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Abstract—Cloud-based deep learning (DL) solutions have been
widely used in applications ranging from image recognition
to speech recognition. Meanwhile, as commercial software and
services, such solutions have raised the need for intellectual
property rights protection of the underlying DL models. Wa-
termarking is the mainstream of existing solutions to address
this concern, by primarily embedding pre-defined secrets in
a model’s training process. However, existing efforts almost
exclusively focus on detecting whether a target model is pirated,
without considering traitor tracing. In this paper, we present
SecureMark DL, which enables a model owner to embed a
unique fingerprint for every customer within parameters of a DL
model, extract and verify the fingerprint from a pirated model,
and hence trace the rogue customer who illegally distributed
his model for profits. We demonstrate that SecureMark DL is
robust against various attacks including fingerprints collusion
and network transformation (e.g., model compression and model
fine-tuning). Extensive experiments conducted on MNIST and
CIFAR10 datasets, as well as various types of deep neural
network show the superiority of SecureMark DL in terms of
training accuracy and robustness against various types of attacks.

Index Terms—Ownership Protection; Traitor Tracing; Water-
marking; Deep Learning; Cloud Computing.

I. INTRODUCTION

Deep neural networks (DNNs) such as the convolutional

neural network (CNN), Residual Network, and recurrent neural

network (RNN) have found numerous applications [1], [2].

To facilitate deployment of DNNs, many tech giants, such

as Google, Amazon, and Microsoft, have offered Machine

Learning as a Service (MLaaS). As a fast-growing business

service, MLaaS provides professional, tailored, and satisfying

deep learning models with a negligible price compared with

training target models by the customers themselves.

However, MLaaS raises broad concerns of service providers

about protection of their models’ intellectual property rights.

In fact, for a service provider, building a deep learning model

typically incurs substantial costs to process large amount of

training samples. As a consequence, these well-constructed

models are considered commercial software with intellectual

property rights, and should be properly protected to maintain

the owner’s competitive advantage in the market. On the

other hand, a malicious customer may intentionally use the

purchased model with some despicable purposes, for example,

sell it for profits in the black market. Thus, it is crucial to

have ownership protection mechanisms built in deep learning

models before releasing them to customers.

Watermarking techniques have been applied in DNNs to

provide verification channels for the models’ intellectual prop-

erty rights. For example, Adi et al. [3] design a robust
watermarking algorithm by exploiting the potential vulnera-

bilities in DNNs, and utilize them as backdoors to embed

watermarks. Rouhani et al. [4] present DeepSigns, an end-to-
end watermark embedding framework to embed secrets in the

probability density function of target layers. Namba et al. [5]
also propose a robust watermarking of DNNs with exponential

weighting, which exponentially increases the magnitude of the

weights that affects the prediction result significantly during

the watermark embedding process. By doing so, the resulting

model becomes tolerant of both model modification and query

modification without sacrificing prediction performance. Other

works, like [6], [7], [8], [9], [10], achieve similar purposes

with diverse techniques, such as adversarial examples [9], [7],

regularization parameters [6], and backdoors based techniques

[8], [10].

In general, the existing works exclusively focus on detect-

ing whether a target model infringes copyright, and rarely

consider tracking of traitors, i.e., rogue authorized customers

who violate copyright protection policies by modifying and

distributing pirate models for the money. In reality, a service

provider may sell well-trained models to a large number of

customers. Without embedding traitor tracing mechanisms, it

will be extremely difficult for subsequent forensics when a

dispute arises. However, designing a deep learning framework

which enables end-to-end proof of ownership and unbiased

traitor tracing is not a trivial task. First, watermarks should

be robust against various watermarking removal attacks. Ad-

versaries may attempt to invalidate the embedded watermark

by modifying the model without significantly affecting its

performance. Such network transformation attacks (e.g., model

compression and model fine-tuning) have been demonstrated

to be effective in breaking the integrity of watermarks [11],

[12], [13]. Moreover, in contrast to embedding a uniform

watermark for copyright protection, traitor tracing requires
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the service provider to embed a unique watermark (i.e.,

fingerprint) in DNNs for every customer. This distinction also

spawns a new type of attacks called fingerprint collusion [14],

in which multiple customers who have purchased the same

model with different fingerprints may collude to generate an

unmarked model. Although the fingerprint collusion attack

is common in the multimedia field [15], [8], it poses new

technical challenges in DNNs since we need to ensure the

high accuracy of the model in the strategy to defend against

such attacks.

In this paper, we present SecureMark DL, a deep learning

framework with end-to-end ownership protection. To provide

proof of ownership as well as traitor tracing, we present an

anti-collusion algorithm that embeds unique fingerprints for

every customer within parameters (i.e., weights) of DNNs. The

following summarizes the contributions of the paper.

• We embed a unique fingerprint for each customer into the
target parameters of DNNs, by exploiting the high capac-

ity of parameters in DNNs. In this way, SecureMark DL

provides a channel for ownership verification or traitor

tracing while with only a slight impact on the prediction

performance.

• We design a two-tier fingerprint scheme, which takes
customers social networking attributes into consideration

in the process of fingerprint generation. This feature

facilitates a service provider to quickly find suspicious

customer’s groups and then trace the rogue customer.

• We conduct extensive experiments on real-world datasets
to demonstrate that SecureMark DL is robust against var-

ious attacks including fingerprint collusion and network

transformation (e.g., model compression and model fine-

tuning).

The remainder of this paper is organized as follows. In

Section II, we describe the background and problem statement.

Then we present the technical details of SecureMark DL in

Section III. Performance evaluation is discussed in Section IV.

Finally, we conclude the paper in Section V.

II. PROBLEM DEFINITION

In this section, we first introduce the basic concept of

deep learning. Then we describe the problem statement in our

scenario, which consists of deployed model, attack model, and

desired goals.

A. The basics of Deep Learning

In general, a DNN usually consists of one input layer, one

or more hidden layers, and one output layer. Fig. 1 shows a

simple fully connected neural network (FN) containing one

input layer, one hidden layer, and one output layer. The fully
connected means that any two neurons between adjacent layers
are connected with parameters (called set Θ) to each other.
Here we use the FN as an example to review how a DNN

is trained. Specifically, given an input x = {x1, x2, x3}, the
output of the DNN can be denoted as fΘ(x) = ŷ = {ŷ1, ŷ2},
where fΘ : X → Y is the deep learning model parameterized

Fig. 1: An example of a fully connected neural network

by Θ. For classification problems, X represents the high-

dimensional vector space, and Y is the space of the classes.

Therefore, the goal of training a DNN is to find the optimal

parameters that accurately reflect the relationship between x
and y, and ultimately make the DNN output ŷ infinitely close
to the real label y. To achieve this, assuming that the training
set is D = {(xi,yi); i = 1, 2, · · · , V }, we first exploit a loss
function l(y, fΘ(x)) to measure the difference between the
real label y and predicted labels, typically, l(y, fΘ(x)) =
||y− fΘ(x)||2, where || · ||2 is the l2 norm of a vector. Then,
training a DNN is to minimize a optimization function as

follows.

min
Θ

1

|D|
∑

(x,y)∈D
l(y, fΘ(x)) (1)

The above function is usually optimized by the stochastic
gradient descent (SGD)[16] algorithm as below.

Θj+1 ← Θj − η∇l(D,Θj) (2)

where Θj represents the parameters after the j-th iteration. η
represents the learning rate, and ∇l(D,Θj) denotes the partial
derivative of the parameter Θj on the set D.
B. Deployed Model

As shown in Fig. 2, SecureMark DL consists of a cloud
server (also named model’s owner or service provider) and
M customers. Let Θ denote a DNN model that the cloud

server wants to tailor for customer i, i ∈ {1, 2, · · ·M}.
The server first initializes Θ and a unique fingerprint Fi

for customer i. Then it trains the network Θ based on the

criteria shown in Section II-A(a slightly different explained

in the following Sections), and embeds the fingerprint Fi into

the target parameters. Finally, the cloud server releases the

model Θ to customer i once the training reaches the expected
convergence conditions. In the event that a suspicious pirated

model is spotted, the server can extract a fingerprint from the

model, and verify the model’s ownership or trace the traitor.

C. Attack Model

Consistent with most existing works [17], [4], we assume

that customers are malicious in our system. In fact, when the
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Fig. 2: Deployed Model

server publishes a trained model to an authorized customer,

he may abuse the model and even collude with multiple

customers in the attempt to erase the fingerprint embedded

in the model. Specifically, we consider the following possible

attacks launched by customers.

(1) Model Fine-tuning. It is usually cost-effective to fine-tune
a pre-trained model so that it can be explored for similar

applications, while learning a new model from scratch

is often very time-consuming. Model fine-tuning can be

performed by honest customers for model transformations,

or adversaries for purposeful attacks. The parameters of

the model usually change during this process.

(2) Model Compression. Model compression is also a standard
optimization technique designed to reduce computational

overhead by cropping a trained model, while not signif-

icantly reducing the accuracy of the compressed model.

However, malicious customers may misuse optimization

to remove fingerprints embedded in the parameters, e.g.,

to prune hidden layers with fingerprints in the model.

(3) Collusion Attack. Since traitor tracing requires the ser-
vice provider to embed a unique fingerprint in a DNN

model for each customer, malicious customers who have

purchased the same model with different fingerprints may

collude, such as taking the average of the parameters to

generate an unmarked model.

D. Designed Goals

Based on the threat model, we formulate the design goals

of SecureMark DL as follows.

(1) Utility. Intuitively, we need to adjust the training criteria
of a DNN model to cater for embedding of fingerprints,

which inevitably has a negative impact on model accuracy.

Hence, SecureMark DL should guarantee that the trained

model has a negligible reduction to accuracy.

(2) Security. First, for accurate tracking, the fingerprint em-
bedded in each released model should be unique and easily

retrieved by the server, which enables the cloud server

to quickly track inappropriate use of published models

conducted by any specific customer. Second, the proposed

fingerprint embedding method should try to avoid false

negatives, which means that SecureMark DL can detect

a traitor with a high probability. Third, the proposed

fingerprint embedding method should try to avoid false

positives, which means that the probability of accusing an

innocent customer is very low.

(3) Scalability. To cope with the growing Internet user popu-
lation, SecureMark DL should be scalable in the number

of customers it can support. This requires high efficiency

of traitor tracking even if a model is released to a large

number of customers. Also, to prevent fingerprints from

being easily removed, the proposed fingerprint-embedding

method should be able to embed a large amount of data

in the target’s DNN with slight loss of model accuracy.

(4) Robustness. SecureMark DL should be robust against var-
ious attacks including fingerprints collusion and network

transformation (i.e., model compression and model fine-

tuning).

III. PROPOSED SCHEME

In this section, we describe the technical detail of Se-

cureMark DL. At a high-level view, we will describe how

to generate a unique fingerprint for each customer, and the

principle of embedding the fingerprint in the parameters of

target DNN’s layers. It is worth noting that each customer’s

fingerprint Fi consists of two parts, namely, Fi=(community
relationship code|| customer identity code). The former is
mainly to improve the speed of finding suspicious pirates

given an unknown model, while the latter is to correctly track

traitors. Finally, we present the details of fingerprint extraction

and verification.

A. Fingerprint Generating and Embedding

In social networks, Apicella et al. [18] have demonstrated
that people in the same or similar communities are more likely

to be connected to do the same thing, and the probability

is very low for people in different communities. Based on

this, we design a two-tier fingerprint structure, which means

that each customer’s fingerprint Fi consists of two parts,

namely, Fi=(pi|| ui). The former is a community relationship
code represented the social network structure of customer

i. Customers in the same or neighboring communities will
be assigned similar community codes, and community codes

between unrelated customers will be extremely different. This

property will facilitate the server to quickly find suspicious

customer groups. The latter is a customer identity code used

to uniquely identify the customer i. We exploit the balanced in-
complete block design (BIBD) [19] to build the anti-collusion

identity code (ACC) for each customer, which guarantees that

the composite code of any K or less user’s identity codes is

unique. This property allows the server to identify a group of

K or fewer colluders accurately.
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Fig. 3: Transforming the relationship among customers to

Hamming space

1) Generating Community Relationship Code: The rela-

tionship among customers in a social network is usually high-

dimensional, as the intimacy between them is determined by

multiple factors such as geographic distance, social relation-

ships, and blood relatives. If we directly use high-dimensional-

vectors to represent the relationships between customers and

embed them (as community codes) into the parameters of

the DNN, excessive parameters will be required to embed

fingerprint information, which inevitably reduces the accuracy

of the original model. Moreover, it is also inefficient to search

for similar community codes in high dimensional vectors.

To address this problem, as shown in Fig. 3, we resort to

the primitive Neighborhood Preserving Hashing (NPH) [20].

NPH can map high-dimensional objects to low-dimensional

binary vectors lying on a Hamming space. Additionally, NPH

preserves the neighborhood structure of objects. Since the

converted community codes are binary, the Hamming distance

between one code and any other code can be efficiently cal-

culated by XOR and bit-count operation. Specifically, we first

build an adjacency matrix to represent the social relationship

between customers as below.

Aij =

{
1 : if Oi ∈ C(Oj) or Oj ∈ C(Oi)

0 : otherwise
(3)

where i, j = 1, 2, · · ·M represents the number of customers.

C(Oj) is the set of customers who contact with j-th cus-
tomer Oj . Aij can also be another positive value describing

the intimacy between customers. In the following, we first

introduce the underlying technologies of NPH, i.e., Non-

negative Matrix Factorization (NMF) [21] and Locally Linear

Embedding(LLE) [22], and then use them to generate the

community relationship code for each customer based on the

adjacency matrix.
NMF is used to approximately decompose a high-

dimensional matrix into the product of two low-
dimensional matrices. Specifically, given a target matrix
B = [b1, b2, · · · bM ] ∈ RE×M , each column of B
is a vector, the goal of NMF is to find two non-
negative matrices G = [g1, g2, · · · , gT ] ∈ RE×T and
P = [p1, p2, · · · , pM ] ∈ RT×M whose product is a good
approximation of B. The specific optimization algorithm is
as follows:

min
G,P
||B −GP ||2F

s.t. G ≥ 0, P ≥ 0
(4)

where || · ||F is the Frobenius norm of a matrix. In social

networks, bi can be seen as the properties of customer i, such
as gender, age, and hobbies. G is a dictionary matrix, and pi
is a low-dimensional vector used to represent bi.
Although NMF preserves semantic information when con-

verting each bi to pi, it may lose the neighbor structure
between different bi. This means that customers from the same
community may be far apart. We exploit the technology of
Locally Linear Embedding(LLE) [22] to address this problem.
LLE provides a way for an object to be reconstructed from
its neighbors in a low-dimensional subspace, if it can be
reconstructed by neighbors in the original high-dimensional
space. Given a bi, LLE first minimizes the reconstruction error
as below.

min
ω

i=M∑
i=1

|bi −
∑

bj∈N (bi)

ωijbj |22

s.t.
∑

bj∈N (bi)

ωij = 1

(5)

where N (bi) denotes the k-nearest neighbors of bi. Then, as-
suming that pi is the representation of bi in a low-dimensional
space, in order to preserve the neighbor relationship of bi, LLE
minimizes the following function in the phase of selecting pi.

min
P

i=M∑
i=1

|pi −
∑
i

ωijpj |22

s.t. P ≥ 0

(6)

This ensures that if bi and bj are from the same or simi-

lar communities, their corresponding community relationship

codes are also very close.
We now introduce the technical details of NPH to find the

community relationship code for each customer. Concretely,
we first rewrite Eqn.(4) as below.

min
G,P

i=M∑
i=1

|bi −Gpi|2

s.t. G ≥ 0, P ≥ 0

(7)

Then, by introducing the idea of LLE, Eqn.(7) is modified
to

min
G,P

i=M∑
i=1

|bi −
∑
j

ωijGpi|2

s.t. G ≥ 0, P ≥ 0

(8)

where j satisfies the condition of bj ∈ N (bi). We further
reformulate the above formula as follow.

min
G,P
||B −GPWT ||2F

s.t. G ≥ 0, P ≥ 0
(9)

By solving Eqn.(9), we can get the binary vector pi to
represent bi and preserve the neighbor relationship of the
original data.

2) Solving Algorithm: It is known from the optimization

theory that Eqn.(9) is not a convex function under the domain

consisting of G and P together. However, Eqn.(9) is alterna-

tively convex on G and P , thereby many numerical optimiza-
tion methods such as gradient descent and projected gradient

[23] can be used to seek local minima. In this paper, we
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adopt projected gradient to solve the above objective function

because of its fast convergence characteristics. Specifically, let

O = ||B −GPWT ||2F , we have

O = tr[(B −GPWT )(B −GPWT )T ]

= tr(BBT )− 2tr(BWPTGT ) + tr(GPWTWPT )
(10)

where tr(·) is the trace of a matrix. Based on the natures
of tr(AB) = tr(BA) and tr(A) = tr(AT ), we can compute
the partial derivative of the objective function for G and P as
below.

∂O
∂G

= 2GPWTWPT − 2BWPT

∂O
∂P

= 2GTGPWTW − 2GTBW

(11)

Then, we consider the objective function as two separate sub-
problems, and update one of the variables while fixing the
value of the other one. Specifically, given G1

ij ≥ 0, P 1
ij ≥ 0,

for any i, j, the two sub-problems are shown as follows.

f̃(P k+1) = argmin
P≥0

f(Gk, P k) (12)

f̃(Gk+1) = argmin
G≥0

f(Gk, P k+1) (13)

Here we take Eqn.(9) as an example to show how to solve
the above problems. We first rewrite Eqn.(9) as

min
P

f̃(P ) = ||B −GPWT ||2F
s.t. Pi,j ≥ 0, ∀i, j

(14)

The update of current solution pki to pk+1
i with projected

gradient is shown as follows.

pk+1
i = P [pki − αk∇f̃(pki )] (15)

where pi, i ∈ [1,M ] is a column of P , and we have

Pij =

{
0 : pij ≤ 0

pij : otherwise
(16)

In addition, for any α, pk+1
i = P [pki − αk∇f̃(pki )] should

satisfy the restriction

f̃(pk+1
i )− f̃(pki ) = σ∇f̃(pki )T (pk+1

i − pki ) (17)

where σ is a small positive constant. Based on the Taylor
approximation of f̃ at pki up to second order. i.e.,

f̃(pk+1
i ) ≈ f̃(pki ) +∇f̃(pki )Tυ +

1

2
υT∇2f̃(pki )υ (18)

where υ = (pki )
T (pk+1

i − pki ), and ∇2f̃(·) is the Hessian
matrix of f̃(P ). Eqn.(17) can be modified as

(1− σ)∇f̃(pki )Tυ +
1

2
υT∇2f̃(pki )υ ≤ 0 (19)

Once the optimal α is obtained, we use Eqn.(15) to iteratively
update P until a stationary P is obtained. Then, we can find
the optimal G with a similar method as follows.

min
G

f̃(G) = ||BT −WPTGT ||2F
s.t. Gi,j ≥ 0, ∀i, j

(20)

3) Kernel Trick: The above problem is easily solved when
given B. However, in reality, it is difficult for the server to ob-
tain the properties of each customer (i.e., B = [b1, b2, · · · bM ]),
but the connection relationship between different customers

(i.e., the adjacency matrix A) can be relatively easily obtained.
Based on this, we introduce the kernel trick to solve this

problem.
Suppose a map here maps Euclidean space RM to Hilbert

space Z, i.e., φ : RM → Z. Let φ(B) represent the matrix over
the Hilbert space, where φ(B) = [φ(b1), φ(b2), · · · , φ(bM )].
Then, the objective function Eqn.(9) can be rewritten as below.

O = min
G,P
||φ(B)−GPWT ||2F

s.t. G ≥ 0, P ≥ 0
(21)

As described before, Eqn.(21) can be rewritten as

O = tr[(φ(B)−GPWT )(φ(B)−GPWT )T ]

= tr(Q)− 2tr(φ(B)WPTGT ) + tr(GPWTWPT )
(22)

where Q = φ(B)Tφ(B) represents the kernel matrix. Then, to
generalize NPH, we first define the dot product in the Hilbert
space as follows:

Q(bi, bj) = (φ(bi) · φ(bj)) = φ(bi)
Tφ(bj)

Considering that G can be regarded as a linear combination
of φ(b1), φ(b2), · · · , φ(bM ), hence G can be denoted as G =
φ(B)CT , where C is a coefficient matrix. We use φ(B)CT

instead of G in Eqn.(22), and we can get

O =argmin
C,P

(tr(Q)− 2tr(QCTPW ) + tr(WPTCQCTPWT ))

s.t. C ≥ 0, P ≥ 0
(23)

As described in Eqn.(23), we can observe that B is not

required to solve the above objective function. In fact, the

kernel matrix Q constructed on matrix B represents the

similarity among data. Therefore, it can be thought of as a

black box function on B to generate a similarity matrix. Since

the adjacency matrix A is also used to represent the similarity
between data, we can use the adjacency matrix instead of the

kernel function.

4) Generating Customer Identity Code: Due to the collision
of community relationship codes, each customer cannot be

uniquely represented by this type of code alone. We assign

each customer an additional unique customer identity code.

Specifically, the technology of balanced incomplete block

design (BIBD) [19] is adopted to build the anti-collusion

(ACC) identity code for each customer, which guarantees that

the composite code of any K or less user identity codes is

unique. This property allows the server to identify a group of

K or fewer colluders accurately. In brief, a (g, k, γ)-BIBD is
a pair (�,A) where � is a set consisting of g-dimensional
elements. A is the collection of k-element subsets (blocks)
which satisfies that each pair of elements of � appear together

exactly γ times in the subsets. The (g, k, γ)-BIBD has a total
of t = γ(g2− g)/(k2−k) blocks (k is the block sizes) which
can be represented by its corresponding incidence matrix Cg×t.
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Concretely, the elements in the incidence matrix have the

following connections:

cij =

{
1 : if ith value occurs in jth block

0 : otherwise
(24)

If we set γ = 1 and assign the bit complement of the columns
of incidence matrix as the code-vectors, the resulting (g, k, 1)-
BIBD code is (k − 1)-resilient and supports up to M = t
customers. Hence, given the designed incidence matrix Cg×M

and an orthogonal matrix Fg×g = (f1, f2, · · · , fg), we first
compute a coefficient matrix Eg×M with the linear mapping

eij = 2cij − 1. Then, the customer identity code uj of each

customer j, j = 1, 2, · · ·M is generated as below.

uj =

i=g∑
i=1

eijfj (25)

5) Embedding Fingerprint: We have introduced how to

generate a community relationship code pj and a customer
identify code uj for each customer j. Given a fingerprint
Fj=(pj || uj), we now present the technical details of embed-
ding Fj into the parameters of Θ. As described before, existing
works exclusively focus on ownership proof, and rarely con-

sider tracking of traitors. To combat this, we embed Fj into the

parameters of Θ using a customized regularization loss during
DNN training. The intuition behind is that there are abundant

redundancies existing in DNNs’ parameters due to its high

dimensionality. We use this redundancy and make embedded

fingerprints as an auxiliary task during the training process.

Therefore, the embedded fingerprint is integrated as an integral

part of the parameters, which ensures that adversaries cannot

remove fingerprints without dramatically compromising the

performance of the labeled model. Concretely, we first select

some hidden layers (i.e., target layers) in Θ that are suitable

for embedding fingerprints, where the parameters belonging

to the target layers are represented as θsub ∈ Θ. As a result,
we add a new term μMSE(Fj − XΘsub) into the original
objective function (refer to Eqn.(1)), and embed the Fj by

requiring the server to train the following objective function.

min
Θ

1

|D|
∑

(x,y)∈D
l(y, fΘ(x)) + μMSE(Fj −XΘsub) (26)

where MSE is the mean square error function, and μ
represents the embedding weight. X is the secret random

projection matrix generated by the server, and Θsub is the

flattened averaged parameters of θsub for embedding Fj .

As a proof-of-concept analysis, we embed the Fj into the

target layers of Θ. Specifically, we know that the parameters
θsub is 3D tensor, i.e., θsub ∈ RS×δ×η , where S is the length
of the input of Θ, δ is the kernel size and η is the number of
channels used in Θ. If the parameters in the continuous layers
are rearranged accordingly, the order of the filtering channels

will not change the output of the neural network. Hence, we

take the average of θsub over all channels and stretch the
resulting tensor into a vector Θsub ∈ Rβ , where β = S × δ.

Θsub is multiplied with a secret random matrix X ∈ R(T+g)×β

for comparing with the (T +g)-dimensional binary vector Fj .

To embed the Fj into the target layers, we add the additional

term μMSE(Fj−XΘsub) into the original objective function,
whose goal is enforcing the difference between Fj and XΘsub

to be minimized during training.

B. Fingerprint Extraction and Verification

Fig. 4: Example of fingerprint extraction and verification

For model ownership verification, the server needs to per-

form fingerprint extraction and verification on the suspicious

model to discover possible piracy. Generally speaking, there

are two methods of fingerprint extraction, one is blind extrac-

tion and the other is non-blind extraction. Our SecureMark DL

uses the latter because it has a higher fingerprint detection

rate. Reviewing the fingerprint embedding criteria in our

SecureMark DL, i.e., enforcing the difference between Fj

and XΘsub to be minimized during training. The server only

needs to obtain the parameters θsub of the target layers during
the extraction process, and computes the flattened averaged

version Θsub. As a result, the fingerprint Fj is recovered

with Fj = XΘsub, where X is the random projection matrix

selected by the server. As described before, each customer’s

fingerprint Fi consists of community relationship code and

customer identity code, namely, Fj=(pj || uj). In order to
quickly find traitors, as shown in Fig. 4, we first pick up the

community relationship code fragments of Fj and compare

it with the hash table to find similar communities. Since

customers in the same or neighboring communities will be

assigned similar community codes, the community code syn-

thesized by multiple malicious customers is still small. Then,

we treat all customers in selected communities as potential

traitors, and exploit the property of customer identity code to

find the collusive customers.

IV. PERFORMANCE EVALUATION

In this section, we conduct experiments to evaluate the

performance of our SecureMar DL. In our experiments, the

Cloud is simulated with a Lenovo server which has Intel(R)

Xeon(R)E5-2620 2.10GHZ CPU, 16GB RAM, 256SSD, 1TB

mechanical hard disk and runs on the Ubuntu 18.04 oper-

ating system. Besides, each customer is simulated by one
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TABLE I: Classification Accuracy

Dataset CIC-length CRC-length Baseline Accuracy

MNIST 49

20

97.63%

97.62%
30 97.62%
40 97.61%
50 97.59%
60 97.59%

MNIST 121

20

97.63%

97.57%
30 97.55%
40 97.55%
50 97.53%
60 97.53%

CIFAR-10 49

20

91.43%

91.42%
30 91.42%
40 91.41%
50 91.41%
60 91.40%

CIFAR-10 121

20

91.43%

91.40%
30 91.40%
40 91.39%
50 91.39%
60 91.38%

HP i7 8550u notebook, which has one 1.8GHZ CPU, 8G

flash memory, 256SSD and 500G mechanical hard disk, and

assigned with 64-bit Windows 10 operating system. We train

SecureMar DL with two different datasets, i.e., MNIST1 and

CIFAR-102, where we adopt a five-layer ReLU-based fully-

connected feed-forward neural network with 900 hidden units

as the training model in the MNIST experiment, and the VGG-

19 [24] with batch-normalization is adopted as the training

model in the CIFAR-10 experiment.

A. Classification Accuracy

We first analyze the classification accuracy of our Secure-

Mar DL. As discussed before, we need to adjust the training

criteria of a DNN model to cater for embedding of fingerprints,

which inevitably has a negative impact on model accuracy.

To quantitatively analyze it, we train SecureMar DL under

two datasets (i.e., MNIST and CIFAR-10) with fingerprints of

different lengths, where the length of CIC (Customer Identity

Code) is 49 and 121 bits, respectively, and the length of

CRC (Community Relationship Code) is selected from 20

to 60 bits. The MNIST dataset contains 60000 images of

handwritten digits, where 50000 samples are training samples

and the rest are test samples. CIFAR-10 is a benchmark dataset

for object recognition which contains 10000 test images and

50000 training images.

As shown in TABLE I, we observe that SecureMar DL still

maintains excellent classification accuracy (>91.35%), even
if we embed a 121-bit CIC and a 60-bit CRC in the model.

Compared with the baseline (i.e, training an identical model

without embedding fingerprints), as the length of the finger-

print increases, the classification accuracy of SecureMar DL

only slightly degrades. Such results are mainly derived from

the high capacity of DNN parameters. In DNN, the redundancy

and high dimensionality of parameters make many parameters

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/ kriz/cifar.html

have a slight impact on the classification of the final model.

Based on this, we use this redundancy and make embedded

fingerprints as an auxiliary task during the training process.

As a result, the embedded fingerprint is integrated as an

integral part of the parameters, which ensures the robustness

of fingerprints against various attacks while not significantly

changing the classification accuracy of the original model.

B. Performance of Fingerprint

In this section, we conduct experiments to discuss the

performance of the proposed fingerprint. We first discuss

the property of community relationship code of preserving

neighborhood structure, and then demonstrate the robustness

of customer identity code to various attacks.

1) Analysis of Community Relationship Code: As described
before, community relationship codes preserve the neigh-

borhood structure of customers. This property will facilitate

the server to quickly find suspicious customer groups. To

demonstrate this, we conduct experiments over three public

social network dataset, i.e., Facebook, Twitter and Google, all

of them are downloaded from the Stanford Network Analysis

Platform (SNAP)3. Each dataset is an adjacency graph, where

each node represents a user (that is, the customer in our

experiment), and the edge between two points indicates that

there is a connection between the two. The specific information

of each selected dataset is as follows.

• Facebook is an undirected graph, which contains 4039
nodes and 88,234 edges. These nodes (i.e., customers)

belong to 10 communities.

• Twitter is a directed graph with 81306 customers

and 1768149 edges. These customers belong to 1000

communities.

• Google is a directed graph with 107614 customers

and 13673453 edges. These customers belong to 133

communities.

We evaluate the performance of community relationship code

over the three datasets, where the length of code is ranging

from 15 to 60 bits. Specifically, given the adjacent matrix A,
we first generate the community relationship code for each

customer exploiting the primitive Neighborhood Preserving

Hashing (NPH) [20]. Then, we construct a matrix P to record

the Hamming distance between customers, where pij denotes
the Hamming distance between customer i’s community rela-
tionship code and customer j’s community relationship code.
We set pij = 1 if pij is less than a given threshold distance
dist ∈ [0, 3], otherwise, pij = 0. As a result, by comparing
P with the adjacent matrix A, we can obtain the accuracy
of preserving the neighborhood structure of community rela-

tionship code under different social networks. The results are

shown in Figure 5. It is clear that community relationship

code can effectively represent the social network between

customers and ensure the neighborhood structure between

different customers. In addition, the tendency of accuracy

increases as the length of the code increases.

3http://snap.stanford.edu/
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Fig. 5: The accuracy of preserving the neighborhood structure of Community Relationship Code under different social

networks. (a) Facebook. (b) Twitter. (c) Google

2) Analysis of Customer Identity Code: We adopt two

separate (121, 11, 1)-BIBD AND-ACC codebook and assign

the concatenation of one codebook column to the other

codebook column as a code-vector for each customer. As a

result, such codebooks can accommodate a total of N =
121(120)
11(10) × 121(120)

11(10) = 17421 customers and resist up to

k = 11−1 = 10 colluders. We embed the fingerprint with the
MNIST and CIFAR-10 dataset, respectively, where the weight

μ of the embedded fingerprint is set to 0.2. The threshold τ
used in extraction is set to 0.85.
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Fig. 6: The performance of (121, 11, 1)-BIBD Customer
Identity Code with collusion.

Collusion Attack: Fig. 6a shows the detection rate of
(121, 11, 1)-BIBD customer identity code under two data sets
with different numbers of colluders. We can observe that the

detection rate remains 100% when the number of colluders

is 10 or less, which means that the maximum number of

colluders that (121, 11, 1)-BIBD customer identity code can

resist is consistent with its own nature. For the sake of

comprehensive analysis, we also record the false alarm rate

on both datasets. As shown in Fig. 6b, it is clear that the

error rate is always maintained at 0% when the number of

colluders does not exceed 10, which is consistent with the

previous maximum detectable number k = 10.

Model Fine-tuning Attack: In order to demonstrate the
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Fig. 7: The performance of (121, 11, 1)-BIBD Customer
Identity Code with model fine-tuning.

robustness of our customer identity code to model fine-tuning

attack, we retrained the fingerprinted model with the original

optimization function (shown in Eqn.(1)). The results are

shown in Fig. 7a and Fig. 7b. We can see that the detection

rate remains 100%, and the error rate is always maintained at
0% when the number of colluders does not exceed 10, which

is consistent with the previous experiments shown in Fig. 6.

Therefore, our customer identity code is robust against model

fine-tuning attacks.

Model Compression Attack: In the end, we analyze the
effectiveness of our customer identity code for model com-

pression attacks. Here we consider a very common model

compression method, namely parameter pruning. Specifically,

we perform parameter pruning of the trained model with differ-

ent rates, and record the performance of the customer identity

code against the collusion attack after pruning. Fig. 8 shows

the results under MNIST and CIFAR-10 datasets. Indeed, as

the proportion of pruned parameters increases, the accuracy

of detection and false alarm rate will deteriorate slightly.

However, the performance of our customer identity code is

still consistent with previous experiments when the number of

colluders does not exceed 10. Therefore, our customer identity

code is robust against the model compression attack.
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Fig. 8: The performance of (121, 11, 1)-BIBD Customer Identity Code with parameter pruning.

V. CONCLUSION

In this paper, we have proposed SecureMark DL, a deep

learning framework with end-to-end ownership protection.

SecureMark DL is robust against various attacks including

fingerprints collusion and network transformation. Extensive

experiments conducted on MNIST and CIFAR-10 datasets

show the superiority of SecureMark DL in terms of training

accuracy and robustness against various types of attacks. In the

future, we will focus on increasing the level of privacy pro-

tection, and improving the robustness of proposed fingerprint

to other emerging attacks.
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