by the same user, the server can compute 𝜎′ = (𝑝𝑘′, 𝜌′) as
below.

𝑝𝑘′ = 𝑝𝑘̂︀𝑠1 , 𝜙′𝜏 = 𝜙𝜏1 + 𝜙𝜏2 ,z
′
𝜏 = z𝜏1 + z𝜏2

𝜌′ = (𝜇′, 𝜈′) = (𝜇̂︀𝑠1 × 𝜇̂︀𝑠2 , 𝜈′(1), 𝜈′(2), 𝜈′(3)) (12)

where 𝜈′(1) = 𝜈
(1)̂︀𝑠1 + 𝜈

(1)̂︀𝑠2 , 𝜈′(2) = 𝜈
(2)̂︀𝑠1 + 𝜈

(2)̂︀𝑠2 , and 𝜈′(3) =

𝜈
(3)̂︀𝑠1 + 𝜈

(3)̂︀𝑠2 .
If 𝑝𝑘̂︀𝑠1 ̸= 𝑝𝑘̂︀𝑠2 , which means that 𝜎1 and 𝜎2 are signed by

the different secret keys, the server can compute 𝜎′ = (𝑝𝑘′, 𝜌′)
as below.

(i) The server sends (ℎ
1

𝛽̂︀𝑠1 , ℎ

1
𝛽′̂︀𝑠1 , ℎ

1
𝛽′′̂︀𝑠1 , ℎ

1
𝛽̂︀𝑠2 , ℎ

1
𝛽′̂︀𝑠2 , ℎ

1
𝛽′′̂︀𝑠2)

to the task requester.
(ii) The task requester randomly selects three integers

𝜉, 𝜉′ and 𝜉′′ ∈ 𝑍𝑝 and then submits (𝑔𝜉, ℎ𝜉, ℎ
1
𝜉 , ℎ

𝜉
𝛽̂︀𝑠1 , ℎ

𝜉
𝛽̂︀𝑠2),

(𝑔𝜉
′
, ℎ𝜉′ , ℎ

1
𝜉′ , ℎ

𝜉′
𝛽′̂︀𝑠1 , ℎ

𝜉′
𝛽′̂︀𝑠2), and (𝑔𝜉

′′
, ℎ𝜉′′ , ℎ

1
𝜉′′ , ℎ

𝜉′′
𝛽′′̂︀𝑠1 , ℎ

𝜉′′
𝛽′′̂︀𝑠2) to

the cloud.
(iii) The server computes the verification tag 𝜎′ = (𝑝𝑘′, 𝜌′)

of G’s output as below.

𝑝𝑘′ = {(𝑔𝜉, ℎ𝜉, ℎ
1
𝜉), (𝑔𝜉

′
, ℎ𝜉′ , ℎ

1
𝜉′), (𝑔𝜉

′′
, ℎ𝜉′′ , ℎ

1
𝜉′′)}

𝜙′𝜏 = 𝜙𝜏1 + 𝜙𝜏2 ,z
′
𝜏 = z𝜏1 + z𝜏2

𝜌′ = (𝜇′, 𝜈′) = (𝜇̂︀𝑠1 × 𝜇̂︀𝑠2 , 𝜈′(1), 𝜈′(2), 𝜈′(3))
(13)

where 𝜈′(1) = ℎ
𝜉

𝛽̂︀𝑠1 ×𝜈
(1)̂︀𝑠1 × ℎ

𝜉
𝛽̂︀𝑠2 ×𝜈

(1)̂︀𝑠2 , 𝜈′(2) = ℎ

𝜉′
𝛽′̂︀𝑠1 ×𝜈

(2)̂︀𝑠1 ×
ℎ

𝜉′
𝛽′̂︀𝑠2 ×𝜈

(2)̂︀𝑠2
, and 𝜈′(3) = ℎ

𝜉′′
𝛽′′̂︀𝑠1 ×𝜈

(3)̂︀𝑠1 × ℎ

𝜉′′
𝛽′′̂︀𝑠2 ×𝜈

(3)̂︀𝑠2
. In this case,

the new verification tag 𝜎′ = (𝑝𝑘′, 𝜌′) is changed to the
category-2 verification tag.

Case 4: The inputs of G are two variables ̂︀𝑠1 and ̂︀𝑠2, wherê︀𝑠1 possesses category-1 verification tag 𝜎1 = (𝑝𝑘̂︀𝑠1 , 𝜌̂︀𝑠1) whilê︀𝑠2 possesses category-2 verification tag 𝜎2 = (𝑝𝑘̂︀𝑠2 , 𝜌̂︀𝑠2). The
verification tag 𝜎′ = (𝑝𝑘′, 𝜌′) of G’s output (i.e., 𝑦 = ̂︀𝑠1 + ̂︀𝑠2)
can be computed as follows.

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

183

If 𝑝𝑘̂︀𝑠1 = 𝑝𝑘̂︀𝑠2 , which means that 𝜎1 and 𝜎2 are signed
by the same user, the server can compute 𝜎′ = (𝑝𝑘′, 𝜌′) as
below.

𝑝𝑘′ = 𝑝𝑘̂︀𝑠1 , 𝜙′𝜏 = 𝜙𝜏1 + 𝜙𝜏2 ,z
′
𝜏 = z𝜏1 + z𝜏2

𝜌′ = (𝜇′, 𝜈′) = (𝜇̂︀𝑠1 × 𝜇̂︀𝑠2 , 𝜈′(1), 𝜈′(2), 𝜈′(3)) (14)

where 𝜈′(1) = ℎ
𝜈
(1)̂︀𝑠1 × 𝜈

(1)̂︀𝑠2 , 𝜈′(2) = ℎ
𝜈
(2)̂︀𝑠1 × 𝜈

(2)̂︀𝑠2 , and 𝜈′(3) =

ℎ
𝜈
(3)̂︀𝑠1 × 𝜈

(3)̂︀𝑠2 .
If 𝑝𝑘̂︀𝑠1 ̸= 𝑝𝑘̂︀𝑠2 , which means that 𝜎1 and 𝜎2 are signed by

the different secret keys, the server can compute 𝜎′ = (𝑝𝑘′, 𝜌′)
as below.

(i) The server sends (ℎ
1

𝛽̂︀𝑠1 , ℎ
1

𝛽′̂︀𝑠1 , ℎ
1

𝛽′′̂︀𝑠1) to the task re-
quester.

(ii) Since all the keys of category-2 verification tags are gen-

erated by the task requester, it computes (ℎ

𝛽̂︀𝑠2
𝛽̂︀𝑠1 , ℎ

𝛽′̂︀𝑠2
𝛽′̂︀𝑠1 , ℎ

𝛽′′̂︀𝑠2
𝛽′′̂︀𝑠1)

and sends it to the cloud.
(iii) The server computes the verification tag 𝜎′ = (𝑝𝑘′, 𝜌′)

of the gate G’s output as below.

𝑝𝑘′ = 𝑝𝑘̂︀𝑠2 , 𝜙′𝜏 = 𝜙𝜏1 + 𝜙𝜏2 ,z
′
𝜏 = z𝜏1 + z𝜏2

𝜌′ = (𝜇′, 𝜈′) = (𝜇̂︀𝑠1 × 𝜇̂︀𝑠2 , 𝜈′(1), 𝜈′(2), 𝜈′(3)) (15)

where 𝜈′(1) = 𝜈
(1)̂︀𝑠2 ×ℎ

𝛽̂︀𝑠2
𝛽̂︀𝑠1 ×𝜈

(1)̂︀𝑠1 , 𝜈′(2) = 𝜈
(2)̂︀𝑠2 ×ℎ

𝛽′̂︀𝑠2
𝛽′̂︀𝑠1 ×𝜈

(2)̂︀𝑠1
, and

𝜈′(3) = 𝜈
(3)̂︀𝑠2 × ℎ

𝛽′′̂︀𝑠2
𝛽′′̂︀𝑠1 ×𝜈

(3)̂︀𝑠1
.

Case 5: The inputs of gate G are two variables ̂︀𝑠1 and̂︀𝑠2, both of which possess category-2 verification tag 𝜎1 =
(𝑝𝑘̂︀𝑠1 , 𝜌̂︀𝑠1) and 𝜎2 = (𝑝𝑘̂︀𝑠2 , 𝜌̂︀𝑠2), respectively. The verification
tag 𝜎′ = (𝑝𝑘′, 𝜌′) of the gate G’s output (i.e., 𝑦 = ̂︀𝑠1 + ̂︀𝑠2)
can be computed as follows.

If 𝑝𝑘̂︀𝑠1 = 𝑝𝑘̂︀𝑠2 , which means that 𝜎1 and 𝜎2 are signed
by the same user, the server can compute 𝜎′ = (𝑝𝑘′, 𝜌′) as
below.

𝑝𝑘′ = 𝑝𝑘̂︀𝑠1 , 𝜙′𝜏 = 𝜙𝜏1 + 𝜙𝜏2 ,z
′
𝜏 = z𝜏1 + z𝜏2

𝜌′ = (𝜇′, 𝜈′) = (𝜇̂︀𝑠1 × 𝜇̂︀𝑠2 , 𝜈′(1), 𝜈′(2), 𝜈′(3)) (16)

where 𝜈′(1) = 𝜈
(1)̂︀𝑠1 × 𝜈

(1)̂︀𝑠2 , 𝜈′(2) = 𝜈
(2)̂︀𝑠1 × 𝜈

(2)̂︀𝑠2 , and 𝜈′(3) =

𝜈
(2)̂︀𝑠1 × 𝜈

(3)̂︀𝑠2 .
If 𝑝𝑘̂︀𝑠1 ̸= 𝑝𝑘̂︀𝑠2 , which means that 𝜎1 and 𝜎2 are signed by

the different secret keys, the server can compute 𝜎′ = (𝑝𝑘′, 𝜌′)
as below.

(i) The server first selects a variable (e.g., ̂︀𝑠1) as the primary
input.

(ii) Since all the keys of category-2 verification tags are gen-

erated by the task requester, it can compute (
𝛽̂︀𝑠1
𝛽̂︀𝑠2 ,

𝛽′̂︀𝑠1
𝛽′̂︀𝑠2 ,

𝛽′′̂︀𝑠1
𝛽′′̂︀𝑠2)

and sends it to the cloud.
(iii) The server computes the verification tag 𝜎′ = (𝑝𝑘′, 𝜌′)

of the gate G’s output as below.

𝑝𝑘′ = 𝑝𝑘̂︀𝑠1 , 𝜙′𝜏 = 𝜙𝜏1 + 𝜙𝜏2 ,z
′
𝜏 = z𝜏1 + z𝜏2

𝜌′ = (𝜇′, 𝜈′) = (𝜇̂︀𝑠1 × 𝜇̂︀𝑠2 , 𝜈′(1), 𝜈′(2), 𝜈′(3)) (17)

where 𝜈′(1) = 𝜈
(1)̂︀𝑠1 ×(𝜈

(1)̂︀𝑠2)

𝛽̂︀𝑠1
𝛽̂︀𝑠2 , 𝜈′(2) = 𝜈

(2)̂︀𝑠1 ×(𝜈
(2)̂︀𝑠2)

𝛽′̂︀𝑠1
𝛽′̂︀𝑠2 , and

𝜈′(3) = 𝜈
(3)̂︀𝑠1 × (𝜈

(3)̂︀𝑠2)

𝛽′′̂︀𝑠1
𝛽′′̂︀𝑠2 .

If G is a product gate, then
Case 1: The inputs of gate G are a variable ̂︀𝑠1 and a

constant ̂︀𝑠2 = 𝑐, where the ̂︀𝑠1 can be a perturbed sensory
data ̂︀𝑥𝑛, 𝑛 = (1, 2, · · · 𝒩) or a output of other product gate.
Based on the Eqn.(7), we can see that all the product gates are
performed before the sum gates. Therefore, the verification
tag 𝜎1 of ̂︀𝑠1 must be the category-1 verification tag. Assume
𝜎1 = (𝑝𝑘̂︀𝑠1 , 𝜌̂︀𝑠1), the verification tag 𝜎′ = (𝑝𝑘′, 𝜌′) of the gate
G’s (such as the gate 1 in Figure 2) output (i.e., 𝑦 = 𝑐× ̂︀𝑠1)
can be computed as follows.

𝑝𝑘′ = 𝑝𝑘̂︀𝑠1 , 𝜙′𝜏 = 𝑐× 𝜙𝜏1 ,z
′
𝜏 = 𝑐× z𝜏1

𝜌′ = (𝜇′, 𝜈′) = (𝜇𝑐̂︀𝑠1 , 𝑐× 𝜈
(1)̂︀𝑠1 , 𝑐× 𝜈

(2)̂︀𝑠1 , 𝑐× 𝜈
(3)̂︀𝑠1)

(18)

Case 2: The inputs of gate G (e.g., the gate 2 and gate
3 in Figure 2) are two variables ̂︀𝑠1 and ̂︀𝑠2, both of which
possess category-1 verification tag 𝜎1 = (𝑝𝑘̂︀𝑠1 , 𝜌̂︀𝑠1) and 𝜎2 =
(𝑝𝑘̂︀𝑠2 , 𝜌̂︀𝑠2), respectively. In this case, the server first selects a
variable (e.g., ̂︀𝑠1) as the primary input. Then, the verification
tag 𝜎′ = (𝑝𝑘′, 𝜌′) of the gate G’s output (i.e., 𝑦 = ̂︀𝑠1 × ̂︀𝑠2)
can be computed as follows.

(i) The server sends 𝜎1 = (𝑝𝑘̂︀𝑠1 , 𝜌̂︀𝑠1) and 𝜎2 = (𝑝𝑘̂︀𝑠2 , 𝜌̂︀𝑠2)
to the task requester.

(ii) The task requester verifies the authenticity of 𝜎1 and 𝜎2

by the Eqn.(6). If fails, the task requester outputs ⊥. Other-
wise, it randomly selects new secret keys as 𝜉, 𝜉′ and 𝜉′′ ∈ 𝑍𝑝

to compute 𝑝𝑘′ = {(𝑔𝜉, ℎ𝜉, ℎ
1
𝜉), (𝑔𝜉

′
, ℎ𝜉′ , ℎ

1
𝜉′′), (𝑔𝜉

′′
, ℎ𝜉′′ , ℎ

1
𝜉′′)}.

(iii) The task requester computes the verification tag 𝜎′ =
(𝑝𝑘′, 𝜌′) of the gate G’s output as below.

𝑝𝑘′ = {(𝑔𝜉, ℎ𝜉, ℎ
1
𝜉), (𝑔𝜉

′
, ℎ𝜉′ , ℎ

1
𝜉′′), (𝑔𝜉

′′
, ℎ𝜉′′ , ℎ

1
𝜉′′)}

𝜙′𝜏 = 𝜙𝜏1 × 𝜙𝜏2 ,z
′
𝜏 = z𝜏1 × z𝜏2

𝜌′ = (𝜇′, 𝜈′) = (𝜇′, 𝜈′(1), 𝜈′(2), 𝜈′(3))

(19)

where 𝜇′ = ℎ𝑡′ , 𝜈′(1) = 𝜉(𝜙′𝜏 + 𝑡′) mod 𝑝, 𝜈′(2) = 𝜉′(z′𝜏 +

𝑡′) mod 𝑝, 𝜈′(3) = 𝜉′′(̂︀𝑠1 × ̂︀𝑠2 + 𝑡′) mod 𝑝, and 𝑡′ is a random
integer selected from 𝑍𝑝.

(iv) The task requester submits {𝜎′, 𝜙′𝜏 ,z′𝜏 } to the cloud.
As the polynomial shown Eqn.(7), all the product gates

are performed before the sum gates. Therefore, according
to the Definition 2, all the data with category-2 verification
tags will not be the inputs of product gates. Hence, we have
discussed how the cloud server generates the verification tag
under various types of gates. For some gates, we need the
cooperation of the task requester to successfully generate the
verification tag. In real-world applications, the task requester
can do these things in bulk or delegating a trusted third
party to assist with this process.

Gen proof(𝜎𝑅)→ 𝑃 . When the computation reaches the
last gate of the arithmetic circuit, the cloud server computes
the verification tag 𝜎𝑅 = (𝑝𝑘𝑅, 𝜌𝑅) of the last gate G’s out-
put, and sets the proof message 𝑃 = 𝜎𝑅. Then, the server
returns the aggregated results 𝑅 = 𝑓(̂︀𝑥1, ̂︀𝑥2, · · · , ̂︀𝑥𝒩) and
proof message 𝑃 to the task requester.

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

184

Proof verify(𝑃) → (𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒). After receiving the
aggregated results 𝑅 and proof message 𝑃 , the task re-
quester verifies the correctness of 𝑅 by checking the proof
message 𝑃 = 𝜎𝑅. Specifically, for each input ̂︀𝑠𝑖 with la-
bel 𝜏𝑖, the task requester first computes 𝜙𝜏𝑖 = 𝐻(𝜏𝑖) and
z𝜏𝑖 = 𝐻 ′(𝜏𝑖), and then sets 𝜙 = 𝑓(𝜙𝜏1 , 𝜙𝜏2 , · · · , 𝜙𝜏𝑁) as
well as z = 𝑓(z𝜏1 ,z𝜏2 , · · · ,z𝜏𝑁). If the verification tag
𝜎𝑅 = (𝑝𝑘𝑅, 𝜌𝑅) is the category-1 verification tag, the task re-
quester verifies 𝑃 by Eqn.(20). Otherwise, the task requester
verifies 𝑃 by Eqn.(21). If verified, the task requester accepts
the result 𝑅; otherwise, the task requester rejects the result
𝑅.

𝑒(𝑔, ℎ𝜈
(1)
𝑅)

?
= 𝑒(𝑔𝛽𝑅 , 𝜇𝑅 × ℎ𝜙) = 𝑒(𝑝𝑘

(1)
𝑅 , 𝜇𝑅 × ℎ𝜙)

𝑒(𝑔, ℎ𝜈
(2)
𝑅)

?
= 𝑒(𝑔𝛽

′
𝑅 , 𝜇𝑅 × ℎz) = 𝑒(𝑝𝑘

(2)
𝑅 , 𝜇𝑅 × ℎz)

𝑒(𝑔, ℎ𝜈
(3)
𝑅)

?
= 𝑒(𝑔𝛽

′′
𝑅 , 𝜇𝑅 × ℎ𝑅) = 𝑒(𝑝𝑘

(3)
𝑅 , 𝜇𝑅 × ℎ𝑅)

(20)

where 𝜌𝑅 = (𝜇𝑅, 𝜈
(1)
𝑅 , 𝜈

(2)
𝑅 , 𝜈

(3)
𝑅). Specifically, 𝜇𝑅 = ℎ𝑡𝑅 ,

𝜈
(1)
𝑅 = 𝛽𝑅(𝜙 + 𝑡𝑅) mod 𝑝, 𝜈

(2)
𝑅 = 𝛽′𝑅(z + 𝑡𝑅) mod 𝑝, and

𝜈
(3)
𝑅 = 𝛽′′𝑅(𝑅 + 𝑡𝑅) mod 𝑝, 𝑡𝑅 ∈ 𝑍𝑝 is the random integer

calculated from the last gate.

𝑒(𝑔, 𝜈
(1)
𝑅)

?
= 𝑒(𝑔𝛽𝑅 , 𝜇𝑅 × ℎ𝜙) = 𝑒(𝑝𝑘

(1)
𝑅 , 𝜇𝑅 × ℎ𝜙)

𝑒(𝑔, 𝜈
(2)
𝑅)

?
= 𝑒(𝑔𝛽

′
𝑅 , 𝜇𝑅 × ℎz) = 𝑒(𝑝𝑘

(2)
𝑅 , 𝜇𝑅 × ℎz)

𝑒(𝑔, 𝜈
(3)
𝑅)

?
= 𝑒(𝑔𝛽

′′
𝑅 , 𝜇𝑅 × ℎ𝑅) = 𝑒(𝑝𝑘

(3)
𝑅 , 𝜇𝑅 × ℎ𝑅)

(21)

where 𝜌𝑅 = (𝜇𝑅, 𝜈
(1)
𝑅 , 𝜈

(2)
𝑅 , 𝜈

(3)
𝑅). Specifically, 𝜇𝑅 = ℎ𝑡𝑅 ,

𝜈
(1)
𝑅 = ℎ𝛽𝑅(𝜙+𝑡𝑅), 𝜈

(2)
𝑅 = ℎ𝛽′

𝑅(z+𝑡𝑅), and 𝜈
(3)
𝑅 = ℎ𝛽′′

𝑅(𝑅+𝑡𝑅),
𝑡𝑅 ∈ 𝑍𝑝 is the random integer calculated from the last gate.

The correctness of the above verification comes from the
homomorphism of the verification tags, and we will give a
complete analysis in the next section. Based on the algorithm
Proof verify, we can see that the task requester verifies the
correctness of aggregated result 𝑅 by only requiring to check
the verification tag 𝜎𝑅 = (𝑝𝑘𝑅, 𝜌𝑅) of the last gate G’s output.
This feature will help the task requester to verify the results
without the user’s inputs, i.e., supporting public verification.
Moreover, it also significantly reduces the communication
cost in our verification mechanism.

5 SECURITY ANALYSIS

In this section, we first prove that the proposed perturba-
tion mechanism satisfies the definition of local differential
privacy, and then we analyze the security of our verification
mechanism.

We first introduce some symbols used in the following
analysis. Reviewing the scenario of V-PATD, there are a
total ofℳ distinctive objects to be observed by each user
(denoted as 𝑛, 𝑛 = (1, 2, · · · 𝒩)), where 𝑥𝑚

𝑛 is the recorded
sensory data of 𝑛-th user for the 𝑚-th object. Similarly, the
aggregated result (i.e., ground truth) of object 𝑚 is denoted
as 𝑥𝑚

* . In addition, we use symbols 𝒲 and 𝒜 to denote the
perturbation mechanism and original truth discovery algorith-
m, respectively. Therefore, the original data set of all users
can be denoted as 𝐷 = {𝑥𝑚

𝑛 }𝑛=𝒩 ,𝑚=ℳ
𝑛=1,𝑚=1 . Correspondingly,

the perturbed data set is 𝒲(𝐷) = {̂︀𝑥𝑚
𝑛 }𝑛=𝒩 ,𝑚=ℳ

𝑛=1,𝑚=1 . Besides,
the final aggregated results(i.e., the ground truths) on data
set 𝐷 and 𝒲(𝐷) are indicated as {𝑥𝑚

* }𝑚=ℳ
𝑚=1 = 𝒜(𝐷) and

{̂︀𝑥𝑚
* }𝑚=ℳ

𝑚=1 = 𝒜(𝒲(𝐷)).
As discussed before, for each 𝑥𝑚

𝑛 , user 𝑛 adds noise 𝜁𝑚𝑛
selected from 𝑁(0, 𝛾2

𝑛) to 𝑥𝑚
𝑛 , where 𝛾2

𝑛 is the variance of
Gaussian noise selected from the 𝑛-th user. To ensure the
controllability of accuracy, we ask all users to select the
variance independently from an exponential distribution with
hyper parameter 𝜂2. This means that for each user 𝑛, the

p.d.f of the 𝛾2
𝑛’s variance is 𝑔(𝛾2

𝑛) = 𝜂2𝑒
𝜂2(𝛾

2
𝑛). On the other

hand, in the original truth discovery process, we assume that
the error of user 𝑛 (i.e., the different between the user 𝑛’s raw
sensory data and the final aggregated results) follows another
Gaussian distribution 𝑁(0, 𝛾2

𝑛′). Similarly, 𝛾2
𝑛′ is selected

from an exponential distribution with hyper parameter 𝜂1.
By the nature of the exponential distribution, the expectation
of 𝛾2

𝑛 and 𝛾2
𝑛′ are 1/𝜂2 and 1/𝜂1. Let 1/𝜂2 = 𝑟/𝜂1, where 𝑟

is the ratio between the expectation of 𝛾2
𝑛’s variance and the

error’s variance. Obviously, a large 𝑟 means that large noises
added in the raw sensory data, and thus 𝑟 can be regarded
as the noise level compared with the raw sensory data.

5.1 Analysis for Perturbation Mechanism

In this subsection, we describe the privacy-preserving level
of our perturbation mechanism under the definition of local
differentia privacy.

Definition 4: ((𝜖, 𝛿)-Local Differential Privacy): Assume
that ℛ is the universal set of perturbation mechanism 𝒲’s
outputs. Given any subset 𝒮 ⊆ ℛ, and two different sensory
data 𝑥(1) and 𝑥(2), the perturbation mechanism 𝒲 satisfies
the (𝜖, 𝛿)-local differential privacy as long as

𝑃𝑟{𝒲(𝑥(1)) ∈ 𝒮} ≤ 𝑒𝜖𝑃𝑟{𝒲(𝑥(2)) ∈ 𝒮}+ 𝛿 (22)

Based on the definition, for any two different sensory data
𝑥(1) and 𝑥(2), a smaller tuple (𝜖, 𝛿) means a higher probability
of the two 𝒲’s outputs in the same range. In other words,
it makes the outputs obtained under different inputs more
indistinguishable, and provides a higher level of data privacy
protection.

Next, we define the concept of sensitive information for
each user 𝑛, which is also an important term in local differ-
ential privacy. Specifically, the sensitive information △𝑛 of

each user 𝑛 can be denoted as △𝑛 = max
(𝑥

(1)
𝑛 ,𝑥

(2)
𝑛 ∈𝐷)

|𝑥(1)
𝑛 −𝑥

(2)
𝑛 |,

where 𝑥
(1)
𝑛 and 𝑥

(2)
𝑛 are two data collected by user 𝑛 for the

same object. △𝑛 is used to describe the range of sensory data
claimed by user 𝑛. Intuitively, △𝑛 is closely related to the
parameter 𝜂1 since 𝜂1 controls the variance (i.e., 𝛾2

𝑛′) size of
users’ error. We formally give the following lemma to define
the relationship between the △𝑛 and 𝜂1.

Lemma 1: For user 𝑛, the p.d.f of the error’s variance is

𝑔(𝛾2
𝑛′) = 𝜂1𝑒

𝜂1(𝛾
2
𝑛′), and the sensitive information △𝑛 satis-

fies that △𝑛 = max
(𝑥

(1)
𝑛 ,𝑥

(2)
𝑛 ∈𝐷)

|𝑥(1)
𝑛 − 𝑥

(2)
𝑛 | ≤ 𝛼𝑛

𝜂1
with probability

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

185

at least 𝑞(1 − 2𝑒
−𝑏2

2

𝑏
), where 𝛼𝑛 = 𝑏

√︁
2 ln 1

1−𝑞
, 𝑞 and 𝑏 are

constants.
Proof : See the proof in Appendix 1.1.
Based on the above lemma, we can infer that the size of

sensitive information of each user is inversely proportional
to 𝜂1. This means that the larger the 𝜂1 is, the smaller error’
variance and sensitive information will be obtained. In the fol-

lowing analysis, we set △𝑛 =
𝑏
√︁

2 ln 1
1−𝑞

𝜂1
and demonstrate the

proposed perturbation mechanism satisfying the definition
of local differential privacy.

Theorem 1: Given the parameter 𝜂1 and 𝜂2, where 1/𝜂2 =
𝑟/𝜂1, the perturbation mechanism 𝒲 of user 𝑛 satisfies (𝜖, 𝛿)-

Local Differential Privacy with 𝑟 ≥ 𝛼2
𝑛

2𝜂1𝜖 ln(
1

1−𝛿
)
, where 𝛼𝑛 =

𝑏
√︁

2 ln 1
1−𝑞

.

Proof : See the proof in Appendix 1.2.

5.2 Analysis for Verification Mechanism

In this subsection, we analyze the security of our verification
mechanism. First of all, we give two lemmas to prove that
our verification tag has the property of homomorphism with
addition and multiplication.

Lemma 2: The verification tag in our verification mecha-
nism is additive homomorphic.

Proof : The additive homomorphic means that given a sum
gate G with the incoming wires ̂︀𝑠1 and ̂︀𝑠2, anyone can generate
a new verification tag 𝜎′ for G’s output (i.e., ̂︀𝑠1+̂︀𝑠2) based on
the verification tag 𝜎1 and 𝜎2, and verify the correctness of̂︀𝑠1 + ̂︀𝑠2 without knowing ̂︀𝑠1 and ̂︀𝑠2. For more details, please
refer to Appendix 1.3.

Lemma 3: The verification tag in our verification mecha-
nism is multiplicative homomorphic.

Proof : The multiplicative homomorphic means that given
a product gate G with the incoming wires ̂︀𝑠1 and ̂︀𝑠2, anyone
can generate a new verification tag 𝜎′ for G’s output (i.e.,̂︀𝑠1 × ̂︀𝑠2) based on the verification tag 𝜎1 and 𝜎2, and verify
the correctness of ̂︀𝑠1 × ̂︀𝑠2 without knowing ̂︀𝑠1 and ̂︀𝑠2. For
more details, please refer to Appendix 1.4.

Based on the properties of our verification tag, we give the
following theorem to prove the correctness of our verification
mechanism.

Theorem 2: We say that the cloud server returns the cor-
rect result as long as its corresponding proof information is
verified.

Proof : Based on Lemma 2 and Lemma 3, we know that
the task requester can verify the result of a polynomial with-
out knowing the inputs. Therefore, the correctness of our
verification mechanism can be reduced to the correctness of
algorithm Proof verify. Based on the properties of bilinear
maps, the correctness of Eqn.(20) and Eqn.(21) can be easily
proved. Here we omit the detailed proofs for simplicity.

Next, we analyze the soundness (i.e., the proof informa-
tion corresponding to any false computation answer will be
detected and cannot pass the result integrity check) of our ver-
ification mechanism. Since the soundness of the verification

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

M
A

E

=0.2

=0.3

=0.4

=0.5

(a)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 o

f
A

d
d

e
d

 N
o

is
e

=0.2
=0.3

=0.4
=0.5

(b)

Figure 3: Effect of (𝜖, 𝛿). (a) MAE. (b) Noise.

mechanism stems from the unforgeability of the signature
method designed in this paper, we give a theorem as follows.

Theorem 3: We say that our verification mechanism achieves
soundness as long as our proposed digital signature scheme
is EUF-CMA secure.

Proof : See the proof in Appendix 1.5.

6 PERFORMANCE EVALUATION

To evaluate the performance of our V-PATD, we simulate 150
mobile users to observe 50 pre-set objects in the application of
floorplan construction [8]. Floorplan construction has gained
a lot of attention because it can use mobile users to observe
objects (such as the height, length, layout) and reconstruct
the structure of the target building. We utilize Java Pairing-
Based Cryptography Library (jPBC) [6] to implement the
pairing computation in the proposed scheme, where we set
the size of security parameter as 256 bits. In our experiments,
each user is a smartphone equipped with 4GB RAM, Android
6.0 system. The “ Cloud ” is simulated with a Lenovo server
which has Intel(R) Xeon(R)E5-2620 2.10GHZ CPU, 16GB
RAM, 256SSD, 1TB mechanical hard disk and runs on the
Ubuntu 18.04 operating system.

6.1 Accuracy

6.1.1 Effect of (𝜖, 𝛿). We first analyze the relationship be-
tween the accuracy and privacy of our proposed scheme. In
this part, we first perturbed the raw sensory data by the
perturbation mechanism described in Section 4.2. Then, to
measure the accuracy of aggregated results, we adopt the
mean of absolute error (MAE) to compare the difference in
aggregation results between raw data and perturbed data.
For this measure, the lower value indicates higher accuracy.

As discussed before, a smaller tuple (𝜖, 𝛿) provides a higher
level of data privacy protection. In other words, it requires
adding more noise to each sensory data. Figure 3(a) shows
the MAE with the different values of 𝜖. We can see that the
MAE decreases and changes slowly as the value of 𝜖 increases.
Moreover, from the Figure 3(b), we can also observe that
the added average noise incurred in perturbation is small
with the increase of (𝜖, 𝛿). This is mainly due to the fact that

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

186

60 80 100 120 140 160

Number of Users

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

M
A

E

(a)

60 80 100 120 140 160

Number of Users

0

0.1

0.2

0.3

0.4

0.5

A
v
e
ra

g
e
 o

f
A

d
d

e
d

 N
o

is
e

(b)

Figure 4: Effect of 𝒩 . (a) MAE. (b) Noise.

the truth discovery algorithm can automatically adjust the
weight of each user, which helps lower the weight of users
holding sensory data with large noise added, thereby reducing
the impact of these users’ data on the final result.

6.1.2 Effect of 𝒩 . Next, we analyze the effect of 𝒩 on
the results of the aggregation. Since each user perturbs its
sensory data independently by adding noises obeying a pre-
set Gaussian distribution, the change in 𝒩 will not affect
the average noise added in raw data, which is also shown
in Figure 5(b). On the other hand, from the Figure 5(a),
we can see that the increase in the number of users helps
improve the accuracy of the aggregation results. The reason
for this is that the truth discovery algorithm can collect more
information when more users upload data, which helps to
improve the quality of the aggregated results.

6.2 Computation Overhead

In this section, we analyze the computation overhead of our
V-PATD under the different number of users/objects. As dis-
cussed before, our V-PATD excels in performance compared
to existing solutions based on Homomorphic Encryption (HE)
or SMC. To be more convincing, the latest solutions (based on
SMC and HE)[22, 35] are also evaluated in our experiments
to demonstrate the efficiency of our proposed scheme.

In our V-PATD, the overall computation overhead comes
from three entities, i.e., the users, the cloud server and the
task requester. Figure 6(a) and Figure 6(b) show that the
computation overhead of each entity under the different num-
ber of users/objects. We can see that the cost of each user
keeps almost constant as the number of users/objects in-
creases. This is because in our scenario, each user is only
required to perturb its data and sign it to the server, which
requires only a small amount of computation overhead. The
overhead of the server and the task requester are proportional
to the number of users and objects. This is mainly because
the variation of the number of users/objects affects the com-
plexity of the arithmetic circuit of the outsourced function.
In general, the increase in the number of users/objects re-
sults in more complex arithmetic circuits, which makes the
server/the task requester (in some gates, the server needs

60 80 100 120 140 160

Number of users

0

10

20

30

40

50

60

70

80

90

 T
o

ta
l
ru

n
n

in
g

 t
im

e
 (

s
)

Each user cost
Task requester cost
Server cost

(a)

10 20 30 40 50

Number of objects

0

10

20

30

40

50

60

70

80

90

 T
o

ta
l
ru

n
n

in
g

 t
im

e
 (

s
)

Each user cost
Task requester cost
Server cost

(b)

Figure 5: Computation Overhead. (a)ℳ=25, with
the different number of users. (b)𝒩=75, with the
different number of objects.

to interact with the task requester to generate verification
tags) require more overhead to generate verification tags for
all gates. However, the overhead of the other two entities is
not significant compared to the overhead of the server. In
particular, the user’s overhead grows very slowly and can
be considered constant with the different number of user-
s/objects. Therefore, our verifiable approach is efficient and
scalable. Figure 7(a) and Figure 7(b) compare the compu-
tation overhead of V-PATD with those of the latest model
CATD[35] and F-PPTD[22]. Obviously, compared to [22, 35],
V-PATD significantly reduces the computation overhead in
the privacy-preserving truth discovery process. This is mainly
due to the shortcomings of the underlying structures of CAT-
D and F-PPTD. Specifically, CATD[35] and F-PPTD[22]
are constructed utilizing SMC and homomorphic encryption,
respectively, and both of these require participants executing
PPTD with multiple complex interactions. Therefore, these
techniques always involve time-consuming computation or
expensive communication among mobile device users, which
makes it difficult to achieve low latency for large-scale data
or user sets. Conversely, our perturbation mechanism is very
simple, which just requires each user to perturb sensory by
adding noises obeying a pre-set Gaussian distribution. Hence,
compared with the latest model based on SMC or homomor-
phic encryption, our V-PATD is very efficient and can be
easily applied to real-life scenarios.

6.3 Communication Overhead

Next, we analyze the communication overhead of our V-
PATD under the different number of users/objects. Similarly,
as shown in Figure 8(a), the communication cost of each user
almost constant as the number of users/objects increases.
This is also because the user only needs to sign his perturbed
data and send them to the server. On the other hand, the
overhead of the server and the task requester are proportional
to the number of users and objects. In V-PATD, since the
server primarily interacts with the task requester to generate
tags for some gates and return the final aggregated result,
which makes the communication overhead of these entities

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

187

60 70 80 90 100110120130140150

Number of users

0

50

100

150

200

250

300

350

 T
o

ta
l
ru

n
n

in
g

 t
im

e
 (

s
)

V-PATD
CATD
F-PPTD

(a)

10 15 20 25 30 35 40 45 50

Number of objects

0

50

100

150

200

250

300

350

 T
o

ta
l
ru

n
n

in
g

 t
im

e
 (

s
)

V-PATD
CATD
F-PPTD

(b)

Figure 6: Computation overhead compared with ex-
isting models. (a)ℳ=25, with the different number
of users. (b)𝒩=75, with the different number of ob-
jects.

60 80 100 120 140

Number of users

0

200

400

600

800

1000

1200

1400

1600

T
o

ta
l
tr

a
n

s
m

it
te

d
 d

a
ta

 (
K

B
) Each user cost

Task requester cost
Server cost

(a)

10 20 30 40 50

Number of objects

0

200

400

600

800

1000

1200

1400

1600

T
o

ta
l
tr

a
n

s
m

it
te

d
 d

a
ta

 (
K

B
) Each user cost

Task requester cost
Server cost

(b)

Figure 7: Communication Overhead. (a)ℳ=25, with
the different number of users. (b)𝒩=75, with the
different number of objects.

comparable. Figure 9(a) and Figure 9(b) shows that the co-
munication overhead of V-PATD compared with the latest
model CATD[35] and F-PPTD[22]. As described before, F-
PPTD is constructed under the SMC protocol, which requires
the server to interact with each participant multiple times
(using garbled circuits) to complete a ciphertext aggregation
operation. This inevitably leads to high communication over-
head. Also, to ensure the privacy of the aggregated results,
CATD uses the threshold variant of the Paillier scheme [5] in
their framework, which requires the cooperation of multiple
users to complete the aggregation operation under cipher-
text. However, compared to [22, 35], the performance of our
V-PATD is excellent in terms of communication overhead,
which grows slowly as the number of users/objects increases.

7 RELATED WORK

To protect the users’ privacy in the truth discovery process,
many PPTD approaches[13, 17, 21] have been proposed and
widely applied in diverse fields. Miao et al.[21] proposed the

60 70 80 90 100110120130140150

Number of users

0

1

2

3

4

5

6

7

 T
o

ta
l
tr

a
n

s
m

it
te

d
 d

a
ta

 (
M

B
) V-PATD

CATD

F-PPTD

(a)

10 15 20 25 30 35 40 45 50

Number of objects

0

1

2

3

4

5

6

 T
o

ta
l
tr

a
n

s
m

it
te

d
 d

a
ta

 (
M

B
) V-PATD

CATD

F-PPTD

(b)

Figure 8: Communication overhead compared with
existing models. (a)ℳ=25, with the different num-
ber of users. (b)𝒩=75, with the different number of
objects.

first privacy-preserving truth discovery framework in crowd-
sensing systems. Based on Threshold Paillier Cryptosystem[5],
it can execute TD procedures in the ciphertext domain while
guaranteeing the confidentiality of users’ privacy. To address
the problem of users dropping out in the truth discovery
process, Xu et al.[31] designed EPTD. It exploited the Secure
Multiparty Computing (SMC) based technologies to ensure
smooth execution even if there is a certain amount of users
offline. Tang et al.[28] also presented a non-interactive PPT-
D, which utilized two non-colluding servers assumption to
remove the online requirement for each user. On the other
hand, to improve efficiency, several approaches[4, 22, 23, 36]
have also been proposed. However, these techniques such
as homomorphic encryption and SMC always involve time-
consuming computation or expensive communication among
mobile device users, which makes it difficult to achieve low
latency for large-scale data or user sets. Recently, Li et al.[17]
designed a two-layer data perturbation mechanism under the
centralized differential privacy. However, their data pertur-
bation process relies on a trusted server to add noise to the
aggregation results, which contradicts the assumption of un-
trusted server setting in many real-life scenarios. To the best
of our knowledge, all existing solutions do not consider the
verifiability of aggregated results returned from the cloud
server. As introduced above, a dishonest server may com-
press the agreed computing protocol or maliciously forge the
aggregated results for some shady deals. Hence, it is urgent
to proposed a verifiable truth discovery approach, which can
efficiently verify the correctness of results returned from the
server while protecting user’s data privacy.

8 CONCLUSION

In this paper, we first designed a perturbation mechanism
to protect users’ sensory data before submitting them to
the cloud. Based on this, a publicly verifiable technique is
designed to enable any entity to verify the correctness of ag-
gregated results returned from the server. We gave a formal

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

188

analysis to prove the security of our V-PATD. Moreover, ex-
tensive experiments demonstrated the superior performance
of our V-PATD in terms of aggregated accuracy, computa-
tion and communication overhead. As part of future research
effort, we will focus on improving the aggregation accuracy
of our V-PATD.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Pro-
gram of China under Grants 2017YFB0802300 and 2017YF-
B0802000, the National Natural Science Foundation of China
under Grants 61802051, 61772121, 61728102, 61972094 and
61472065, the Peng Cheng Laboratory Project of Guang-
dong Province PCL2018KP004, the Guangxi Key Laboratory
of Cryptography and Information Security under Grant G-
CIS201804. In particular, I sincerely thank Ms. Tian Yan for
her understanding and support in the past few years. Will
you marry me?

REFERENCES
[1] M. Abe, J. Groth, K. Haralambiev, and M. Ohkubo. 2011. Optimal

structure-preserving signatures in asymmetric bilinear groups. In
Annual Cryptology Conference. Springer, 649–666.

[2] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko,
G. Segevand V. Vaikuntanathan, and D. Vinayagamurthy. 2014.
Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques.
Springer, 533–556.

[3] D. Boneh and M. Zhandry. 2013. Secure signatures and chosen
ciphertext security in a quantum computing world. In Annual
Cryptology Conference. Springer, 361–379.

[4] C. Cai, Y. Zheng, and C. Wang. 2018. Leveraging crowdsensed
data streams to discover and sell knowledge: A secure and efficient
realization. In Proceedings of IEEE ICDCS. 589–599.

[5] Ivan Damg̊ard and Mads Jurik. 2001. A generalisation, a simpli.
cation and some applications of paillier’s probabilistic public-key
system. In International Workshop on Public Key Cryptography.
Springer, 119–136.

[6] Angelo De Caro and Vincenzo Iovino. 2011. jPBC: Java pairing
based cryptography. In 2011 IEEE symposium on computers and
communications (ISCC). IEEE, 850–855.

[7] Cynthia Dwork. 2011. Differential privacy. Encyclopedia of
Cryptography and Security (2011), 338–340.

[8] M. Elhamshary, M. Alzantot, and M. Youssef. 2018. JustWalk:
A Crowdsourcing Approach for the Automatic Construction of
Indoor Floorplans. IEEE Transactions on Mobile Computing
(2018).

[9] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko,
and B. Parno. 2016. Hash first, argue later: Adaptive verifiable
computations on outsourced data. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1304–1316.

[10] O. Galinina, K. Mikhaylov, K. Huang, S. Andreev, and Y. K-
oucheryavy. 2018. Wirelessly powered urban crowd sensing over
wearables: Trading energy for data. IEEE Wireless Communica-
tions 25, 2 (2018), 140–149.

[11] J. Groth and A. Sahai. 2008. Efficient non-interactive proof
systems for bilinear groups. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques.
Springer, 415–432.

[12] D. Hsu, S. Kakade, and T. Zhang. 2012. A tail inequality for
quadratic forms of subgaussian random vectors. Electronic Com-
munications in Probability 17 (2012).

[13] H. Jin, L. Su, H. Xiao, and K. Nahrstedt. 2018. Incentive mecha-
nism for privacy-aware data aggregation in mobile crowd sensing
systems. IEEE/ACM Transactions on Networking 26, 5 (2018),
2019–2032.

[14] J. Keuffer, R. Molva, and H. Chabanne. 2018. Efficient Proof
Composition for Verifiable Computation. In Proceedings of the

ESORICS. Springer, 152–171.
[15] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han. 2014. Resolving

conflicts in heterogeneous data by truth discovery and source
reliability estimation. In Proceedings of ACM SIGMOD. 1187–
1198.

[16] Y. Li, J. Gao, C. Meng, Q. Li, L. Su, B. Zhao, W. Fan, and J. Han.
2016. A survey on truth discovery. ACM Sigkdd Explorations
Newsletter 17, 2 (2016), 1–16.

[17] Y. Li, C. Miao, L. Su, J. Gao, Q. Li, B. Ding, Z. Qin, and K. Ren.
2018. An efficient two-layer mechanism for privacy-preserving
truth discovery. In Proceedings of ACM SIGKDD. ACM, 1705–
1714.

[18] Y. Li, H. Xiao, Z. Qin, C. Miao, L. Su, J. Gao, K. Ren, and
B. Ding. 2018. Towards Differentially Private Truth Discovery
for Crowd Sensing Systems. arXiv preprint arXiv:1810.04760
(2018).

[19] A. Marshall and I. Olkin. 1967. A multivariate exponential distri-
bution. J. Amer. Statist. Assoc. 62, 317 (1967), 30–44.

[20] F. McSherry and K. Talwar. 2007. Mechanism Design via Differ-
ential Privacy. In Proceedings of the FOCS, Vol. 7. 94–103.

[21] C. Miao, W. Jiang, L. Su, Y. Li, S. Guo, Z. Qin, H. Xiao, J.
Gao, and K. Ren. 2015. Cloud-Enabled Privacy-Preserving Truth
Discovery in Crowd Sensing Systems. In Proceedings of the ACM
SenSys. ACM, 183–196.

[22] C. Miao, W. Jiang, L. Su, Y. Li, S. Guo, Z. Qin, H. Xiao, J. Gao,
and K. Ren. 2019. Privacy-Preserving Truth Discovery in Crowd
Sensing Systems. ACM Transactions on Sensor Networks 15, 1
(2019), 1–32.

[23] C. Miao, L. Su, W. Jiang, Y. Li, and M. Tian. 2017. A lightweight
privacy-preserving truth discovery framework for mobile crowd
sensing systems. In Proceedings of IEEE INFOCOM. IEEE, 1–9.

[24] B. Parno, J. Howell, C. Gentry, and M. Raykova. 2013. Pinocchio:
Nearly practical verifiable computation. In Proceedings of the
IEEE Security and Privacy. 238–252.

[25] B. Parno, M. Raykova, and V. Vaikuntanathan. 2012. How
to delegate and verify in public: Verifiable computation from
attribute-based encryption. In Theory of Cryptography Confer-
ence. Springer, 422–439.

[26] H. Ren, H. Li, Y. Dai, K. Yang, and X. Lin. 2018. Querying in
Internet of Things with Privacy Preserving: Challenges, Solutions
and Opportunities. IEEE Network 32, 6 (2018), 144–151.

[27] W. Song, B. Wang, Q. Wang, C. Shi, W. Lou, and Z. Peng. 2017.
Publicly verifiable computation of polynomials over outsourced
data with multiple sources. IEEE Transactions on Information
Forensics and Security 12, 10 (2017), 2334–2347.

[28] X. Tang, C. Wang, X. Yuan, and Q. Wang. 2018. Non-interactive
privacy-preserving truth discovery in crowd sensing applications.
In Proceedings of the IEEE INFOCOM. 1988–1996.

[29] Xu An Wang, Kim-Kwang Raymond Choo, Jian Weng, and Jian-
feng Ma. 2019. Comment on ”Publicly Verifiable Computation of
Polynomials over Outsourced Data with Multiple Sources”. IEEE
Transactions on Information Forensics and Security (2019).

[30] G. Xu, H. Li, Y. Dai, K. Yang, and X. Lin. 2019. Enabling efficient
and geometric range query with access control over encrypted
spatial data. IEEE Transactions on Information Forensics and
Security 14, 4 (2019), 870–885.

[31] G. Xu, H. Li, S. Liu, M. Wen, and R. Lu. 2019. Efficient and
Privacy-Preserving Truth Discovery in Mobile Crowd Sensing
Systems. IEEE Transactions on Vehicular Technology 68, 4
(2019), 3854–3865.

[32] G. Xu, H. Li, and R. Lu. 2018. Practical and Privacy-Aware Truth
Discovery in Mobile Crowd Sensing Systems. In Proceedings of
ACM CCS. 2312–2314.

[33] G. Xu, H. Li, C. Tan, D. Liu, Y. Dai, and K. Yang. 2017. Achieving
efficient and privacy-preserving truth discovery in crowd sensing
systems. Computers & Security 69 (2017), 114–126.

[34] L. Zhao and L. Chen. 2018. Sparse Matrix Masking-based Non-
Interactive Verifiable (Outsourced) Computation, Revisited. IEEE
Transactions on Dependable and Secure Computing (2018).

[35] Y. Zheng, H. Duan, and C. Wang. 2018. Learning the truth private-
ly and confidently: Encrypted confidence-aware truth discovery
in mobile crowdsensing. IEEE Transactions on Information
Forensics and Security 13, 10 (2018), 2475–2489.

[36] Y. Zheng, H. Duan, X. Yuan, and C. Wang. 2017. Privacy-aware
and efficient mobile crowdsensing with truth discovery. IEEE
Transactions on Dependable and Secure Computing (2017).

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

189

APPENDIX

1.1 Proof of Lemma 1

Proof. Since user 𝑛’s error follows the Gaussian distribution
𝑁(0, 𝛾2

𝑛′), the sensory data 𝑥𝑛 follows 𝑥𝑛 ∼ 𝑁(𝑥*, 𝛾
2
𝑛′), where

𝑥* represents the true value, and 𝛾2
𝑛′ is selected from the

exponential distribution with hyper parameter 𝜂1. Given
a large number 𝐵, we can conclude that 𝑃𝑟{𝛾𝑛′ ≤ 𝐵} =

1− 𝑒−𝜂1𝐵
2

= 𝑞 by the nature of light tail of the exponential

distribution [19], which implies𝐵 =

√︁
ln 1

1−𝑞√
𝜂1

. Since we assume

that most of users are reliable, the 𝜂1 should be larger than

1. Therefore, we have 𝐵 ≤
√︁

ln 1
1−𝑞

𝜂1
.

Next, we try to bound △𝑛. Given two data 𝑥
(1)
𝑛 and 𝑥

(2)
𝑛 ,

as the sensory data 𝑥𝑛 ∼ 𝑁(𝑥*, 𝛾
2
𝑛′), we know that 𝑥

(1)
𝑛 −

𝑥
(2)
𝑛 ∼ 𝑁(0, 2𝛾2

𝑛′). Therefore, we have 𝑃𝑟{|𝑥(1)
𝑛 − 𝑥

(2)
𝑛 | >

𝑏
√
2𝛾𝑛′} ≤ 2𝑒

−𝑏2

2

𝑏
based on the Gaussian Tail Inequality[12],

which implies △𝑛 = max
(𝑥

(1)
𝑛 ,𝑥

(2)
𝑛 ∈𝐷)

|𝑥(1)
𝑛 − 𝑥

(2)
𝑛 | ≤ 𝑏

√
2𝛾𝑛′ with

probability at least 1− 2𝑒
−𝑏2

2

𝑏
. Let 𝛼𝑛 = 𝑏

√︁
2 ln 1

1−𝑞
, we have

△𝑛 = max
(𝑥

(1)
𝑛 ,𝑥

(2)
𝑛 ∈𝐷)

|𝑥(1)
𝑛 − 𝑥

(2)
𝑛 | ≤ 𝑏

√
2𝛾𝑛′ ≤

𝑏
√︁

2 ln 1
1−𝑞

𝜂1
≤ 𝛼𝑛

𝜂1

with probability at least 𝜂1(1− 2𝑒
−𝑏2

2

𝑏
). �

1.2 Proof of Theorem 1

Proof. As discussed before, user 𝑛 adds noise selected from
𝑁(0, 𝛾2

𝑛) to its sensory data, where 𝛾2
𝑛 is chosen from an

exponential distribution with hyper parameter 𝜂2. Then, we
have

𝑃𝑟{𝒲(𝑥(1)
𝑛) = 𝑥} = 1√︀

2𝜋𝛾2
𝑛

exp(− (𝑥− 𝑥
(1)
𝑛)2

2𝛾2
𝑛

)

≤ 1√︀
2𝜋𝛾2

𝑛

exp(− (𝑥− 𝑥
(2)
𝑛)2 − (𝑥

(2)
𝑛 − 𝑥

(1)
𝑛)2

2𝛾2
𝑛

)

= exp(
(𝑥

(2)
𝑛 − 𝑥

(1)
𝑛)2

2𝛾2
𝑛

)
1√︀
2𝜋𝛾2

𝑛

exp(− (𝑥− 𝑥
(2)
𝑛)2

2𝛾2
𝑛

)

≤ exp(
△2

𝑛

2𝛾2
𝑛

)𝑃𝑟{𝒲(𝑥(2)
𝑛) = 𝑥}

≤ 𝑒𝜖𝑃𝑟{𝒲(𝑥(2)
𝑛) = 𝑥}.

(23)

From the above formula, we know that 𝑃𝑟{𝒲(𝑥
(1)
𝑛) = 𝑥} ≤

𝑒𝜖𝑃𝑟{𝒲(𝑥
(2)
𝑛) = 𝑥} holds if and only if 𝛾2

𝑛 ≥
△2

𝑛
2𝜖

. As 𝛾2
𝑛 is

chosen from an exponential distribution with hyper parameter

𝜂2, we limit the probability of event 𝑃𝑟{𝛾2
𝑛 : 𝛾2

𝑛 ≥
△2

𝑛
2𝜖
} to at

least 1− 𝛿, where 𝛿 ∈ [0, 1]. Therefore, we have 𝑃𝑟{𝛾2
𝑛 : 𝛾2

𝑛 ≥
△2

𝑛
2𝜖
} = exp(− 𝜂2△2

𝑛
2𝜖

) ≥ 1−𝛿, which implies− 𝜂2△2
𝑛

2𝜖
≤ ln(1

1−𝛿
).

Because 1/𝜂2 = 𝑟/𝜂1, we have 𝑟 ≥ 𝜂1△2
𝑛

2𝜖 ln(1
1−𝛿

)
. Based on the

Lemma 1, we have 𝑟 ≥ 𝛼2
𝑛

2𝜂1𝜖 ln(
1

1−𝛿
)
, where 𝛼𝑛 = 𝑏

√︁
2 ln 1

1−𝑞
.

Since the domain of user 𝑛’s noise variance 𝛾2
𝑛 is R+, we

divide R+ as R+ = R1∪ℛ2, where R1 = {𝛾2
𝑛 ∈ R+ : 𝛾2

𝑛 ≥
△2

𝑛
2𝜖
}

and R2 = {𝛾2
𝑛 ∈ R+ : 𝛾2

𝑛 <
△2

𝑛
2𝜖
}. Then, we use 𝒲(𝑥𝑛, 𝛾

2
𝑛) to

denote the perturbation mechanism of user 𝑛. Given a subset
𝒮 ⊆ ℛ, we also divide 𝒮 as 𝒮 = 𝒮1 ∪ 𝒮2, where we claim
𝒲(𝑥𝑛, 𝛾

2
𝑛) ∈ 𝒮1 if 𝛾2

𝑛 ∈ R1 or W(𝑥𝑛, 𝛾
2
𝑛) ∈ S2 if 𝛾2

𝑛 ∈ R2. Thus,
we have

𝑃𝑟
𝛾2
𝑛∈R+

{𝒲(𝑥
(1)
𝑛 , 𝛾2

𝑛) ∈ 𝒮} ≤ (𝑃𝑟
𝛾2
𝑛∈R1

+ 𝑃𝑟
𝛾2
𝑛∈R2

){𝒲(𝑥
(1)
𝑛 , 𝛾2

𝑛) ∈ 𝒮}

≤ 𝑃𝑟
𝛾2
𝑛∈R1

{𝒲(𝑥
(1)
𝑛 , 𝛾2

𝑛) ∈ 𝒮1}+ 𝛿

≤ 𝑒𝜖 𝑃𝑟
𝛾2
𝑛∈R+

{𝒲(𝑥
(2)
𝑛 , 𝛾2

𝑛) ∈ 𝒮}+ 𝛿

�

1.3 Proof of Lemma 2

Proof : Given a sum gate G and two inputs ̂︀𝑠1 and ̂︀𝑠2, the
process of generating 𝜎′ is divided into five cases (shown
in algorithm Gate eval). For ease of description, we take
Case 3 in the algorithm Gate eval as an example, where
𝑝𝑘̂︀𝑠1 = 𝑝𝑘̂︀𝑠2 . Given two variables ̂︀𝑠1 and ̂︀𝑠2, both of which
possess category-1 verification tag 𝜎1 = (𝑝𝑘̂︀𝑠1 , 𝜌̂︀𝑠1) and 𝜎2 =
(𝑝𝑘̂︀𝑠2 , 𝜌̂︀𝑠2), respectively. The verification tag 𝜎′ = (𝑝𝑘′, 𝜌′) of
the gate G’s output (i.e., 𝑦 = ̂︀𝑠1 + ̂︀𝑠2) is computed as follows.

𝑝𝑘′ = 𝑝𝑘̂︀𝑠1 , 𝜙′𝜏 = 𝜙𝜏1 + 𝜙𝜏2 ,z
′
𝜏 = z𝜏1 +z𝜏2

𝜌′ = (𝜇′, 𝜈′) = (𝜇̂︀𝑠1 × 𝜇̂︀𝑠2 , 𝜈′(1), 𝜈′(2), 𝜈′(3)) (24)

where 𝜈′(1) = 𝜈
(1)̂︀𝑠1 + 𝜈

(1)̂︀𝑠2 , 𝜈′(2) = 𝜈
(2)̂︀𝑠1 + 𝜈

(2)̂︀𝑠2 , and 𝜈′(3) =

𝜈
(3)̂︀𝑠1 + 𝜈

(3)̂︀𝑠2 . With verification tag 𝜎′ = (𝑝𝑘′, 𝜌′), anyone can

verify the correctness of ̂︀𝑠1 + ̂︀𝑠1 without knowing ̂︀𝑠1 and ̂︀𝑠1
as below.

𝑒(𝑔, ℎ𝜈′(1)
)

?
= 𝑒(𝑔𝛽̂︀𝑠1 , ℎ(𝜙𝜏1

+𝜙𝜏2
)+(𝑡̂︀𝑠1+𝑡̂︀𝑠2))

= 𝑒(𝑝𝑘′
(1)

, 𝜇′ × ℎ(𝜙𝜏1
+𝜙𝜏2

))

𝑒(𝑔, ℎ𝜈′(2)
)

?
= 𝑒(𝑔

𝛽′̂︀𝑠1 , ℎ(z𝜏1
+z𝜏2

)+(𝑡̂︀𝑠1+𝑡̂︀𝑠2))

= 𝑒(𝑝𝑘′
(2)

, 𝜇′ × ℎ(z𝜏1+z𝜏2))

𝑒(𝑔, ℎ𝜈′(3)
)

?
= 𝑒(𝑔

𝛽′′̂︀𝑠1 , ℎ(̂︀𝑠1+̂︀𝑠2)+(𝑡̂︀𝑠1+𝑡̂︀𝑠2))

= 𝑒(𝑝𝑘′
(3)

, 𝜇′ × ℎ(̂︀𝑠1+̂︀𝑠2))

(25)

Clearly, the verification tag in our verification mechanism
is additive homomorphic. �

1.4 Proof of Lemma 3

Proof. Specifically, given a product gate G and two inputs ̂︀𝑠1
and ̂︀𝑠2, the process of generating 𝜎′ is divided into two cases (
shown in algorithm Gate eval). Similarly, we take Case 2 in
the algorithm Gate eval as an example. Specifically, given
two variables ̂︀𝑠1 and ̂︀𝑠2, both of which possess category-1
verification tag 𝜎1 = (𝑝𝑘̂︀𝑠1 , 𝜌̂︀𝑠1) and 𝜎2 = (𝑝𝑘̂︀𝑠2 , 𝜌̂︀𝑠2), respec-
tively. The process of generating verification tag 𝜎′ = (𝑝𝑘′, 𝜌′)
of the gate G’s output is shown in Eqn.(19). Then, based on
the verification tag 𝜎′ = (𝑝𝑘′, 𝜌′) (refer to Eqn.(19)), anyone

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

190

can verify the correctness of ̂︀𝑠1 × ̂︀𝑠2 without knowing ̂︀𝑠1 and̂︀𝑠2 as below.

𝑒(𝑔, ℎ𝜈′(1)
)

?
= 𝑒(𝑔𝜉, ℎ(𝜙𝜏1

+𝜙𝜏2
)+(𝑡̂︀𝑠1+𝑡̂︀𝑠2))

= 𝑒(𝑝𝑘′
(1)

, 𝜇′ × ℎ(𝜙𝜏1
+𝜙𝜏2

))

𝑒(𝑔, ℎ𝜈′(2)
)

?
= 𝑒(𝑔𝜉

′
, ℎ(z𝜏1+z𝜏2)+(𝑡̂︀𝑠1+𝑡̂︀𝑠2))

= 𝑒(𝑝𝑘′
(2)

, 𝜇′ × ℎ(z𝜏1
+z𝜏2

))

𝑒(𝑔, ℎ𝜈′(3)
)

?
= 𝑒(𝑔𝜉

′′
, ℎ(̂︀𝑠1+̂︀𝑠2)+(𝑡̂︀𝑠1+𝑡̂︀𝑠2))

= 𝑒(𝑝𝑘′
(3)

, 𝜇′ × ℎ(̂︀𝑠1+̂︀𝑠2))

(26)

Clearly, the verification tag in our verification mechanism is
multiplicative homomorphic. �

1.5 Proof of Theorem 3

We first review the definition of the proposed signature, and
then give a formal security model. Finally, we demonstrate the
soundness of our verification mechanism under this security
model.

1.5.1 Signature method. Our proposed signature is a tuple
of probabilistic polynomial time algorithms, i.e., Setup,
Gen key, Gen sign, Sign verify, as follows:

Setup(1𝜆) → 𝑝𝑝. The setup algorithm generates the de-
scription of a pairing (𝑒, 𝑝,𝐺1, 𝐺2, 𝑔, ℎ) by running the bilin-
ear group generator 𝒢(1𝜆), where 𝑔, ℎ ∈ 𝐺1. The algorithm
randomly chooses two collision-resistant hash functions 𝐻 :
{0, 1}* → 𝑍𝑝 and 𝐻 ′ : {0, 1}* → 𝑍𝑝. It returns the public
parameter 𝑝𝑝 = (𝑒, 𝑝,𝐺1, 𝐺2, 𝑔, ℎ, 𝐻,𝐻 ′).

Gen key(𝑝𝑝) → (𝑠𝑘, 𝑝𝑘). The key generation algorithm
randomly chooses 𝛽, 𝛽′, 𝛽′′ ∈ Z𝑝 and returns the public key
𝑝𝑘 and the secret key 𝑠𝑘 as:

𝑝𝑘 = {(𝑔𝛽 , ℎ𝛽 , ℎ
1
𝛽), (𝑔𝛽

′
, ℎ𝛽′

, ℎ
1

𝛽′′), (𝑔𝛽
′′
, ℎ𝛽′′

, ℎ
1

𝛽′′)}
𝑠𝑘 = (𝛽, 𝛽′, 𝛽′′)

Gen sign(𝑚, 𝑠𝑘) → 𝜌. Take a message 𝑚 (with label 𝜏 ,
denote the description of 𝑚) and the secret key 𝑠𝑘 as the
inputs, the sign algorithm first computes 𝜙𝜏 = 𝐻(𝜏) and
z𝜏 = 𝐻 ′(𝜏). Then, it randomly chooses a integer 𝑡 ∈ 𝑍𝑝 and

sets 𝜇 = ℎ𝑡, 𝜈(1) = 𝛽(𝜙𝜏 + 𝑡) mod 𝑝, 𝜈(2) = 𝛽′(z𝜏 + 𝑡) mod 𝑝,

and 𝜈(3) = 𝛽′′(𝑚 + 𝑡) mod 𝑝. It returns the signature 𝜌 =

(𝜇, 𝜏, 𝜈(1), 𝜈(2), 𝜈(3)).
Sign verify(𝑝𝑘,𝑚, 𝜌)→ 𝑏: The algorithm returns 1 indi-

cating a valid message and signature pair if the following
equations are correct; otherwise, it returns 0.

𝑒(𝑔, ℎ𝜈(1)

)
?
= 𝑒(𝑔𝛽 , 𝜇× ℎ𝜙𝜏) = 𝑒(𝑝𝑘(1), 𝜇× ℎ𝜙𝜏)

𝑒(𝑔, ℎ𝜈(2)

)
?
= 𝑒(𝑔𝛽

′
, 𝜇× ℎz𝜏) = 𝑒(𝑝𝑘(2), 𝜇× ℎz𝜏)

𝑒(𝑔, ℎ𝜈(3)

)
?
= 𝑒(𝑔𝛽

′′
, 𝜇× ℎ𝑚) = 𝑒(𝑝𝑘(3), 𝜇× ℎ𝑚)

(27)

1.5.2 Security Model. Next, we introduce the security model
of existential unforgeability under chosen message attack
(EUF-CMA)[1, 3] for a digital signature scheme, which allows
an adversary to query for signatures on messages of his choice
deceptively and then adversary outputs a valid signature for
a message which has not been queried before.

Specifically, given the digital signature scheme consists
of four algorithms given above and an adversary 𝒜 who is
allowed to access a series of oracles, i.e., 𝒪Gen key(·),𝒪Corrupt(·)
and 𝒪Gen sign(·, ·), we define the following experiment under
EUF-CMA:

Experiment ExpEUF-CMA
Signature𝒜(1𝜆) Oracle 𝒪Gen key(𝑖)

𝑝𝑝← Setup(1𝜆); (𝑝𝑘𝑖, 𝑠𝑘𝑖)← Gen key(𝑝𝑝)
𝒟𝑢 := ∅;𝒟𝑐 := ∅;𝒟𝜌 := ∅; 𝒟𝑢 ← 𝒟𝑢 ∪ {𝑖, 𝑝𝑘𝑖, 𝑠𝑘𝑖}
(𝑝𝑘*,𝑚*, 𝜌*)← 𝒜𝒪(𝑝𝑝); return 𝑝𝑘𝑖.
return 1 iff 𝑝𝑘* ̸∈ 𝒟𝑐, (𝑝𝑘*,𝑚*) ̸∈ 𝒟𝜌, and Oracle 𝒪Corrupt(𝑖)
Sign verify(𝑝𝑘*,𝑚*, 𝜌*) = 1. (𝑝𝑘𝑖, 𝑠𝑘𝑖)← Gen key(𝑝𝑝)

Oracle 𝒪Gen sign(𝑝𝑘𝑖,𝑚) 𝒟𝑢 ← 𝒟𝑢 ∪ {𝑖, 𝑝𝑘𝑖, 𝑠𝑘𝑖}
𝜌← Gen sign(𝑠𝑘𝑖,𝑚) 𝒟𝑐 ← 𝒟𝑐 ∪ {𝑝𝑘𝑖}
𝒟𝜌 ← 𝒟𝜌 ∪ {𝑝𝑘𝑖,𝑚, 𝜌} return 𝑠𝑘𝑖.
return 𝜌

We say that our signature method is EUF-CMA secure
if for any probabilistic polynomial time adversary 𝒜, the
following advantage is negligible:

AdvEUF-CMA
Signature,𝒜(1

𝜆) = Pr[ExpEUF-CMA
Signature𝒜(1

𝜆) = 1].

Proof : Suppose there exists a polynomial-time adversary
𝒜 that can break our digital signature scheme in EUF-CMA
model with non-negligible advantage. Then, we can build
a simulator ℬ that can break either the discrete logarithm
(DL) assumption [1, 3] or collision-resistant hash functions
with non-negligible advantage. Specially, ℬ receives the tuple
(𝑔,𝐴 = 𝑔𝑎) to output 𝑎, and two hash functions 𝐻,𝐻 ′ to find
𝜏, 𝜏 ′ such that 𝜏 ′ ̸= 𝜏 and they are either 𝐻(𝜏 ′) = 𝐻(𝜏) or
𝐻 ′(𝜏 ′) = 𝐻 ′(𝜏).

Setup: ℬ generates the description of a pairing (𝑒, 𝑝,𝐺1, 𝐺2, 𝑔)
by running the bilinear group generator 𝒢(1𝜆) and derives
public key 𝑝𝑝 = (𝑒, 𝑝,𝐺1, 𝐺2, 𝑔, ℎ,𝐻,𝐻 ′) by simulating

𝑔 = 𝑔𝑎, ℎ = 𝑔

ℬ returns the public key 𝑝𝑝 = (𝑒, 𝑝,𝐺1, 𝐺2, 𝑔
𝑎, 𝑔,𝐻,𝐻 ′) to

𝒜, where 𝑔𝑎 and 𝑔 are uniform in the view of 𝒜.
Querying Phase: At the beginning of querying phase, ℬ
randomly picks 𝑖* ∈ {1, 2, ..., 𝑞Gen key} then queries the follow-
ing oracles adaptively.

𝒪Gen key(𝑖): 𝒜 queries the key generation oracle on the index
𝑖 at most 𝑞Gen key times. For each query, if 𝑖 has been queried
before, ℬ returns the public key 𝑝𝑘𝑖 from the database 𝒟𝑢;
otherwise, ℬ simulates the public key as following:

∙ If 𝑖 ̸= 𝑖*, ℬ randomly chooses 𝛽, 𝛽′, 𝛽′′ ∈ Z𝑝 and gen-
erates the public key 𝑝𝑘𝑖 and the secret key 𝑠𝑘𝑖 as:

𝑝𝑘𝑖 = {(𝑔𝛽 , ℎ𝛽 , ℎ
1
𝛽), (𝑔𝛽

′
, ℎ𝛽′

, ℎ
1
𝛽′), (𝑔𝛽

′′
, ℎ𝛽′′

, ℎ
1

𝛽′′)}
𝑠𝑘𝑖 = (𝛽, 𝛽′, 𝛽′′)

ℬ updates the database 𝒟𝑢 as 𝒟𝑢 ← 𝒟𝑢 ∪ {𝑖, 𝑝𝑘𝑖, 𝑠𝑘𝑖}.
∙ If 𝑖 = 𝑖*, ℬ randomly picks 𝑟1, 𝑟2, 𝑟3 ∈ Z𝑝 and generates
the public key 𝑝𝑘 as:

𝑝𝑘𝑖 = {(𝐴𝑟1 , 𝑔𝑟1 , 𝑔
1
𝑟1), (𝐴𝑟2 , 𝑔𝑟2 , 𝑔

1
𝑟2), (𝐴𝑟3 , 𝑔𝑟3 , 𝑔

1
𝑟3)}

= {(𝑔𝑎𝑟1 , 𝑔𝑟1 , 𝑔
1
𝑟1), (𝑔𝑎𝑟2 , 𝑔𝑟2 , 𝑔

1
𝑟2), (𝑔𝑎𝑟3 , 𝑔𝑟3 , 𝑔

1
𝑟3)}

ℬ updates 𝒟𝑢 as 𝒟𝑢 ← 𝒟𝑢 ∪ {𝑖, 𝑝𝑘𝑖, (𝑟1, 𝑟2, 𝑟3)},

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

191

where 𝑟1, 𝑟2 and 𝑟3 are uniform in the domain 𝒵𝑝 and hence
the public key 𝑝𝑘𝑖 is uniform from the view of 𝒜. ℬ returns
the public key 𝑝𝑘𝑖 to 𝒜.
𝒪Corrupt(𝑖): 𝒜 queries the corrupt oracle on the index 𝑖 at most
𝑞Corrupt times. For each query, if 𝑖 has been queried before, ℬ
returns the secret key 𝑠𝑘𝑖 from the database 𝒟𝑢; otherwise,
ℬ simulates the secret key as follows:

∙ If 𝑖 ≠ 𝑖*, ℬ randomly chooses 𝛽, 𝛽′, 𝛽′′ ∈ Z𝑝 and gen-
erates the public key 𝑝𝑘𝑖 and the secret key 𝑠𝑘𝑖 as:

𝑝𝑘𝑖 = {(𝑔𝛽 , ℎ𝛽 , ℎ
1
𝛽), (𝑔𝛽

′
, ℎ𝛽′

, ℎ
1

𝛽′′), (𝑔𝛽
′′
, ℎ𝛽′′

, ℎ
1

𝛽′′)}
𝑠𝑘𝑖 = (𝛽, 𝛽′, 𝛽′′)

ℬ updates the database 𝒟𝑢 as 𝒟𝑢 ← 𝒟𝑢 ∪ {𝑖, 𝑝𝑘𝑖, 𝑠𝑘𝑖}
and 𝒟𝑐 ← 𝒟𝑐 ∪ {𝑝𝑘𝑖}.
∙ If 𝑖 = 𝑖*, ℬ aborts since the secret key of challenging
index cannot be simulated.

ℬ returns the secret key 𝑠𝑘𝑖 = (𝛽, 𝛽′, 𝛽′′) to 𝒜.
𝒪Gen sign(𝑝𝑘𝑖,𝑚): 𝒜 queries the signing oracle on the public
key 𝑝𝑘𝑖 and the message 𝑚 at most 𝑞Gen sign times. For each
query, if (𝑝𝑘𝑖,𝑚) has been queried before, ℬ returns the
signature 𝜌 from the database 𝒟𝜌; otherwise, ℬ simulates the
signature as follows:

∙ If 𝑝𝑘𝑖 ̸= 𝑝𝑘𝑖* , ℬ computes the signature based on the
proposed scheme. Specifically, ℬ randomly chooses a
term 𝜏, 𝑡 ∈ Z𝑝 and computes

𝜇 = ℎ𝑡 = 𝑔𝑡

𝑣(1) = 𝛽(𝐻(𝜏) + 𝑡) mod 𝑝

𝑣(2) = 𝛽′(𝐻 ′(𝜏) + 𝑡) mod 𝑝

𝑣(3) = 𝛽′′(𝑚+ 𝑡) mod 𝑝

∙ If 𝑝𝑘𝑖 = 𝑝𝑘𝑖* , ℬ randomly chooses a term 𝜏, 𝑡 ∈ Z𝑝 and
retrieve the randomly 𝑟1, 𝑟2 and 𝑟3 to compute

𝜇 = ℎ𝑡 = 𝑔𝑡

𝑣(1) = 𝑟1(𝐻(𝜏) + 𝑡) mod 𝑝

𝑣(2) = 𝑟2(𝐻
′(𝜏) + 𝑡) mod 𝑝

𝑣(3) = 𝑟3(𝑚+ 𝑡) mod 𝑝

ℬ returns the signature 𝜌 = (𝜇, 𝜏, 𝜈
(1)
𝑛 , 𝜈

(2)
𝑛 , 𝜈

(3)
𝑛). Note that

the simulation for 𝑝𝑘𝑖 ≠ 𝑝𝑘𝑖* is identical to our proposed
scheme. Hence, it passes the verification algorithm and 𝒜
cannot find ℬ is processing the real scheme or the scheme
simulation. For 𝑝𝑘𝑖 ̸= 𝑝𝑘𝑖* , we have

𝑒(𝑔, ℎ
𝑣(1)

) = 𝑒(𝑔
𝑎
, 𝑔

𝑟1(𝐻(𝜏)+𝑡)
) = 𝑒(𝑔

𝑎𝑟1 , 𝑔
𝐻(𝜏)+𝑡

) = 𝑒(𝑔
𝛽
, ℎ

𝐻(𝜏)
ℎ
𝑡
)

𝑒(𝑔, ℎ
𝑣(2)

) = 𝑒(𝑔
𝑎
, 𝑔

𝑟2(𝐻′(𝜏)+𝑡)
) = 𝑒(𝑔

𝑎𝑟2 , 𝑔
𝐻′(𝜏)+𝑡

) = 𝑒(𝑔
𝛽′

, ℎ
𝐻′(𝜏)

ℎ
𝑡
)

𝑒(𝑔, ℎ
𝑣(3)

) = 𝑒(𝑔
𝑎
, 𝑔

𝑟3(𝑚+𝑡)
) = 𝑒(𝑔

𝑎𝑟3 , 𝑔
𝑚+𝑡

) = 𝑒(𝑔
𝛽′′

, ℎ
𝑚
ℎ
𝑡
)

Therefore, the signature for 𝑝𝑘𝑖* is correct and uniform from
the view of 𝒜.
Output: 𝒜 outputs (𝑝𝑘*,𝑚*, 𝜎*), then we consider following
two cases.

∙ Case 1: 𝑝𝑘* = 𝑝𝑘𝑖 then 𝒜 breaks the DL problem.
We have the following equations from the signature
𝜌* = (𝜇, 𝜏, 𝜈(1), 𝜈(2), 𝜈(3)) such that⎧⎪⎨⎪⎩

𝜈
(1)
𝑛 = 𝛽(𝐻(𝜏) + 𝑡) mod 𝑝 = 𝑎𝑟1(𝐻(𝜏) + 𝑡) mod 𝑝

𝜈
(2)
𝑛 = 𝛽′(𝐻 ′(𝜏) + 𝑡) mod 𝑝 = 𝑎𝑟2(𝐻

′(𝜏) + 𝑡) mod 𝑝

𝜈
(3)
𝑛 = 𝛽′′(𝑚* + 𝑡) mod 𝑝 = 𝑎𝑟3(𝑚

* + 𝑡) mod 𝑝.

We can calculate 𝑎 and 𝑡 from the above equations since
there are three equations with two unknown elements.
Therefore, we break the BL by returning 𝑎.
∙ Case 2: 𝑝𝑘* ≠ 𝑝𝑘𝑖* . We have the following equations
from the signature 𝜌* = (𝜇, 𝜏, 𝜈(1), 𝜈(2), 𝜈(3)) such that⎧⎪⎨⎪⎩

𝜈
(1)
𝑛 = 𝛽(𝐻(𝜏) + 𝑡) mod 𝑝

𝜈
(2)
𝑛 = 𝛽′(𝐻 ′(𝜏) + 𝑡) mod 𝑝

𝜈
(3)
𝑛 = 𝛽′′(𝑚* + 𝑡) mod 𝑝.

We can calculate 𝐻(𝜏) and 𝐻 ′(𝜏) from the above e-
quations since there are three equations with three
unknown elements. Therefore, we break the collusion-
resistant hash function by returning 𝜏 and 𝜏 ′, where
𝜏 ′ has the same hash result to 𝜏 and is queried before.

Probability analysis: The simulation aborts if 𝒜 guesses
𝑖* and 𝑗* incorrect. Hence, we have the following advantage:

AdvEUF-CMA
𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒,𝒜(1

𝜆) = 1/𝑞Gen sign · 𝜖DL + 1/𝑞Sign verify · 𝜖H,
where 𝜖DL and 𝜖H are the advantages to break the DL problem
and collision-resistant hash function. �

Session 4: Cloud Security ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

192

	Catch you if you deceive me: Verifiable and privacy-aware truth discovery in crowdsensing systems
	Citation
	Author

	Abstract
	1 Introduction
	2 PROBLEM STATEMENT
	2.1 System Model
	2.2 Threat Model and Security and Privacy Requirements

	3 PRELIMINARIES
	3.1 Truth Discovery
	3.2 Arithmetic Circuit
	3.3 Bilinear Map

	4 PROPOSED SCHEME
	4.1 Overview
	4.2 Perturbation Mechanism
	4.3 Verification Mechanism

	5 SECURITY ANALYSIS
	5.1 Analysis for Perturbation Mechanism
	5.2 Analysis for Verification Mechanism

	6 PERFORMANCE EVALUATION
	6.1 Accuracy
	6.2 Computation Overhead
	6.3 Communication Overhead

	7 RELATED WORK
	8 Conclusion
	References
	1.1 Proof of Lemma 1
	1.2 Proof of Theorem 1
	1.3 Proof of Lemma 2
	1.4 Proof of Lemma 3
	1.5 Proof of Theorem 3

