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Abstract—Recently, Google and other 24 institutions proposed
a series of open challenges towards federated learning (FL),
which include application expansion and homomorphic encryp-
tion (HE). The former aims to expand the applicable machine
learning models of FL. The latter focuses on who holds the secret
key when applying HE to FL. For the naive HE scheme, the server
is set to master the secret key. Such a setting causes a serious
problem that if the server does not conduct aggregation before
decryption, a chance is left for the server to access the user’s
update. Inspired by the two challenges, we propose FEDXGB, a
federated extreme gradient boosting (XGBoost) scheme support-
ing forced aggregation. FEDXGB mainly achieves the following
two breakthroughs. First, FEDXGB involves a new HE based
secure aggregation scheme for FL. By combining the advantages
of secret sharing and homomorphic encryption, the algorithm
can solve the second challenge mentioned above, and is robust to
the user dropout. Then, FEDXGB extends FL to a new machine
learning model by applying the secure aggregation scheme to the
classification and regression tree building of XGBoost. Moreover,
we conduct a comprehensive theoretical analysis and extensive
experiments to evaluate the security, effectiveness, and efficiency
of FEDXGB. The results indicate that FEDXGB achieves less
than 1% accuracy loss compared with the original XGBoost,
and can provide about 23.9% runtime and 33.3% communication
reduction for HE based model update aggregation of FL.

Index Terms—Privacy-Preserving, Federated Learning, Ex-
treme Gradient Boosting, Mobile Crowdsensing

I. INTRODUCTION

Extreme gradient boosting (XGBoost) is a state-of-the-art
machine learning model that performs well in processing both
classification and regression tasks. Winning 17 out of 29
challenges published by the world-famous Kaggle competition
validates that XGBoost is sure to have an impressive prospect
for the further development of artificial intelligence [1]. Sim-
ilar to other machine learning models, the performance of
XGBoost depends on how well the training dataset performs.
However, creating a large dataset requires lots of human
efforts, which is an unaffordable cost for most companies.
Hence, mobile crowdsensing is designed to collect data from
mobile users who are willing to share data. DroidNet [2] is
a sample system to demonstrate how mobile crowdsensing is
used in machine learning model training. However, the past
crowdsensing architecture usually allows the central server to
access to the plaintext user’s data, which leaves a chance for
user privacy leakage. The incident of Facebook-Cambridge
Analytica happened in 2018, is a significant example to

demonstrate the consequences of such privacy leakage. The
large IT company secretly harvested millions of private user
data and use them to control a country’s leadership elec-
tion [3].

To address the privacy leakage problem for mobile crowd-
sensing, federated learning is proposed by Google and rapidly
attract exploded interests of researchers [4]. Federated learning
groups mobile users and the central server into a loose fed-
eration, and then, proceeds model training without uploading
private user data to the central server. Despite its excellent
features on security and performance, federated learning is
still a developing technique. In 2019, Google, in conjunction
with 24 other agencies, proposes a series of open challenges
for the future development of federated learning [5]. Besides
expanding the applicable machine learning model for federated
learning, Google points out that homomorphic encryption (HE)
can be a powerful tool in federated learning. However, existing
HE based FL schemes [6]–[8] still have the following two
unresolved challenges.

• Forced Aggregation. The native applications of HE to
federated learning is that the server encrypts the param-
eters with its own public key and sends them to the
user [6], [7]. Utilizing the homomorphism of HE, the
user can compute the model update without decryption
and return the encrypted model update to the server for
aggregation. A key challenge here is to force aggregation
on the server before decryption, as otherwise, the server
may be able to learn a users model update.

• User Dropout. Federated learning is originally designed
to run in the open network, in which the user’s connec-
tivity is always unstable. To date, most of the existing
HE based federated learning schemes cannot resolve the
accident user dropout problem, other than abandoning
the current round of training [6]–[8]. Such a drawback
dramatically reduces the practicality of the schemes in
applications.

To resolve the above challenges, we propose FEDXGB,
a federated extreme gradient boosting framework for mobile
crowdsensing that supports forced aggregation, and is robust
against user dropout. FEDXGB is composed of two kinds of
entities, a central cloud server and a set of users. FEDXGB
proceeds as follows. The central server iteratively invokes a
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suite of secure protocols to build the classification and regres-
sion tree (CART) of XGBoost. In the protocols, our newly
designed secure aggregation protocol is invoked to aggregate
the users’ gradients. By combining Bresson’s cryptosystem [9]
and Shamir’s secret sharing [10], FEDXGB makes the central
server to operate a forced aggregation on the gradients and
can recover the data of the dropout users.

Our contributions can be summarised as follows:

• Federated Extreme Gradient Boosting. We propose
a federated learning framework to implement privacy-
preserving XGBoost training for mobile crowdsensing,
called FEDXGB. Using a suite of secure protocols,
FEDXGB allows multiple users to cooperatively train an
XGBoost model without direct revealing of their private
data to the central server.

• Forced Aggregation. We design a new secure gradient
aggregation algorithm for federated learning, which com-
bines the advantages of both homomorphic encryption
and secret sharing. Specifically, through the combination
of homomorphic encryption and secret sharing, FEDXGB
ensures that the central server cannot get a correct decryp-
tion result before operating aggregation, and meanwhile,
is robust against user dropout.

• Practicality for Applications. We evaluate the effec-
tiveness and efficiency of FEDXGB using two standard
datasets. The results indicate that FEDXGB maintains
the high performance of XGBoost with less than 1% of
accuracy loss and attains about 23.9% runtime and 33.3%
communication reduction for gradient aggregation.

Outline. The rest of this paper is organized as follows. In
Section II, some background knowledge are briefly introduced.
Section III gives an overview of FEDXGB. Section IV presents
the technical intuition of our secure aggregation scheme.
Section V lists the implementation details of FEDXGB. The
security and performance of FEDXGB are discussed and eval-
uated in Section VI and Section VII. Section VIII discusses
the related work. The last section concludes the paper.

II. PRELIMINARY

In this section, we briefly introduce the background knowl-
edge about XGBoost and the cryptographic functions used in
FEDXGB. Table I summarizes the frequently-used notations.

TABLE I
NOTATION TABLE

Notation Description

wi the first-order derivative of l(·) for the ith instance.
hi the second-order derivative of l(·) for the ith instance.
ζu,v the secret share distributed to the user u by the user v.
F a finite field F, e.g. Fp = Z∗p for some large prime p.
G a cyclic group with a generator g.
〈·〉u key used for secure aggregation.
[[x]] an encrypted secret x.

A. Extreme Gradient Boosting

One of the goals of FEDXGB is to extend federated learning
to the ensemble learning model XGBoost. An XGBoost model
is composed of multiple classification and regression trees
(CARTs) that are built based on the boosting method [1]. For
the k-th iteration, the objective of XGBoost is to generate a
CART to minimize the following objective function Lk.

Lk =

n∑
i=1

l(yi, ŷk−1,i + fk(xi)) + Ω(fk), (1)

where n is the total number of training samples, i is the index
of each sample, and yi is the label of the i-th sample, ŷk−1,i
represents the predicted label of the i-th sample at the (k −
1)-th iteration, Ω is a regularization item. To grow a CART,
XGBoost iteratively adds branches (i.e., splitting the leaf node)
to the current tree. Assume IL and IR are the instance sets of
left and right nodes after a split, and I = IL ∪ IR. The score
to evaluate a split is as follows.

score =
1

2
·(

(
∑
i∈IL wi)

2∑
i∈IL hi + λ

+

∑
i∈IR w

2
i∑

i∈IR hi + λ
−

(
∑
i∈I wi)

2∑
i∈I hi + λ

),

(2)
where λ is a constant value, wi and hi are the first-order and
second-order derivatives of l(·). Each time a branch is added,
XGBoost chooses the split with the maximum score from all
candidate splits. When a CART structure is fixed, the weight
ωj of a leaf node j is calculated by Eq. 3.

ωj = −
(
∑
i∈I wi)

2∑
i∈I hi + λ

. (3)

B. Homomorphic Encryption

Bresson’s cryptosystem [9] is a kind of partially homo-
morphic cryptosystem derived from Paillier’s cryptosystem.
FEDXGB adopts it to protect the gradient of users. The
followings are some definitions of the cryptosystem.

Key Generation. Three inputs are required for the key
generation function Key.Gen, namely a security parameter
`, a big integer N = q1q2 and a generator g. q1 and q2 are
two primes that satisfy q1 = 2q′1 + 1 and q2 = 2q′2 + 1,
where q′1 and q′2 are primes and different from q1 and q2.
g ∈ Z∗N2

is a generator of the group (G, q1, q2, N = q1q2, g)
with order ord(G) = (p − 1)(q − 1)/2. With the inputs,
Key.Gen outputs a private-public key pair (〈kpri〉, 〈kpub〉),
where 〈kpri〉 ∈ [1, ord(G)) and 〈kpub〉 = g〈kpri〉 mod N2.

Encryption & Decryption. To encrypt a message m ∈ Z∗N ,
a random value r ∈ Z∗N is first chosen. Then, using the public
key 〈kpub〉, we can compute the ciphertext (c1, c2) according
to Eq. 4

c1 = gr mod N2, c2 = (1 +mN)〈kpub〉r mod N2. (4)

Knowing the private key, we can decrypt the ciphertext as
follows.

m =
1

N
(c2/c

〈kpri〉
1 − 1 mod N2). (5)

The above encryption is semantically secure under the deci-
sional Diffie-Hellman assumption in Z∗N2 [9].
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Key Agreement. FEDXGB invokes the key agreement
function Key.Agr to generate the shared key used for the
shared key encryption and secret masking in the secure ag-
gregation process. Given a user’s private key 〈kpri,u〉 and
a public key of another user 〈kpub,v〉, Key.Agr outputs
〈ku,v〉 = 〈kpub,v〉〈kpri,u〉 mod N2. It can be proved that
Key.Agr is also secure under the decisional Diffie-Hellman
assumption in Z∗N2 [9].

C. Secret Sharing

FEDXGB utilizes Shamir’s secret sharing scheme [10]
to deal with the user dropout problem. Two functions are
involved in the Shamir’s secret sharing scheme, share gen-
eration SS.Share and secret reconstruction SS.Recon.
Given the secret s, the threshold t and a set of users U ,
SS.Share(s, t, n) outputs a set of shares for each user
{(u, ζu)|u ∈ U}. Inversely, given at least t shares, SS.Recon
recovers the secret s by the Lagrange polynomials. For se-
curity, SS.Share and SS.Recon work on a finite field
F = Z∗p, where p is a big prime. Note that since FEDXGB
uses the above functions to secretly share the private key, p
has to be bigger than ord(G), which is the order of the group
used in Key.Gen.

D. Share-Key Encryption

FEDXGB uses the shared-key encryption to avoid the
adversary’s eavesdropping while transmitting the secret shares.
For security, the encryption function Enc is required to be
indistinguishable under a chosen plaintext attack (IND-CPA).
Given a share key 〈ku,v〉 and message m, Enc outputs a ci-
phertext cu,v =Enc(〈ku,v〉,m), and Dec(〈ku,v〉, cu,v) outputs
the plaintext m.

III. OVERVIEW OF FEDXGB

In this section, we briefly overview the system design of
FEDXGB for mobile crowdsensing. To provide a better under-
standing of FEDXGB, we first list the entities of FEDXGB,
illustrated in Fig. 1. Then, we define the security model of
FEDXGB. Finally, the workflow of FEDXGB is presented,
shown in Fig. 2.

A. Entities of FEDXGB

FEDXGB consists of three types of entities: a set of users
U and a central server S.

User

Local 
Database

Gradients

③Generate 
Mask Shares 

Secretly 
Shared Gradient 

Aggregation

Gradient
Sub-Aggregation

Gradient
Aggregation

New CARTCentral Server

Edge Server

       ①Setup

       ①Setup

       ①Setup

②Selection & 
Authentication

②User Selection
& Authentication

②Abort If Not Selected 
or Authenticated

③Send to 
Other User

③Collect 
Mask Shares

④Candidate 
Splits

④Collect

④Do 
Boosting

④Collect

④Candidate 
Splits

Precompute

④Aggregate

User

Local 
Database Gradients

②Generate The Shares of 
Private Mask Key

Masked 
Gradients

Masked
Aggregations

④Optimal 
Split

Central Server

       ①Setup

       ①Setup

②Send to 
Other Users

④Collect
③Candidate 

Splits

③Compute ④Mask

Private Mask 
Key Shares

Received 
Shares

④Collect The  
Shares of 

Dropout Users

New CART

Loop L1

Unmasked
Aggregations

Fig. 1. Entities of FEDXGB

Users. U = {u1, u2, ..., un}. Each u ∈ U is a mobile
user that volunteers to participate in federated learning and
is connected with other users and the central server.

Central Server. S is owned by a mobile crowdsensing
service provider. The aggregation of the model update for
FEDXGB proceeds in S, but S is not trusted by the users.

B. Security Model

In FEDXGB, our security model is based on the curious-
but-honest model, a standard security model in federated
learning [4], [8], [11]. In the model, each entity of the protocol
is curious-but-honest, defined in Definition 1.
Definition 1 [12]. In a communication protocol, a curious-but-
honest entity does not deviate from the defined protocol, but
attempts to learn all possible information from the legitimately
received messages.

In addition, we introduce an active adversary into our secu-
rity model who has the following abilities. A has the following
abilities: 1) simultaneously corrupt less than t legitimate
users and the central server; 2) eavesdrop the communication
channels; 3) for the corrupted entities, A can access to all
their data in plaintext, e.g., private keys and random seeds;
4) is limited to have polynomial-time computation power.
FEDXGB needs to achieve the following security goals.
• Goal 1: Data Privacy. S cannot learn the private data of
u ∈ U , no matter u is active or loses connection in the
training process.

• Goal 2: Forced Aggregation. Considering the secure
gradient aggregation of federated learning, we limit that
S cannot ignore a specific user’s uploaded model update
without prior notice.

C. Workflow of FEDXGB

Three protocols are involved in FEDXGB, namely secure
CART building (SecBoost), secure split finding (SecFind) and
secure aggregation (SecAgg). SecFind and SecAgg are two
sub-protocols of SecBoost. Here, we briefly overview how the
three protocols work in FEDXGB.

Secure CART Building 
(SecBoost)

CARTLoop L1

Setup

User 
Selection

Mask Key 
Sharing

Split 
Finding

Loop L2

Trained 
XGBoost

Secure CART Building 
(SecBoost) CART

Secure CART 
Prediction (SecPred)Loop L1

Setup
User 

Selection
Key Shares 
Collection Boosting Prediction

Loop L2

Trained 
Model

Secure Split 
Finding (SecFind)

SecFind SecAgg
Invoke

Invoke

Fig. 2. Workflow of FEDXGB

As shown in Fig 2, FEDXGB trains an XGBoost model
by iteratively invokes SecBoost. SecBoost takes three steps,
which are setup, mask key sharing and split finding. SecFind
is used to complete the split finding step of SecBoost, and
SecAgg is invoked by SecFind to securely aggregate gradients.

1) Setup. A trusted key generate center setups the crypto-
graphic parameters. U and S utilize the parameters to
generate their cryptographic keys used in the following
steps. We say that such a key generation center is

3
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a typical role in modern networks, e.g., the digital
certificate management center.

2) Mask Key Sharing. Before uploading the gradients for
CART building, each user secretly shares its private
mask key. Thus, even the user accidentally drops out,
S can still recover its mask key and continue to get a
correct gradient aggregation result.

3) Split Finding. As stated in Section II-A, an XGBoost
model is composed of multiple CARTs. To build a
CART, the key operation is to find the optimal split
for the leaf node. SecBoost achieves split finding by
invoking SecFind. In SecFind, the user first locally
calculates the gradients based on the candidate splits
published by S. The gradients include both wi and
hi, defined in Eq. 2. Then, S aggregates each user’s
gradients by SecAgg. Having the aggregation result, S
can derive the scores of all candidate splits according
to Eq. 2. Finally, S chooses the one with the maximum
score and use it to add a new branch in the current
CART.

By repeating the above steps (Loop L1 in Fig. 2), S can
obtain a well trained CART fk. Further, S publishes the newly
trained CART and continues to build the next CART (Loop L2

in Fig. 2). In the end, S gets a trained XGBoost model f(x) =∑K
κ=1 fκ(x), where K is the maximum training round.

IV. TECHNICAL INTUITION

For federated learning, the most critical operation is the
secure gradient aggregation. In this section, we introduce the
intuition to design our secure aggregation protocol and present
its implementation details.

A. IBM’s Homomorphic Aggregation Scheme

To ensure an honest-but-curious central server to reliably
aggregate data, a popular method is using the homomor-
phic encryption technique. Recently, IBM proposes such a
homomorphic aggregation scheme for federated learning [8]
(abbreviated as IBMHOM) as follows.

IBMHOM is based on the t-threshold Paillier cryptosys-
tem [13], that is, the ciphertext must be decrypted with more
than t secret keys. Assume that each user u holds a gradient xu
and one of the secret keys. Express the t-threshold encryption
algorithm as ThEnc. To aggregate all users’ gradients, u
samples a random value ru ∈ Z∗N and computes:

[[xu]] = ThEnc(xu + εu, ru, 〈tkpub,S〉), (6)

where 〈skpub,S〉 is the public key and ε is the Gaussian
noise to implement differential privacy against the inference
attack [14]. Then, [[xu]] is uploaded. Using the homomorphism
of the Paillier cryptosystem, the central server S can get
[[
∑
u∈U xu]] =

∏
u∈U [[xu]]. Next, S randomly chooses t users

and orderly ask them to decrypt [[
∑
u∈U xu]]. In the process,

if any user drops out, S has to ask another user to decrypt.
Finally, with the partial decryption results of all the t users,
S can recover the plaintext aggregation result.

B. Our Hybrid Masking Scheme SecAgg

We notice that the secure aggregation scheme above has
two disadvantages. First, the aggregation of S is unforced.
If a malicious server does not aggregate a specific user’s
data, it can still get a correct decrypted aggregation result of
the remaining data. In other words, a malicious server can
directly ask the users to decrypt a specific user’s data, and the
users cannot be aware of this. Also, the vulnerability makes it
easier to launch an update-leak attack [15]. Second, the user
is responsible for sending, encrypting and decrypting the data
at the same time, which is too costly for a user. To resolve
the problems, we propose a new secure aggregation scheme
SecAgg, shown in Protocol 1.

In SecAgg, u first computes the shared mask keys with
other users by Key.Agr and secretly share its private mask
key. Then, u samples a random value ru and masks xu using
the masking function SecMask.

[[xu]] =SecMask(xu, ru, 〈sku,v〉, 〈skpub,S〉)
=[1 + (xu + Υu)N ] · 〈skpub,S〉ruϕ(g

ru ) mod N2.
(7)

where Υu =
∑
u<v ϕ(〈sku,v〉)−

∑
u>v ϕ(〈sku,v〉), 〈skpub,S〉

is the public mask key of the central server S, ϕ(·) is a pseudo-
random function with a fixed-length output. [[xu]] is sent to
S. In the process, S records the received mask values and
the senders and then publishes a list of the senders U ′. The
active users in U ′ return gru and the shares of the dropout
users’ private mask keys. Using the shares, S recovers the
private mask key of the dropout users and computes the shared
mask keys between the dropout users and the other users.
Finally, the aggregation result can be obtained according to
line 8, Protocol 1. Notably, it is observed that SecAgg can
be simply extended with differential privacy in a similar way
of IBMHOM. However, since the inference attack is not the
fundamental problem of this paper, we omit the extended
implementation.

Correctness. Express the dropout users as u0 ∈ U/U ′.
Based on our cryptographic definitions, the unmasking process
(line 8, Protocol 1) can be expressed as Eq. 8 and Eq. 9.∑
u∈U ′

xu =[1 +N
∑
u∈U ′

(xu + Υu)] · 〈skpub,S〉
∑

u∈U ruϕ(g
ru )

· g−〈skpri,S〉
∑

u∈U ruϕ(g
ru ) +

∑
u∈U/U ′

Υu mod N2,

(8){
Υu =

∑
u<v ϕ(〈sku,v〉)−

∑
u>v ϕ(〈sku,v〉) mod p∑

u∈U Υu =
∑
u∈U ′ Υu +

∑
u∈U/U ′ Υu = 0

.

(9)
Since 〈skpub,S〉 = g〈skpri,S〉, we can prove that the unmasking
result is the correct aggregation result by combining the above
two equations.

V. SECURE CART BUILDING OF FEDXGB

In this section, we present the details of FEDXGB for
federated XGBoost training. In the protocols, the following
notions are specified. All users are orderly labeled by a

4



5

Protocol 1 Secure Aggregation (SecAgg)
Input: A server S; a user set U ; u ∈ U holds a secret xu and a set of other user’s private mask shares {ζv,u|v ∈ U/u}.
Output: S obtains the aggregated users’ secrets Λ.

1: for u ∈ U do
2: Generate 〈sku,v〉 ←KEY.Agr(〈skpri,u〉, 〈skpub,v〉) for v ∈ U/u and selects a random value ru ∈ ZN .
3: Compute [[xu]]←SecMask(xu, ru, 〈sku,v〉, 〈skpub,S〉) and send [[xu]] to S .
4: end for
5: S checks the dropout users in the above iteration and publishes the active user list U ′.
6: Each user checks whether it is in U ′. If yes, send gru and {ζv,u|v ∈ U/U ′} to S, otherwise, wait for the next invocation.
7: S computes R ←

∏
u∈U ′ gruϕ(g

ru ), and for u0 ∈ U/U ′, recovers 〈skpriu0
〉 ←SS.Recon({ζu0,v|v ∈ U ′}, t) to compute

{〈sku0,v〉|v ∈ U ′} and Υ←
∑
u0∈U/U ′(

∑
u0<v,v∈U ϕ(〈sku0,v〉)−

∑
u0<v,v∈U ϕ(〈sku0,v〉)).

8: S obtains
∑
u∈U ′ xu ← 1

N [(
∏
u∈U ′ [[xu]]) · R−〈skpri,S〉 − 1 + Υ] mod N2.

sequence of indexes (1, 2, ..., n) to represent their identities.
Each user is deployed with a small local dataset Du.

A. Secure CART Building SecBoost
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Fig. 3. Detailed Overview of SecBoost

As mentioned before, an XGBoost model is composed of
multiple CARTs. FEDXGB implements secure CART building
by invoking SecBoost, shown in Protocol 2. Referring to the
overview illustrated in Fig. 3, we introduce the detailed steps
of SecBoost.

Step 1 - Setup: In the step, U and S setup the cryptographic
keys. To achieve this, a trusted key generation center samples
the parameters for key generation and secret sharing, including
a cyclic group (G, q1, q2, N = q1q2, g) and a finite field Z∗p.
Then, the public cryptographic parameters (G, g,N) and Z∗p
are published to both U and S. Using the public parameters,
each u ∈ U invokes Key.Gen to generate two pairs of
keys, (〈ekpri,u〉, 〈ekpub,u〉) and (〈skpri,u〉, 〈skpub,u〉), which
are used for shared key encryption and secret masking in
secure aggregation, respectively. Meanwhile, S generates a
pair of masking keys, (〈skpri,S〉, 〈skpub,S〉) and determines
the secret sharing threshold t. Finally, U and S exchange their
public keys.

Step 2 - Mask Key Sharing: To deal with the user’s
accident dropout, each user previously generates random
shares of its private mask keys. For a specific user u, it
computes {(u, ζu,v)|v ∈ U} ← SS.Share(〈skpri,u〉, t, n).
For each selected user v ∈ U , u encrypts one of the shares
cu,v ←Enc(〈eku,v〉, u||v||ζu,v) and sends the encryption
result to it, where 〈eku,v〉 ←Key.Agr(〈ekpri,u〉, 〈ekpub,v〉).

The user v decrypts cu,v and extracts ζu,v . ζu,v is stored and
used to recover the private mask key if u drops out.

Step 3 - Split Finding: Assume that the feature set of the
user data is Q = {α1, α2, ..., αq}. According to the boosting
method defined in XGBoost [1], S randomly selects a sub-
sample of all features Q′ ⊂ Q and inputs it to SecFind
to find the optimal split. The detailed split finding method
and optimization criteria are stated in the next section. To
build a new CART with an optimal structure, S successively
operates the above steps until the current tree depth reaches the
maximum depth or other termination conditions are met [1].
Finally, SecBoost outputs a well trained CART fκ.

B. Secure Split Finding SecFind

The most important operation of the CART building in
XGBoost is to find the optimal split from all candidate splits
to branch the leaf node. The candidate splits are evaluated with
the split scores computed by Eq. 2. The optimal split is the
split with the maximum score. In FEDXGB, split finding is
implemented by SecFind, presented in Protocol 3. Details of
SecFind are as follows.

First, u ∈ U computes the gradients of the local training
samples (hi and wi, defined in Eq. 2). Then, S invokes SecAgg
twice to get the aggregation of the two kinds of gradients H
and G. Next, for each given candidate feature α ∈ Q′, S
enumerates all possible candidate splits and publishes them
to U . Similar to the above aggregation process for H and G,
S collects the left-child gradient aggregation results for each
candidate split. The aggregation results are used to compute
the score for each candidate split. When the iteration is
terminated, SecFind returns the split with the maximum score
and its corresponding feature. Intuitively, with the optimal
split, S can add a new branch in current CART by splitting
an old leaf node into two new leaf nodes. Moreover, if the
termination condition is reached after the splitting, S extra
computes the weights of the leaf nodes with the aggregated
gradients by Eq. 3.

C. Robustness against User Dropout.

Two possible cases of user dropout in FEDXGB are dis-
cussed as follows.
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Protocol 2 Secure Extreme Gradient Boosting Based Tree Building (SecBoost)
Input: A central server S, a user set U = {u1, ..., un} and a key generation center T .
Output: A well-trained CART.

1: Step 1 - Setup:
2: Given the security parameter `, T randomly selects three strong primes p, q1 and q2, and samples a cyclic group

(G, q1, q2, N = q1q2, g), where g is a generator with order ord(g) = (q1−1)(q2−1)
2 and p > ord(g). (G, g,N) and p

are published to both u ∈ U and S.
3: Each u ∈ U compute (〈ekpri,u〉, 〈ekpub,u〉)←Key.Gen(g,N, `) and (〈skpri,u〉, 〈skpub,u〉)←Key.Gen(g,N, `).
4: S generates (〈skpri,S〉, 〈skpub,S〉)←Key.Gen(g,N, `) and determines the secret sharing threshold t.
5: S and U publish their public keys.
6: Step 2 - Mask Key Sharing:
7: u ∈ U computes the shares of its private mask key 〈skpri,u〉 by {(u, ζu,v)|v ∈ U} ← SS.Share(〈skpri,u〉, t, n).
8: For v ∈ U , u sends cu,v ←Enc(〈eku,v〉, u||v||ζu,v), where 〈eku,v〉 ←Key.Agr(〈ekpri,u〉, 〈ekpub,v〉).
9: v ∈ U decrypts ζu,v ←Dec(〈eku,v〉, cu,v), and stores (u, ζu,v).

10: Step 3 - Split Finding:
11: S randomly selects a feature sub-sample Q′ from the full feature set Q.
12: S invokes SecFind(Q′,U) to determine the current optimal split.
13: Repeat Step 3 until reaching the termination condition.

Protocol 3 Secure Split Finding (SecFind)
Input: The sub-sampled feature set Q′; the user set U ; u ∈ U

holds a set of shares about other user’s private mask keys
{ζv,u|v ∈ U/u}

1: u ∈ U computes hu ←
∑|Du|
i=1 hi and wu ←

∑|Du|
i=1 wi.

2: S invokes H ←SecAgg(S,U , {hu|u ∈ U}, {ζv,u|u ∈
U , v ∈ U/u}) and W ←SecAgg(S,U , {wu|u ∈ U},
{ζv,u|u ∈ U , v ∈ U/u}).

3: for 1 ≤ q ≤ δ do
4: S enumerates every possible candidate split Aq =
{a1, a2, ..., am} for feature αq ∈ Q′ and publishes them
to U . For each ar ∈ Aq , take the following steps.

5: Based on the candidate splits, u ∈ U computes hu,L ←∑|DL|
i=1 hi and wu,L ←

∑|DL|
i=1 wi.

6: S invokes HL ←SecAgg(S,U , {hu,L|u ∈ U},
{ζv,u|u ∈ U , v ∈ U/u}) and WL ←SecAgg(S,U ,
{wu,L|u ∈ U}, {ζv,u|u ∈ U , v ∈ U/u}).

7: S computes HR ← H −HL and WR ←W −WL.
8: score← max(score,

W 2
L

HL+λ +
W 2

R

HR+λ −
W 2

H+λ ).
9: end for

10: return The optimal split with maximum score.

Case 1: A user u0 drops out at the first or second step of
SecBoost. In such a case, the user becomes illegal. S refuses
u0 to be involved in the current round of training and replaces
the user by another active user if possible.

Case 2: A user u0 drops out during the secure aggregation
process of split finding. S recovers the private mask key
of u0 and removes u0 from U , that is, the active user
list becomes U ′ ⊆ U and u0 ∈ (U \ U ′). To recover
the private mask key of u0, S collects the shares of its
private mask key from at least t users, i.e., {ζu0,v|v ∈ U ′}
and |U ′| > t. Then, S recovers the private mask key
of u0 through 〈skpri,u0〉 ←SS.Recon({ζu0,v|v ∈ U ′}, t).

Using 〈skpri,u0
〉, S computes the shared mask keys that

u0 uses to mask the gradients, {〈sku0,v〉|v ∈ U}, where
〈sku0,v〉 ←KEY.Agr(〈skpri,u0

〉, 〈skpub,v〉). Finally, S adds
the shared mask keys to the aggregated result, shown in line 8,
Protocol 1. In this way, S can still get the correct aggregation
result of remaining active users’ gradients, whose correctness
has been discussed in Section IV.

VI. SECURITY ANALYSIS

In this section, we discuss the security of FEDXGB for
secure aggregation and XGBoost training.

A. Security of SecAgg

For SecAgg, we first present how it achieves our security
goals, and then, give a more formal security proof in the next
sub-section.

SecAgg achieves forced aggregation because from the anal-
ysis of correctness, ignoring any user’s data makes S unable
to get a meaningful result. Then, consider a single user’s
masked value [[xu]] derived by Eq. 7. For an eavesdropper
or a malicious user, [[xu]] is a ciphertext encrypted with the
server’s public key, which is semantically secure based on the
security of Bresson’s cryptosystem [9]. If a malicious central
server is included, there are two conditions required to be
discussed: a) when the user does not drop out, the adversary
can decrypt [[xu]] but cannot obtain xu that is masked by Υu.
b) when the user drops out, the adversary can access both
Υu and 〈skpri,S〉. However, since gru is unknown, [[xu]] is
still undecipherable. Further, assume that the central server
is a more active attacker (out of the scope of our security
model). In such a case, the central server can cheat the user
to upload gru by sending a forged active user list. We can
defend the attack by letting the user sign the active user list
U ′ and exchanging it with other users. Thus, by checking the
consistency of U ′, the user can defend the active attack.
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B. Security of FEDXGB
The security of FEDXGB for XGBoost training is deter-

mined by three protocols, SecBoost, SecFind and SecAgg. To
prove the protocols’ security, we adopt the standard formal
definition of security Definition 2 [16].
Definition 2. We say that a protocol π is secure if there exists
a probabilistic polynomial-time (PPT) simulator ξ that can
generate a view for the adversary A in the real world and the
view is computationally indistinguishable from its real view.

Moreover, our security still needs the following lemma.
Lemma 1 [17]. A protocol is perfectly simulatable if all its
sub-protocols are perfectly simulatable.

Interested readers can refer to [17] for the detailed proof of
Lemma 1. According to Lemma 1 and Definition 2, to prove
the security of FEDXGB, we just have to prove that all of its
protocols are simulatable for a PPT simulator. Since SecAgg
is a sub-protocol that is frequently invoked by SecFind, we
merge the proof of SecAgg into SecFind. The security proofs
of SecFind and SecBoost are given below.
Theorem 1. For SecFind, there exists a PPT simulator ξ
that can simulate an ideal view which is computationally
indistinguishable from the real view of A.
Proof. Denote the views of the user u ∈ U as
Vu = {viewu1

, ..., viewun
}. From SecFind, we can de-

rive that viewui = {hui , wui , rui , g
rui , [[hui ]], [[wui ]], 〈sku,v〉,

〈skpri,ui
〉, 〈skpub,v〉, 〈skpub,S〉} and viewS = {H,W,Hj ,

Wj , A,HL, HR,WL,WR, score,Y,R,K, 〈skpri,S〉}, where
u ∈ U , v ∈ U , R = {[[hui

]], [[wui
]]|u ∈ U ′}, R = {grui |u ∈

U ′}, K = {〈skpri,ui
〉|u ∈ U/U ′}. [[hui

]], [[wui
]], Y , R and K

are the variables used in SecAgg.
We prove the security of SecFind according to the universal

composition theorem (UC) [18]. Assume that there is an ideal
functionality F that can be called by a simulator ξ. F has
the ability to ideally generate uniformly random values and
operate the cryptographic functions of FEDXGB. We say that
with F , there exists such a simulator that can simulate both the
honest entity and the corrupted (curious-but-honest) entity in
SecFind as follows. For the corrupted entity, ξ can access all
its local data, including the private keys, training samples and
etc., based on our security model. Therefore, ξ can simply
use the corrupted data to simulate the corrupted entity. For
the honest entity, the simulation is a little complicated. To
simulate an honest user, ξ first asks F to generates random
values as dummy function inputs hui , wui , rui and 〈skpri,S〉.
Then, use the dummy inputs to derive other variables to ask
F to complete the protocol steps. Similarly, ξ can use the
same way to simulate an honest server. It is observed that
the elements in V iewui

or V iewS are either the ciphertext
in the Bresson’s cryptosystem or random values (hui and
wui are private, which can be seen as random values). Since
the Bresson’s cryptosystem is semantically secure [9], the
dummy function outputs are computationally indistinguishable
from the real ones. Consequently, there exists a simulator
that can generate the simulated views Simui

and SimS that
are indistinguishable from V iewui and V iewS . Based on
Definition 2, Theorem 1 holds and SecFind is secure. �

Theorem 2. For SecBoost, there exists a PPT simulator ξ
that can simulate an ideal view which is computationally
indistinguishable from the real view of A.
Proof. Denote the views of the user and the central
server for SecBoost as Vu = {viewu1 , ..., viewun}
and VS . The view of the user is viewui =
{〈skpri,ui

〉, 〈skpub,ui
〉, 〈ekpri,ui

〉, 〈ekpub,ui
〉, cv,u, {ζv,u|v ∈

U ′}, view′ui
}. For the central server, we have

viewS = {〈skpub,S〉, 〈skpri,S〉view′S}, view′ui
and view′S are

the views generated by SecFind. Except for the encryption
keys randomly selected from Z∗N , the remaining elements of
viewui

and viewS are random shares or ciphertexts encrypted
with the shared key encryption algorithm. According to
Shamir’s secret sharing theory [19], the shares can be
regarded as random values uniformly selected from Z∗p. To
simulate the ciphertexts and random shares, a simulator ξ can
use the ideal functionality F defined in the proof of SecFind
to generate random values as dumpy cryptographic function’s
inputs. Since the shared key encryption algorithm is assumed
to be indistinguishable under a chosen plaintext attack, the
corresponding dumpy outputs cannot be computationally
distinguished. Moreover, view′ui

and view′S have been proved
to be simulatable in the proof of Theorem 2. Thus, there
exists a simulator ξ that can simulate a corrupted entity
or an honest entity of SecBoost and the simulated view is
computationally indistinguishable from the real view. Based
on Definition 2, Theorem 2 holds and SecBoost is secure. �

According to Lemma 1 and the above proofs, it is concluded
that FEDXGB is a simulatable system. Based on the formal
definition of security given in Definition 2, FEDXGB is secure.

VII. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate
the effectiveness and efficiency of FEDXGB.

A. Experiment Configuration

To evaluate FEDXGB, we ran single-threaded simulations
on a Windows desktop with an Intel Core i7-8565U CPU
@1.8Ghz and 16G RAM. The programs are implemented
in Python and C++. Two standard datasets are used in
the experiments, ADULT1 and MNIST2, both of which are
commonly used to evaluate the performance of federated
learning schemes [4], [11], [20]. The Bresson’s cryptosystem
is conducted with a key size of 512 bits.

The shared-key encryption is operated by 128-bit AES-
GCM [21]. Given each dataset, the instances are averagely
and randomly assigned to each user with no overlap. User
dropout is assumed to occur every 10 rounds of training in
our experiment. That is, 0%, 10%, 20%, 30% of users are
randomly selected to be disconnected at each 10th round of
training.

1ADULT: https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets
2MNIST: http://yann.lecun.com/exdb/mnist/
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B. Evaluation of FEDXGB

To assess the performance of FEDXGB, we first evaluate its
effectiveness with ADULT and MNIST. Then, we experiment
with its runtime to find an optimal split to test its efficiency.
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(a) Accuracy with different user
dropout rates for ADULT.
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(b) Loss with different user dropout
rates for ADULT.
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(c) Accuracy with different user
dropout rates for MNIST.
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(d) Loss with different user dropout
rates for MNIST.

Fig. 4. Accuracy and loss for each round of training with MINST and ADULT.
Different lines show different dropout rates.

The effectiveness of FEDXGB is assessed with two indica-
tors that are commonly used to evaluate a machine learning
model, namely classification accuracy and loss. Fig. 4 presents
the accuracy and loss for each round of training in FEDXGB.
More specific, Fig. 4(a) and Fig. 4(b) describe the accuracy
and loss of ADULT, and Fig. 4(c) and Fig. 4(d) show the result
of MNIST. For ADULT, the accuracy peaks after around 100
rounds. For MINST, the convergence speed is faster, peaking
at around the 20th rounds. Compared with the non-federated
XGBoost, FEDXGB only introduces the accuracy loss with
less than 1%. Consider the user dropout rate increased from
0% to 30%, FEDXGB is robust against the user changes.
The performance decrease is mainly due to the loss of data
caused by the user dropout. In Table II, we list the runtime and
communication cost of different stages to execute SecBoost to
find an optimal split in FEDXGB without user dropout. The
processed data in the experiment is ADULT. The user number
is set to 500. The system setup cost is ignored. The result
indicates that the main overhead in FEDXGB is caused by
the split finding step, because numerous secure aggregation
protocols are invoked. Therefore, in the next section, we
comprehensively analyze the efficiency of SecAgg.

C. Efficiency Analysis of SecAgg

To further assess the efficiency of FEDXGB, we simulate
the runtime and communication costs of SecAgg under differ-
ent numbers of users, input sizes and dropout rates.

TABLE II
SECBOOST RUNTIME IN DIFFERENT STAGES WITHOUT USER DROPOUT

Stage
RunTime (s) Communication (MB)

U S U S
Mask Key Sharing 0.89 N.A. 0.06 N.A.

Split Finding 1.22 249.97 26.86 46.25

Total Cost 2.11 249.97 0.05 13.57

Theoretical Analysis. Suppose the transmitted data is a vector
with m entries. The length of N is N = blog2Nc. The
user number is n. For communication, each user sends one
random seed, m ciphertexts and O(n) shares for private mask
key and dropout users, whose complexity is O(m + n). The
server receives the user’s ciphertexts, the random seeds and
key shares of dropout users, whose overhead is O(nm+ n2).
For computation, suppose the modular exponentiation costs
1.5N multiplications [22]. Each user computes 2m times mod-
ular exponentiation and O(n2) multiplications for sharing the
private mask key, which takes O(mN + n2) time. The server
conducts mn times modular exponentiation to decryption and
O(n2) multiplications for data recovering of the dropout user,
which takes O(mnN + n2) time.
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user number increases

Fig. 5. Efficiency evaluation of the central server with fixed input size 500.
Different lines show different dropout rates.
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Fig. 6. Efficiency evaluation of the central server with fixed user number
500. Different lines show different dropout rates.

Impact of Users. The runtime and communication overhead
of the central server and the user with different user numbers
are plotted in Fig. 5, Fig. 7, respectively. The input size is
fixed to 500. The steps of setup and the shared mask keys
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generation can be previously completed, therefore, they are not
included in the evaluations. We omit the plot of the runtime
and communication overhead of the user with different dropout
rates, as the user just has to send the private mask key shares
of the dropout users, which has little impact on the metrics.

As shown in Fig. 5(a) and Fig. 7(a), it is shown that the
runtime for the central server and the user grows with the
increasing user number. For the central server, the runtime
is mostly spent on the modular exponentiation to decrypt the
masked aggregation result. For the user, most computational
costs are also focused on the modular exponentiation but for
masking the gradient. The user dropout rate has a significant
influence on the runtime of the central server because the
operation for recovering the shared mask key of the dropout
users involves the costly modular exponentiation. Fig. 5(b)
and Fig. 7(b) illustrate the communication overhead for the
user and the central server. The communication overhead for
both the user and the central server also linearly increases
as the user number increases. As the dropout rate grows,
the communication overhead of the central server is barely
influenced because only a little overhead increment is caused
by collecting the private mask key shares for the dropout user.
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Fig. 7. Efficiency evaluation of the user without user dropout.

Impact of Input Size. The runtime and communication
overhead of the user and the central server with different input
sizes are plotted in Fig. 6 and Fig. 7, respectively. In XGBoost,
the input size is equal to the multiplication of the sub-sampled
feature number and the enumerated candidate split number. In
the experiments, the number of users is fixed to 500. When
the input size increases from 100 to 1000, the runtime cost
for each user increases because of the masking operation,
illustrated in Fig. 7(a). The growth of the central server’s
runtime is mainly caused by the more masked aggregation
result required to be decrypted. As a larger scale of inputs is
involved, the communication overhead of the central server is
expanded, shown in Fig. 6(b). For the user, Fig. 7(b) shows
that the communication overhead is linearly influenced by the
input size. Compared with the number of users, the input size
has a less obvious influence on the runtime and communication
overhead, which is consistent to our theoretical analysis result
given in Section IV.

Comparison. Besides IBMHOM, we compare the effi-
ciency of FEDXGB with the functional Paillier encryption
based secure aggregation scheme (abbreviated as FPE) [23].

TABLE III
EFFICIENCY COMPARISON WITH FIXED USER NUMBER 500, INPUT SIZE

500 AND NO USER DROPOUT

FEDXGB IBMHOM [8] FPE [23]

Rt.
Server 557.97 596.03 952.07

User 3.03 4.67 2.55

Comm.
Server 30.57 67.13 30.58

User 0.12 0.18 0.08

Rt. → Runtime (s); Comm.→ Communication overhead (MB)

We implement all the three methods in our desktop, re-
ferring to the python library for Paillier’s cryptosystem3.
Moreover, for fairness, we cancel the noise addition operation
of IBMHOM. Considering the secure aggregation, the can-
cellation does not influence the security of IBMHOM. The
threshold of IBMHOM is set to 0.6×n. Table III summarizes
the comparison result. It is observed that compared with
IBMHOM, FEDXGB outperforms it in all indicators. Note that
during the experiments, we find that the server in IBMHOM
requires very little time to decrypt the aggregation result when
the user number is small, e.g., the user number n is less
than 100. This is because, for the HE algorithm used in
IBMHOM, the complexity of the exponent length involved in
the decryption is O(n log n), not fixed O(logN) in FEDXGB.
When the user scale is small, IBMHOM is faster. However, in
real-world applications, such a small scale of users is almost
impossible. For FPE, although its communication overhead
and user runtime are less than FEDXGB, its server has to
conduct double times modular exponentiation to unmask the
encrypted aggregation result, which greatly increases its run-
time. Therefore, when applied to federated learning, FEDXGB
is still more practical than FPE.

VIII. RELATED WORK

Google’s federated learning is a kind of privacy-preserving
machine learning framework originally proposed for the mo-
bile crowdsensing scenario [4]. Due to the high performance
on security and efficiency, federated learning attracts a lot of
attention as soon as being proposed. Up to now, most of the
existing federated learning schemes are designed towards the
stochastic gradient descent (SGD) based neural networks. For
example, Wang et al. [24] provided an edge computing based
federated learning scheme for the convolutional neural network
(CNN) in the Internet of Things (IoT) environment. Mcmahan
et al. [20] applied federated learning to the long-short term
memory network (LSTM) based language model and gain
better performance than the traditional centralized machine
learning method. Smith et al. [25] proposed a general federated
learning framework for the neural network to simultaneously
process multi-tasks, which solves the stragglers and fault
tolerance problems in the real-world network and significantly
improved the efficiency of the original federated learning

3https://github.com/data61/python-paillier
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framework. Nonetheless, there is none of the existing work that
gives a systematical federated learning scheme for XGBoost,
a special tree structure machine learning model.

To avoid the adversary to analyze the hidden information
about private user data from the uploaded gradient values [14],
almost all of the current federated learning schemes intro-
duce the secure aggregation mechanism. The existing secure
aggregation schemes for federated learning mainly depend
on three types of cryptographic tools. The first and most
popular tool is differential privacy (DP). Mcmahan et al. [20]
is one of the outstanding works using DP to protect the
gradient’s security. Nonetheless, the introduction of noises for
DP is pointed to be able to lead non-erasable accuracy loss
to the trained model [26]. The second tool is secret sharing
(SS), especially the Shamir’s secret sharing scheme. In [11],
Bonawitz proposed a novel SS based secure aggregation
scheme against user dropout. However, since having to operate
data reconstruction for all users, no matter the user is dropout
or not, the communication cost of [11] explodes with the
increasing of the user number. The last tool is homomorphic
encryption (HE). For HE, the most commonly used HE method
is the Pailliar cryptosystem [27] and its variants [9], [28].
Although many HE schemes are proposed [6], [8], [29], none
of them solve the forced aggregation problem while preserving
the robustness against user dropout.

IX. CONCLUSION

In this paper, we proposed a privacy-preserving federated
extreme gradient boosting scheme (FEDXGB) for mobile
crowdsensing. In FEDXGB, a new hybrid secure aggregation
scheme is first presented by combining homomorphic encryp-
tion and secret sharing, which can force the central server to
conduct the aggregation operation, and is robust against user
dropout. Then, using the newly designed secure aggregation
scheme, we designed a suite of secure protocols to implement
the classification and regression tree building of XGBoost.
Comprehensive experiments were conducted to evaluate the
effectiveness and efficiency of FEDXGB. Experiment results
showed that FEDXGB made it possible to train an XGBoost
with negligible performance loss, and attained computation
and communication cost reduction for secure aggregation.
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