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ABSTRACT

Outsourced inference service has enormously promoted the pop-
ularity of deep learning, and helped users to customize a range
of personalized applications. However, it also entails a variety of
security and privacy issues brought by untrusted service providers.
Particularly, a malicious adversary may violate user privacy during
the inference process, or worse, return incorrect results to the client
through compromising the integrity of the outsourced model. To ad-
dress these problems, we propose SecureDL to protect the model’s
integrity and user’s privacy in Deep Neural Networks (DNNs) in-
ference process. In SecureDL, we first transform complicated non-
linear activation functions of DNNs to low-degree polynomials.
Then, we give a novel method to generate sensitive-samples,
which can verify the integrity of a model’s parameters outsourced
to the server with high accuracy. Finally, We exploit Leveled Ho-
momorphic Encryption (LHE) to achieve the privacy-preserving
inference. We shown that our sensitive-samples are indeed very
sensitive to model changes, such that even a small change in parame-
ters can be reflected in the model outputs. Based on the experiments
conducted on real data and different types of attacks, we demon-
strate the superior performance of SecureDL in terms of detection
accuracy, inference accuracy, computation, and communication
overheads.
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1 INTRODUCTION

Deep learning(DL), as one of the promising emerging technolo-
gies, has penetrated all aspects of social life, such as face recogni-
tion [4, 29], autopilot [19, 63], and medical diagnosis [22, 35, 59].
To support automated services, many tech companies (such as
Google, Microsoft, and Amazon) provide outsourced deep learning
services, usually dubbed as Machine Learning as a Service (MLaaS)
[24, 60, 63]. MLaa$S can provide a series of customized training
and inference services, along with requiring users to provide local
data. A typical example is Azure ML Studio [4], which is devel-
oped by Microsoft and enables customers to easily build, deploy,
and share advanced deep leaning-based algorithms in the cloud.
Other platforms, such as TensorFlow, Caffe2 and MXNet, offer sim-
ilar services for a fee. Despite such advantages, outsourcing deep
learning to the cloud also brings about various security and pri-
vacy concerns [2, 29]. Particularly in inference services, customers
are very concerned about their model’s integrity and data privacy
once outsourcing them to the cloud. An adversary, such as an un-
trusted cloud server, may return incorrect results to users by making
some imperceptible modifications to the outsourced model. Such
attacks have appeared in various applications including face recog-
nition and image classification [30, 31]. On the other hand, privacy
breaches in outsourcing inference services have been frequently
reported in the media [4, 29]. Intuitively, once a user outsources its
model to a cloud server, it is possible that the server will steal the
intellectual property (i.e., parameters) of the outsourcing model, or
collect the user’s query history through the released APL

To address the above problems, several approaches have been
proposed to mitigate privacy and security threats in DNNs [19, 49,
63]. For example, Ghodsi et al. propose SafetyNets [63], the first
approach for verifiable execution of DNNs on an untrusted cloud.
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Recent works [10, 27, 49] also achieve similar goals utilizing diverse
technologies, such as trusted hardware SGX [49] and interactive
proof systems [27]. However, these approaches mainly focus on
the integrity (or correctness) of DNNs computations, which can
hardly detect subtle attacks on the model’s integrity. For example,
in neural network trojan attacks [19], an adversary can slightly
modify the model’s parameters to make DNNs behave correctly
for normal inputs, while misclassifying inputs containing a trigger
predefined by the adversary. Moreover, most existing verifiable
solutions [19, 27, 49] do not consider privacy-protection in the out-
sourcing inference process. That is, the user’s private data, such as
the model’s parameters, query requests, and inference results are
all disclosed to the server. This inevitably provides a large attack-
ing surface for adversaries to breach the user’s privacy. Therefore,
it is urgent to design a generic verifiable protocol over the out-
sourced inference model, which is sensitive to model changes while
protecting user’s privacy.

Challenges: 1t is challenging to design a secure and privacy-
preserving protocol that meets the above requirements. First, the
heterogeneous cloud environments may bring a number of vul-
nerabilities (such as buffer overflow [62], network hijacking [46],
etc) for adversaries to launch attacks. It is difficult to guarantee
the model’s integrity under different cloud operations. Second,
once the user submits its model to the server, it will lose control
over the use, access, and publishing of the model. Traditional in-
tegrity verification strategies (e.g., computing the hash values of
protected data) can hardly work since the server can easily provide
plausible verification results to users. Third, existing approaches
[10, 27, 63] always verify the model’s integrity by analyzing the
model’s outputs due to the black-box access to the server. However,
in some model integrity attacks [31, 46], by slightly modifying the
model’s parameters, the adversary can make the classifier misclas-
sify for specific attacker-chosen inputs, while processing correctly
for other inputs. Therefore, it is very difficult to verify the model’s
integrity by only checking the outputs. Fourth, it is also challeng-
ing to propose a light-weight approach that is highly supportive
of both model verification and data privacy protection. Existing
privacy-preserving methods for neural networks are mostly evolved
from three underlying techniques: Secure Multi-Party Computation
(SMC) [4, 35], Differential Privacy [45, 62] and Homomorphic En-
cryption(HE) [2, 55]. However, technologies based on SMC and
differential privacy may not be proper for the scenarios considered
in this paper (see Section 2 for more details). Fully Homomorphic
Encryption (FHE) is a potential solution. However, it leads to huge
computation overhead. LHE [6, 65] (also called Somewhat Homo-
morphic Encryption), are faster than FHE, but only support limited
addition and multiplication in ciphertext. Moreover, complicated
non-linear activations such as ReLU, Sigmoid, and Tanh in DNNs,
are not directly supported by LHE. Recent works [10, 29] exploit
function approximation to convert non-linear activations to poly-
nomials, however, these approaches are fragmented and generally
cannot be applied to all activation functions.

Our Contributions: To address the above challenges, we propose
SecureDL, a secure and verifiable inference protocol to protect the
model’s integrity and user’s privacy in DNNs. In our SecureDL,
we first transform non-linear activation functions to low-degree
polynomials. Then, sensitive-samples are exploited to verify the
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correctness of the model’s parameters. In the end, LHE is used to
provide the privacy-preserving DNNs inference. In summary, our
contributions can be summarized as follows:

e We first convert complicated non-linear activation functions
such as ReLU, Sigmoid, and Tanh into polynomials, to fa-
cilitate the implementation of LHE in general DNNs, and
the generation of sensitive-samples. We prove that given an
error bound, it is possible to approximate any function with
a low-degree polynomial.

e We design a novel sensitive-samples generation method to
protect the model’s integrity. We show that our sensitive-
samples are very sensitive to changes in the model parame-
ters, such that even a small parameter change can be reflected
in the model outputs. In addition, our sensitive-samples
can be applied to general neural networks, with no assump-
tions on DNNGs architecture, hyper-parameters, and training
methods.

e We conduct extensive experiments on different datasets to
demonstrate the high performance of SecureDL in terms of
inference accuracy, detection accuracy, computation, and
communication overheads.

The remainder of this paper is organized as follows. In Section 2
and Section 3, we introduce the related works, outline the back-
ground and problem statement. In Section 4, we give the details of
our SecureDL. Next, performance evaluation is presented in Section
5. Finally, Section 6 concludes the paper.

2 COMPARISON WITH EXISTING WORKS

In this section, we introduce the latest related works about privacy-
preserving and verifiable deep learning, and compare them with
our proposal.

2.1 Privacy-preserving Deep Learning

As briefly mentioned, most of the existing research results evolve
from three underlying techniques: i.e., differential privacy [1, 23,
37, 45, 52, 62, 64], secure multi-party computing [4, 29, 34, 41] and
homomorphic encryption [2, 5, 14, 21, 53].

Differential privacy-based framework: Differential privacy
technology is mainly used in distributed or centralized DNNs train-
ing processes, where each data owner or the server disturbs the
sensitive data by adding disturbances to the original data, weights,
or loss functions. The propose of differential privacy-based DNNs
training is to reduce the negative impact of the addition of noise
on training as much as possible, and ensure data security under the
pre-privacy budget. For example, Shokri et al. [45] design the first
privacy-preserving deep learning model with differential privacy.
It ensures that the user’s data privacy is not compromised by se-
lectively sharing local parameters to the server. Agarwal et al.[1]
proposed cpSGD, an efficient and differentially-private distributed
stochastic gradient descent(SGD) in training process. By adding
noise that satisfies a specific distribution (such as Laplace distribu-
tion) to the original gradient, it can achieve the unrecoverability to
the original data and the high accuracy of training. Other works
such as [38], [62], and [50], also propose diverse strategies to make
a trade-off between training accuracy and data privacy, like add
noise to weights [38], set privacy budget dynamically [62], etc.
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Comparison: To the best of our knowledge, differential privacy
is generally only applicable to training for DNNs due to its inher-
ent properties. That is, it can only guarantee that the disturbed
dataset is roughly consistent with the original dataset in statisti-
cal properties, does not retain any attributes between the single
disturbed data and its corresponding original data. However, our
focus is to solve the data privacy in the inference phase. That is,
we require users to send a single encrypted query request to the
server, then the server performs inference services in the ciphertext
environment and returns the ciphertext results. Hence, if we exploit
differential privacy technology to disturb a single query request, or
the parameters of the outsourced model, this will inevitably lead to
noise that is difficult to offset, thereby weakening the accuracy of
model classification.

SMC based framework: SMC enables two or more parties to
evaluate a function on their inputs without disclosing the inputs
to each other, that is, all inputs are kept private by the respective
owners. In general, the existing works with SMC as the underlying
architecture can be categorized into three approaches: i.e., Garbled
Circuit(GC)-based [3, 40, 42], Secret Sharing-based [4, 9, 61], and
Mixed Protocol-based [26, 34, 41], where GC-based approach is
mainly applied to the secure computing of 2 or 3 parties, while
Secret Sharing based approach is more suitable for distributed se-
cure computing. For example, Riazi et al.[40] and Ball et al.[3] both
design a new garbled circuit techniques for neural networks, and in-
troduced new optimizations for modern neural network activation
functions. In terms of Secret Sharing-based works, the most rep-
resentative result is [4], which design a practical data aggregation
protocol in federated training by using Shamir’s t-out-of-n secret
sharing protocol [15]. In recent years, studies [35] have shown that
it is difficult to achieve practical in communication overhead or
computational overhead by using secret sharing or garbled circuits
alone. To combat that, Mixed Protocol-based works [26, 34, 41],
i.e,, hybrid secure computation frameworks exploiting mixed use
of secret sharing, homomorphic encryption, and garbled circuits,
have been proposed and applied in various fields. These mixed
protocols usually use additive secret sharing or homomorphic en-
cryption to perform linear operations in the deep learning process,
while non-linear calculations are delivered to garbled circuits for
implementation. The experimental results [34, 41] show that such
a hybrid approach tends to show better performance.
Comparison: SMC-based technology is a good way to provide
secure training and inference services, but in general, this requires
each party involved in secure computing to honestly execute a
predetermined protocol. In our scenario, the server is considered
to be an active, malicious adversary with an incentive to destroy
established procedures (including compression calculations, modi-
fication of parameters, etc) to violate the integrity of the original
protocol. It is difficult to construct an efficient SMC protocol under
such threat model. On the hand, the design of SMC is to ensure
that the participants evaluate a targeted function without knowing
each other’s input secrets. However, in our scenario, the parame-
ters of the outsourcing model and the user’s inputs are held by the
user itself, and we only require the server’s computing and storage
resources without sharing secrets with each other.

HE based framework: Homomorphic encryption can perform
specific mathematical operations in ciphertext without knowing
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the unencrypted data. Such characteristics make it perform train-
ing and inference services in ciphertext gracefully. Based on the
differences in the mathematical operations supported, HE can be
classified into partial (additive or multiplicative) HE [2, 39], FHE
and LHE [6, 21, 65] (also called Somewhat Homomorphic Encryp-
tion). Partial HE is usually used in distributed (collaborative or
federated) DNNs training due to the simplicity of the mathematical
operation supported in the ciphertext. For example, Phong et al. [2]
exploited the Partial HE to encrypt users’ local gradients before
uploading to the cloud, which provides secure data aggregation for
multi-users. FHE offers an elegant way to provide secure DNNs
training and inference without even any interaction. For example,
Dowlin et al. [14] and Bourse et al. [5] respectively propose FHE-
based training and inference methods, where the user only needs
to send the encrypted input to the server and receive the returned
ciphertext result. However, due to the inefficiency of existing FHE
schemes, most applications prefer to use LHE [6, 21, 65] which is
faster than FHE, but only supports a limited depth of encryption
and multiplication operations in ciphertext, because it removes the
reduction process of noise introduced by multiple computations,
such as bootstrapping [65]. Hesamifard et al. [21] propose Cryp-
toDL, a Privacy-preserving Machine Learning as a Service (MLaaS)
with LHE. In CryptoDL, complex nonlinear activation functions
such as Sigmoid and tanh are replaced by polynomials. Then, Cryp-
toDL relies on the HEIlib library [17] to complete the training and
prediction of DNNs in the ciphertext.

Comparison: As discussed above, FHE is not practical in terms
of efficiency !. Therefore, in this paper, we use LHE to achieve
privacy-preserving inference. Similar to work CryptoDL [21], we
also convert complex nonlinear activation functions into polyno-
mials, and use the HEIib library to achieve LHE implementation.
However, compared with CryptoDL, we give a formal proof that it is
possible to approximate any continuous function with a polynomial
whose error from the objective function is within a given bound,
while CryptoDL only provides a scratch. Moreover, as admitted in
CryptoDL, it only considers the approximation of continuous func-
tions, and cannot provide conversion to non-continuous functions
such as Rectified Linear Unit(ReLU,y = max(0, x)). Nevertheless,
RelU has become a highly regarded activation function in the field
of image recognition. Compared with CryptoDL, our work can
transform any activation functions into polynomials, where we use
discrete least squares [8] to give a heuristic conversion algorithm
for non-continuous functions. Experiments (See Section 5) show
that we can still find satisfactory low-degree polynomials.

2.2 Verifiable Deep Learning

In this paper, we focus on the verifiability of the results returned
by the server during the inference phase. In summary, the exist-
ing results can be roughly divided into two directions: i.e, Trusted
Execution Environments(TEE)-based [18, 48, 49] and Verifiable
Computing (VC)-based [10, 27, 63]. TEE provides a secure enclave
to run a deep learning model, where the model/data owner can use
hardware and software protections to isolate sensitive computa-
tions from the untrusted software stack. In this way, data privacy

!We also confirmed this argument in the experimental part. For more details, please
see Section 5.3
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and the integrity of the calculation process can be hard protected.
Florian et al. [49] propose Slalom, which enables all linear layers in
DNN from TEE (such as Intel SGX or Sanctum) to be executed by
a faster but untrusted co-located processor. Verifiable computing
(VC) can provide proofs of computational integrity without any
assumptions on hardware. Ghodsi et al. [63] proposed the first veri-
fiable approach SafetyNets. In SafetyNets, a specific type of DNNs
framework will be converted into an arithmetic circuit, under which
the server interacts with the user multiple times to verify the cor-
rectness of the returned results. Recently, Keuffer et al. [27] also
design an efficient proof composition for verifiable computation,
which proposes a method for constructing several dedicated and
efficient VC schemes using the universal VC protocols.
Comparison: TEE-based works rely on hardware to fulfill the re-
quirements for privacy and integrity while we aim to to construct
a verifiable solution without any hardware assumptions. VC-based
approaches focus on the integrity (or correctness) of DNNs compu-
tations performed by the cloud provider, which can hardly detect
subtle attacks on model’s integrity, such as the neural network
trojan attacks [32] and targeted poisoning attack. In this paper, we
propose a general method for generating sensitive samples and use
them to detect the completeness of the server’s calculation results.
We note that recent work [19], also designed an efficient way to
generate sensitive samples against subtle attacks on the model’s
integrity. However, the way to generate sensitive samples in [19] is
only for DL models that exclusively contain continuous activation
functions. Moreover in [19], to ensure that an untrusted server is
difficult to distinguish between real samples and sensitive samples,
the feasible domain for selecting sensitive samples is limited to a
small domain, which weakens the sensitivity of sensitive-samples
to model’s changes. Compared with [19], our scheme for generating
sensitive samples is applicable to all neural network frameworks, be-
cause all complex activation functions (including non-continuous)
have been transformed into polynomials (continuous). Moreover,
Applying LHE guarantees that all the user’s encrypted input is
indistinguishable to the server. As a result, in the process of gener-
ating sensitive samples, we can choose samples with the highest
sensitivity to model modification as the optimal samples.

3 BACKGROUND AND PROBLEM
STATEMENT

In this section, we first review the concept of DNNs, and then
describe the scenario, threat model and security and privacy re-
quirements considered in this paper.

3.1 Deep Neural Networks

As shown in Figure 1, a DNN usually consists of one input layer,
one or more hidden layers and one output layer. Each two adjacent
layers are connected by weights  (i.e., model’s parameters), where
each circle represents a neuron associated with an element-wise
nonlinear activation function ¢ (i.e., sigmoid, ReLU, softmax, etc).
Here we use DNN training process to describe how it works. Specif-
ically, given a training sample (x, y), the input x will be iteratively
propagated to the next layer with linear transformations and non-
linear activation functions. Then, the neural network outputs the
inference result g in the last layer. This process is usually called
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Figure 1: General DNNs training process

feedforward. To find the optimal parameters (i.e., @) for accurately
reflecting the relationship between x and y, a loss function L is
adopted to measure the distance between y and g. Usually, L is
given as L=||ly — y||2, where || - ||2 is the Iy norm of a vector. Then,
to minimize the loss function L, the Stochastic Gradient Descent
(SGD) algorithm [45, 62] is used to find the optimal parameters .
We call this process as backpropagation. After the DNN converges
to pre-set accuracy, it can be used for subsequent inference. In this
paper, we focus on the model’s integrity and user’s privacy in the
inference process.

3.2 Scenario

© Outsourcing encrypted model

@ Encrypted query request

\J

Wkl

User Cloud server

Figure 2: Our Scenario

As shown in Figure 2, our SecureDL has two generic entities, a
user and a cloud server. To receive inference services, the user (also
called the client) first encrypts its well-trained DL model and out-
sources it to the cloud?. Then, the server allocates resources for this
model for a fee, such as assigning computing and storage resources,
and releasing APIs for the inference service. In the inference pro-
cess, once the user submits its encrypted query request to the cloud,
the server performs the preset operations of the outsourced model,
and returns the corresponding encrypted inference result (such as
classification and regression) to the user. The above scenario has
been widely used in the field of outsourcing computing [10, 19, 20].
In this way, model owner can not only save resources required
for local storage and execution of the DL model, but also enjoy
real-time inference services without geographical and hardware
(partial) restrictions.

2We do not consider the details of the model training, that is, the user can train the
model locally, or fine-tune a model obtained from the public model zoo. Please note that
the user needs to convert all activation functions not supported by LHE to polynomials
before the model is trained.
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3.3 Threat Model and Security and Privacy
Requirements

In our SecureDL, the cloud server is considered as the main adver-
sary. On the one hand, it may infer users’ data privacy by utilizing
the mastered prior knowledge [54, 56—-58], such as the encrypted
dataset, query records, and ciphertext results. On the other hand,
it may also try to compromise the model’s integrity. Specifically,
we consider, but not limited to, the following attacks to compro-
mise the model’s integrity hosted in the cloud: @The cloud server
can exploit the potential vulnerabilities in the network and the
service interface to implement the attack. @The cloud server can
use a simpler or compressed model to replace the original model,
thereby breaking the integrity of the model. @The cloud server has
full access to the encrypted outsourced model, user’s inputs, and
inference results. It can launch attacks based on this information.

Under the above threat model, we formulate the security and
privacy requirements as follows.

e Protect the model’s integrity: In order to obtain certain ben-
efits, a malicious server is fully capable of modifying the
model’s parameters and architecture to deceive customers.
Our goal is to detect any subtle model changes in an efficient
manner.

o Guarantee the confidentiality of the model’s parameters: The
model’s parameters are valuable intellectual property, which
may be generated with a lot of resources, and even contain
some user’s proprietary information. A secure outsourcing
inference service should protect this information from being
leaked to the server.

o Privacy protection of user’s requests and inference results: In
the inference process, a user will submit its query requests to
the server for inference services (such as image classification
and numerical prediction, etc). Sometimes, these data are
sensitive and may contain user’s personal information (such
as avatar, health status, and psychological behavior). In addi-
tion, the inference results always imply some relationships
with the user’s inputs. Therefore, the privacy of user’s re-
quests and inference results should be protected from being
leaked to the server.

4 PROPOSED SCHEME

The goal of SecureDL is to realize the privacy-preserving outsourced
inference services while guaranteeing the model’s integrity. To
achieve this, we first design a general function approximation algo-
rithm to transform non-linear activation functions to low-degree
polynomials. This will facilitate the generation of sensitive-
samples and the and the application of LHE in general DNNs. Then,
we generate generic sensitive-samples to verify the correctness
of model parameters in the inference process. In the end, to protect
the user’s privacy, LHE is used to provide privacy-preserving DNNs
inference.

4.1 Function Approximation

As discussed before, the most notable shortcoming of LHE is that
it only supports limited number of addition and multiplication op-
erations in the encrypted domain. Also, complicated non-linear
activation functions in DNNs, such as Sigmoid (y = #) and
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ReLU (y = max(0, x)), are not directed supported by LHE. For the
smooth execution of LHE, these complicated non-linear activation
functions need to be approximated by functions (such as polynomi-
als) that only contain addition and multiplication.

On the other hand, given a bound on the error between the
original activation function and its transformed polynomial, the
degree of the transformed polynomial should be minimal to boost
efficiency [53]. Therefore, to reduce the overhead of the LHE during
DNN inference process, a priority task of our SecureDL is to de-
sign such an algorithm, which can find the low-degree polynomial
within a given error.

Theorem 1. Given an error bound €, let M(x) be a continuous
function on the closed interval [a, b], there exists a polynomial p(x)
that satisfies |M(x)—p(x)| < € for all x belong to the interval [a, b].

Proof': This theorem is based on the Weierstrass Approximation
theorem [12]. Briefly, we first construct Bernstein polynomial
[11, 12] based on the Weierstrass Approximation theorem. Then,
we prove that any continuous function can be approximated by the
Bernstein polynomial with any given error bound e. For detailed
proof, please refer to the APPENDIX1.1.

Based on Theorem 1, given an objective continuous activation
function M(x) and an error bound €, we can use the Bernstein
function to find a satisfactory polynomial. However, it does not
give a method of how to find a low-degree polynomial. Moreover,
Bernstein polynomial has been proven to be inefficient in approxi-
mating any continuous function [11, 12]. In general, the polynomial
function classes used to approximate the known function M(x) are
diverse. Even if the function class is selected, the function p(x) used
as an approximate representation of M(x) is still determined in
various ways. For example, work [21] suggests exploiting Legendre
polynomials [44] and Chebyshev polynomials [7] to approximate
the original function, while other works, such as [29], propose to
use piecewise interpolation [51] to achieve the transformation of
the objective function into polynomials. In this paper, we exploit
the well-known least square approximation algorithm [8] (see AP-
PENDIX 1.2) to generate the low-order polynomial, since it is very
efficient compared to the above methods, and can be easily realized
by standard programming software such as Matlab, CurvFit, and
Prism. As shown in Algorithm 1, given an error bound € and a
target non-linear activation function M(x), we first initialize the de-
gree of approximated polynomial to 1 (i.e., N = 1). Then, we get the
approximated polynomial pn(x) based on the least square approxi-
mation algorithm?. Next, we verify whether {|pn/(x) — M(x)| g <e€}
(see Eqn.(12) in APPENDIX 1.2 for the definition), if so, the current
polynomial is returned as the final low-degree polynomial; other-
wise, let N = N + 1, continue to generate py(x) and iteratively
verify the above operation until we find a degree polynomial(i.e.,
p*(x) ) that meets the above constraint. Based on Theorem 1, for
any continuous activation functions, the iterative process in Algo-
rithm 1 (lines 4-5) is finite, thus we can certainly find a low-degree
polynomial p*(x) satisfying the constraint {|p*(x) — M(x)Ig < €}
For the discontinuous activation functions such as ReLU, we use dis-
crete least squares algorithm [8] to approximate them. Experiments

3Please note that for discontinuous activation functions such as ReLU, Theorem 1 is
not true. Hence, for these discontinuous activation functions, we use discrete least
squares algorithm [8] to approximate them. Experiments (see Section 5) show that we
can still find satisfactory low-degree polynomials.
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(See Section 5) show that we can still find satisfactory low-degree
polynomials.

Algorithm 1 Generating the low-degree polynomial

Input: A given error bound € and the target non-linear activation functions M(x).
Output: The low-degree polynomial p*(x).

1: N = 1./ Initialize the degree of approximated polynomial to 1. */

2: tmp = pN(x) based on the least square approximation algorithm
[8]. /* pni(x) denotes the approximated polynomial with degree N. */

3. while {|tmp — M(x)|§ > e} do

4 N+ +.

5. tmp = pN(x).

6: end while

7 p*(x) = pN ().

8: Return p*(x).

Remark: We notice that some works [10, 21, 29] have proposed
methods to convert complex functions into polynomials. However,
compared with them, we give a formal proof that given an arbitrary
objective continuous function, it is feasible to approximate to a
polynomial whose error from the objective function is within a
given range, while existing works are fragmented or only provide
a scratch. Moreover, Compared with existing works, our work can
transform any activation functions into polynomials, where we use
discrete least squares to give a heuristic conversion algorithm for
non-continuous functions. For model detail, please refer to Section
2.1.

4.2 Sensitive-samples Generation and
Inference with LHE

We assume that the cloud server may modify the outsourced model
fo(x)to fg’ (x), where 6 is the set of all model’s parameters. However,
as discussed before, the cloud provider only provides a black-box
way for users to verify the model’s integrity. To address this chal-
lenge, similar to work [19], our main idea is to generate a small
set of test samples {(c;, fy(ci))|i =1,2,--- ,v} (called sensitive-
samples), where fy(c;) is the correct output with input c;. Then,
we use these sensitive-samples to verify the model’s integrity.

As show in Figure 3, we first generate a small set of sensitive-
samples {(c;, fp(ci)|i = 1,2,--- ,v}, and then send ¢;, (i = 1,2,
-+ - v) to the cloud for classification. Once obtaining the classifica-
tion results fé (ci).the user can check if the model is intact by only
comparing the equality between fp(c;) and fé(ci).

4.2.1 The Goal of Sensitive-samples. To achieve the above require-
ments, we need to find such sensitive-samples that are very
sensitive to model changes. Moreover, the generated sensitive-
samples should be hardly spotted by the adversary. In this section,
we design a novel sample generation algorithm to generate the
sensitive-samples. Specifically, the DNN model can be defined
as y = fg(x). We rewrite the DNN model as

5 ym] = [fi((x), x)’ e vfm((*)5 x)]

where @ = [w1, w2, - , wy] is a subset of 0 in our consideration. It
contains the weights and biases. fj(w, x),i = (1, - - - m) represents
the analytic expression of y; with input x. Without loss of generality,
we assume that the adversary compromises the outsourced model
by modifying the correct parameters @ to @’ =w + Aw. Hence,

y = flw, x)=[y1, yo, - -
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Figure 3: Using sensitive samples to verify the integrity of
the outsourced model

the modified model can be denoted as y’ = f(w + Aw, x). In order
to detect model anomalies sensitively, a good sensitive-sample
¢ should maximize the difference between y and y’. Formally, a
sensitive-sample ¢ should be the optimal value such that

c :argmax||f(m+Aw,x)—f(m,x)||§
X

izm (1)
=argmax ) ||fi(e +Aw, x) - fi(w, )}
i=1

To solve the above optimization problem, we first perform Taylor
expansion* on fi(w + Aw, x) as follows,

fi(w+Aw,x):fi(w,x)+%Aw+0(|mw||g) )
Based on the Taylor expansion, the differences between fi(w +
Aw, x) and fi(w, x) can be approximated as below,

Iafi(a), x)

[fi(@ + Aw, x) — fi(w, x)||Z ~ | P

Aol ®)

Further, we have

NV i)
If(@ + Ao, x) = fl 2)[[f ~ 3 1775~ o]}
< [O)
i=1 (O]
of (w, x)
= ||TAM||?:
where || - ||r denotes the Frobenius norm [33] of a matrix. By com-
paring with Eqn.(1) and Eqn.(4), it is obvious that we can find the
optimal sensitive-samples by solving the following optimization
problem,
If (w, x)
ow
In some cases, the model’s inputs are limited to a certain range
(denoted as [B, Q)). For instance, the intensities of all pixels are
limited to [0, 255] for valid image inputs. Therefore, the above
optimization problem is modified as below.

If (w, x)
ow

2
= 5
c argmfxll Aw|lf (5)

¢ = argmax || Awlf, s.t.x €8, Q" (6)
X

4since all complex activation functions (including non-continuous) have been trans-

formed into polynomials (continuous), Taylor expansion is applicable to all neural
network frameworks.
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where [B,Q]" is a convex set, and  denotes the dimension of
samples.

4.2.2  Sensitive-samples Generation Algorithm. Based on Eqn.(6),
we give a sensitive-samples generation algorithm shown in Al-
gorithm 2. Lines 1-4 initialize the algorithm (i.e., define the to-
tal number of iterations, and assign a random original sample to
¢). Lines 5-7 set up the optimization function ||%||g Lines
8-14 utilize the gradient ascent technology [66] to find the opti-
mal sensitive-sample under the constraints. Line 16 returns the
sensitive -sample and its inference result.

Algorithm 2 Sensitive-samples generation algorithm

Input: {f, w, 1}, where f is the original model. @ is the set of parameters in our
consideration, and 1 is the learning rate.
Output: {c, f(w, c)}, denotes the sensitive-sample and its inference result.

: xo = Init_Sample(). /* Randomly take a sample in the original sample set. */
It Max = G. /™ Initialize the total number of iterations. */
¢ = x¢. /" Initialize the sensitive-sample. */
i=0.
cforj=1toj=mdo
o = || 252y,
end for
: while {(c € [B,Q]")&&(i < IthAX)} do
A=0.
10: forj=1toj=mdo
11: A+ = doj/0c.
122 end for
132 c=c+i1xA
14: i++.

(S N

15: end while
16: Return {c, f(w, c)}.

Remark: Since user inputs and model parameters will be en-
crypted by LHE before outsourcing to the server, we claim that
the server cannot distinguish sensitive samples from original sam-
ples and cannot generate sensitive samples by itself. However, our
sensitive samples are not well protected against random output
tampering from the server. For example, for a few victim inputs,
the cloud server may manipulate the result in any way it wishes,
while for all of the other inputs, it honestly follows the protocol
to compute the result using the right model. For such untargeted
random attacks, a potential solution is to increase the proportion
of sensitive samples in the query process. On the other hand, we
believe that such untargeted attacks are also risky for the server.
Due to the indistinguishability of real and sensitive samples, once
incorrectly returning incorrect output for sensitive samples, the
server will face punishment or loss of reputation.

We note that recent work [19], also designed a way to gener-
ate sensitive samples to verify the model’s integrity. However, it
only works for DL models that exclusively contain continuous ac-
tivation functions, and the feasible domain for selecting sensitive
samples is limited to a small domain, which weakens the sensitiv-
ity of sensitive-samples to model’s changes. Compared with work
[19], our scheme is applicable to all neural network frameworks.
Moreover, LHE’s security guarantees that all the user’s encrypted
input is indistinguishable to the server. As a result, in the process

790

ACSAC 2020, December 7-11, 2020, Austin, USA

of generating sensitive samples, we can choose samples with the
highest sensitivity to model modification as the optimal samples.
For more detail, please refer to section 2.2.

4.2.3  Privacy-preserving Inference with LHE. We have transformed
the nonlinear activation functions into polynomials, and prepared
the sensitive-samples for model verification. To protect the user’s
privacy, we adopt Leveled Homomorphic Encryption (LHE) to en-
crypt all user-related data, such as the model’s parameters, user’s
query requests, and inference results. In this paper, we adopt HE-
Lib library [17] to implement all ciphertext inference. The library
implements the Brakerski-Gentry-Vaikuntanathan (BGV) homo-
morphic encryption scheme [13], as well as optimizations such as
Smart-Vercauteren ciphertext packing techniques.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of SecureDL in terms of
inference accuracy, detection accuracy, and overhead. Specifically,
the “ Cloud " is simulated with a virtual machine with 48GB RAM,
12 CPU cores and Ubuntu 18.04. For generating encryption schemes
in the HELib*, we set the security parameter with 80 ( security level
is equivalent to AES-128), the number of slots in the ciphertext with
0 (this allows HELib to automatically select the optimal number
of slots), and L = 20 (control the maximum number of operations
allowed in ciphertext without decryption). To reduce the increasing
noise in the ciphertext computation, we allow the server to check
the number of calculations after each ciphertext calculation. If the
number of calculations is about to exceed a threshold, the server
returns the ciphertext to the user for decryption, and then the user
re-encrypts it in a fresh ciphertext and sends it to the server.

5.1 Inference Accuracy

We test the inference accuracy of SecureDL under a custom CNN
network, which consists of two convolutional layers ( contain-
ing 20 feature maps and 50 feature maps, respectively), one av-
erage pooling layer and two fully connected layers (256 and 10
neurons, respectively). As discussed before, we transformed the
non-linear activation functions into polynomials. Intuitively, this
will affect the accuracy of the DNNs output. To quantitatively es-
timate the impact of this change on inference accuracy, we first

approximate three activation functions (i.e., Sigmoid: fi (x) = #,

ReLU: f(x) = max(0, x) and tanh: f3(x) = %) according to the
Algorithm 1. Here we use Pf,(x), Pf;(x) and Pf;(x) to represent
the corresponding approximation polynomials, and the degrees of
Pfx)> Phy(x) and Ppy(y) are 2, 2 and 3, respectively. Then, to compre-
hensively analyze the inference accuracy under different data sets,
we select 6 datasets (i.e.,Breast tissues, Crab, Ovarian, Wine,Climate,
and Fertility, shown in Table 5 of APPENDIX) from UC Irvine Ma-
chine Learning Repository [25], and compare the classification
accuracy with those using the original activation functions.

As described in Table 1, compared with the existing activation
functions, the approximated polynomials with two or three degrees
are sufficient to achieve the expected accuracy. We can see that the

“Please note that HELib cannot directly support the operation of some pooling layers
(such as Max pooling) in DNNS, because of the lack of the max operation over encrypted
data. To address this, we use a scaled up version of average pooling (proposed in [14])
to replace these types of layers.
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Table 1: Inference Accuracy of Our SecureDL with Different Datasets

Acurac
Dataset Y filx) fo(x) f(x) Prico 4pp 0 Phyeo) ) Prseo) dpp )

Breast tissues 87.00% 93.00% 86.40% 86.10% 2 92.47% 2 85.17% 3
Crab 92.23% 96.32% 89.30% 91.26% 2 96.17% 2 89.12% 3
Ovarian 93.75% 97.21% 89.25% 92.77% 2 97.01% 2 89.05% 3
Wine 96.29% 97.21% 90.23% 96.19% 2 97.18% 2 89.73% 3
Climate 95.37% 96.54% 89.21% 95.32% 2 96.25% 2 89.04% 3
Fertility 86.67% 92.32% 84.25% 85.12% 2 92.27% 2 83.07% 3

model’s classification accuracy under approximation polynomials
is very close to that under the original functions. For example, in
terms of classification of wine images, the original function (i.e.,
ReLU:f2(x) = max(0, x)) has a classification accuracy of 97.21%,
and our approximate function can still reach 97.18%. The reason for
this is that in function approximation process, Algorithm 1 has
limited the maximum error bound between the original function
and its approximated polynomial, which ensures that the neural
network with these polynomial activation functions still shows
good prediction accuracy.

5.2 Detection Accuracy

In this section, we estimate the detection accuracy of the proposed
scheme. As mentioned earlier, the server cannot learn the model
parameters since they have been encrypted by the LHE. However,
to “purely” analyze the sensitivity of the generated sensitive sam-
ples to model changes, we considered a stronger adversary (i.e.,
the server), which is allowed to access the plaintext parameters,
and even use some samples to retrain the model®. In theory, our
sensitive-samples are generic and able to detect various integrity
attacks against DNN models. To evaluate the detection accuracy,
we consider four very subtle integrity attacks in our experiments.

o Neural Network Trojan Attack (NN'TA[31]): The attack goal is
to inject some trojans in the outsourced model to make DNNs
behave correctly for normal inputs, while misclassifying the
inputs containing triggers predefined by the adversary. The
adversary can achieve the goal by modifying the selected
parameters with triggers.

o Targeted Poisoning Attack (TPA [43]): To make DNNs mis-
classify the inputs to targeted outputs, the adversary can
modify the parameters by retraining the model with cus-
tomized data.

e Model Compression Attack (MCA[30]): For reducing cloud
storage and computation cost, a malicious cloud provider
may compress the original model into a simple model with-
out visibly affecting inference accuracy.

o Arbitrary Weights Modification (AWM[36]): It is common
that an adversary (such as the cloud server) can change any
parameter of the outsourced model.

The specific datasets and DNNs models used in our experiments are
described in Table 4 (see APPENDIX 1.3). We know that the form of
model’s outputs significantly affects the detection accuracy because

SPlease note that such a strong adversary does not exist in SecureDL. Here we just
demonstrate the sensitivity of sensitive samples to model changes under this fictitious
assumption. Obviously, if SecureDL shows good detection accuracy under the strong
adversary model, it will perform better in the weak adversary model.
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we access the outsourcing model in only a black box way. There-
fore, we consider the case of the server returning Top-k (k=1,3,5)
classification labels to users, where the less information including
in outputs (from Top-5 (most) to Top-1 (least)) means the harder to
detect tampering using sensitive-samples. Next, we discuss the
detection accuracy of our sensitive-samples under these four
attacks. Moreover, the state-of-the-art approaches SSFDNN [19], is
also adopted in our experiments to compare with our method.

5.2.1 Neural Network Trojan Attack. We first evaluate the detec-
tion accuracy of SecureDL under the neural network trojan attack,
where the attack goal of NNTA is to make the model incorrectly
classification by injecting trojan into the DNN. In this experiment,
we assume that the adversary launches attacks through modifying
some selected neurons parameters with triggers on the VGG-16
[47] model, which consists of 14 convolution layers and four fully
connected layers. Here the VGG-Face is a standard DNNs model
used for face classification.

Specifically, by comparing with the state-of-the-art approaches
SSFDNN [19] and the original samples, we first test the sensitiv-
ity of the sensitive-samples generated in SecureDL. As shown
in Figure 4(a), the blue histogram shows the detection accuracy
of randomly selected samples from the original samples, and the
orange and yellow histogram represent the detection accuracy of
samples generated by [19] and SecureDL, respectively. Here we re-
quire the server to return the Top-1 result with the different number
of samples. Clearly, our sensitive- samples are very sensitive
to model changes compared with randomly selected samples and
sensitive-samples generated by SSFDNN [19]. This is because in an
NNTA attack, the adversary can carefully modify certain parame-
ters to make the model correctly classify in most cases, which is
difficult to be detected by using randomly selected original sam-
ples. In addition, although [19] designs an efficient way to generate
sensitive-samples. However, this method limits the range of sam-
ples to ensure the indistinguishability between sensitive-samples
and original samples, which significantly weakens the sensitivity
of sensitive-samples to model’s changes.

Table 6(see APPENDIX) further shows the detection accuracy
with under different values of k, where the symbol # denotes the
number of query samples. We can find that SecureDL can achieve at
least 90% accuracy even if returning the top-1 result. This is mainly
due to the superiority of our sensitive-samples generation algo-
rithm. Since all generated samples will be encrypted before being
uploaded to the server, compared to SSEDNN [19], we do not limit
the range of sensitive-samples to ensure the indistinguishability
between sensitive-samples and original samples. As a result, the
feasible domain of Algorithm 2 will be greatly increased and we
can get better sensitive-samples.
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Figure 4: Detection accuracy for different attacks.

5.2.2  Targeted Poisoning Attack. Here we consider the error-specific
attack, which means that the goal of the adversary is to make the
model misclassify the inputs from the target class to a specific
class that he desires. Specifically, the adversary modifies the model
parameters by exploiting data poisoning method to retaining the
model, and compromises the model to incorrectly classify “STOP"
sign into “speed limit 50km/h" but behave normally in other cases.
We conduct our experiment in a CNN model with GTSRB [31]
dataset (contain more than 40 classes of traffic signs). The detailed
experiment configuration is shown in Table 4(see APPENDIX).

Figure 4(b) shows the detection accuracy for the targeted poi-
soning attack with the different number of samples, where we also
require the server to return the Top-1 result to the client. It is clear
that the detection accuracy of our sensitive-samples is signifi-
cantly better than SSFDNN [19] and randomly selected samples.
Moreover, we also record the detection accuracy under different
values of k (shown in Table 7 of APPENDIX). Since the targeted
poisoning attack considered in our experiment is less noticeable
than the Trojan attack, the detection accuracy of the three types of
samples is slightly reduced. However, compared to the other two
samples, our sensitive-samples also show excellent detection
performance.

5.2.3  Model Compression Attack. In this type of attack, the ad-
versary tries to reduce the size of the outsourced model as much
as possible without significantly affecting the model’s inference
accuracy, thus effectively reducing the storage and computation
overhead of the cloud. In our experiments, we simulate the adver-
sary to compress the model to a quarter of the original model, while
the inference accuracy is only reduced by 3.7%. all the experiments
are conducted over a CNN model with CIFAR [46] dataset. The
CIFAR dataset consists of 6000 32 X 32 images categorized into 10
classes.

As shown in Figure 4(c), we can see that the detection accuracy of
our sensitive-samples is also significantly better than SSFDNN
[19] and randomly selected samples. Moreover, we also record the
detection accuracy under the different number of returned results
(shown in Table 8 of APPENDIX). Obviously, compared to the other
two samples, our sensitive-samples also show excellent detec-
tion performance.

5.2.4  Arbitrary Weights Modification. In this type of attack, the
adversary (such as the cloud server) can launch attacks by arbitrarily
modifying a subset of the weights. To simulate this, we assume the
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adversary modifies the weights with ratio r (from 0.1% to 80%), and
then we record the detection accuracy under the different ratios of
changed weights. All the targeted weights are modified by adding
standard Gaussian noise.

Figure 4(d) shows that our sensitive- samples are very sensi-
tive to model changes compared with SSFDNN [19] and randomly
selected samples. In order to show the relationship between weight
changes and detection accuracy, we test the detection accuracy
of sensitive-samples under different proportional parameter
changes. As shown in Figure 4(e), the greater ratio of model pa-
rameters changed, the easier it is to be detected. Also, we record
the detection accuracy under the different number of returned re-
sults (shown in Table 9 of APPENDIX). Compared to the other two
samples, our sensitive-samples also show excellent detection
performance.

5.3 Overhead Evaluation

we select datasets from UC Irvine Machine Learning Repository,
and data in batch from MNIST [10] dataset to test the performance
of SecureDL. We test the overhead of the proposed scheme under a
custom CNN network, which consists of two convolutional layers (
containing 20 feature maps and 50 feature maps, respectively), two
average pooling layer and two fully connected layers (256 and 10
neurons, respectively). Since HELib supports Single-Instruction-
Multiple-Data (SIMD) [16, 28] techniques, which can achieve the
time to run a batch (such as 282, 576, 1420, 3668, 6144, 8912, etc)
of instances is equivalent to the time to run a single instance, we
also use it to improve the classification efficiency (For more detail,
please see Figure 5 in APPENDIX).

Table 2: Running time of classification over encrypted data

datasets Classification(s) | #C* | Noise Reduction(s)
Breast tissues 181.23 14 115.84
Crab 174.56 14 112.07
Ovarian 214.33 14 138.06
Wine 182.57 14 116.26
Climate 193.64 14 124.71
Fertility 183.26 14 117.26

As shown in Table 2 (where#C denotes the number of commu-
nication between the user and the server for noise reduction), we
require SecureDL to classify over encrypted data (i.e., Breast tis-
sues, Crab, Ovarian, Wine,Climate, and Fertility, shown in Table 5
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of APPENDIX), where the batch size is set 576. We can observe
that SecureDL only needs at most 0.33 seconds to process the clas-
sification of an instance. This is mainly due to the following two
reasons. First, we convert the complex activation function into a
low-degree polynomial, which is advantageous for LHE to perform
fewer calculations in the ciphertext. The other is the use of SIMD
(see Figure 5 in APPENDIX for more details), which can process
multiple ciphertexts in parallel, thereby accelerating the efficiency
of ciphertext calculations. For the comprehensiveness of the ex-
periment, we further increase the complexity of the selected CNN
network and record the running time of SecureDL in different data
sets. For more details, please refer to Table 10 to Table 12 in AP-
PENDIX (where #CL* denotes the number of convolutional layers
added to the benchmark model).

Table 3: Performance compared with existing approaches

Dataset Performance SecureDL Cryptonets SecureML
Accuracy 96.23% 95.93% 91.67%
MNIST Running time 319(s) 803(s) 10648(s)
Data transfer 330.7(MB) 776(MB) 2.46(GB)

Next, we test the cost of SecureDL and compare it with the state-
of-the-art approaches Cryptonets [14] and SecureML [35], where
we use the same experimental configuration (including hardware,
data set and CNN model) to implement these three schemes. Cryp-
tonets [14] is very similar to SecureDL. It utilizes FHE to encrypt all
of the user’s data and exploits square function to approximate the
activation function. As shown in Table 3, where we set the batch of
ciphertext with size 8192 (the same as works [14]), since Cryptonets
does not consider how to convert the activation function into a
low-degree polynomial and uses bootstrapping[65] to execute noise
reduction, compared to SecureDL, it needs to perform more com-
putations and generate larger size ciphertext to complete the same
classification task. As a result, its computation and communication
overhead is more than twice that of SecureDL.

SecureML [35] is the first work based on SMC. In their proposed
approach, the data owner shares the data with the two servers which
run a deep learning model using two-party computation (2PC)
technique. As shown in Table 3, our SecureDL is significantly better
than SecureML [35] in terms of computation and communication
overhead. For example, to complete the same classification task
over the MNIST dataset, our solution only needs to run 319(s) and
transfer 330.7(MB) of data, whereas SecureML’s cost is 10648(s) and
2.46(GB), respectively.

6 CONCLUSION

In this paper, we have proposed SecureDL, which can verify the
integrity of DNNs model outsourced to the cloud, while protecting
user’s privacy in the inference process. we prove that our SecureDL
can be applied to general neural networks, with no assumptions
on DNNs architecture, hyper-parameters and training methods.
Extensive experiments also demonstrated the superior performance
of SecureDL in terms of inference accuracy, detection accuracy and
overhead. In the further works, we intend to further improve the
inference accuracy, and find ways to reduce the computation and
communication overhead of SecureDL.
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APPENDIX

1.1 Proof of Theorem 1

Proof. Without loss of generality, we use [0, 1] to replace the closed
interval [a, b]. Then, we define the following mapping:

Bp:X—>Y
k=n k
M(x) = Bn(M, x) = Z M(=)Ckxk(1 = x)nk
n
k=0

where X represents the collection of all continuous functions, and
Y represents the entire set of polynomials. B, (M, x) is a Bernstein
polynomial, which is the image of M € X under the mapping
Bj,. From the definition, we can derive that B, has the following
properties.

(1) By, is a linear map. For any functions M,G € X and a, § € R, we
have Bp(aM + G, x) = aBp(M, x) + B (G, x).

(2) By, is monotonic. For any functions M, G € X, if M(t) < G(¢) is
established for every t € [0, 1], we have B, (M, x) < B,(G, x) is
established for every x € [0, 1].

Based on above properties, we claim that any continuous function

can be approximated by the Bernstein polynomial with any given

error bound €. For simplicity, here we take a continuous functions

M(t) = (t — 5)? as an example to verify our statement, where s is a

constant. Specifically, the image of (¢ — s)? under the mapping By,

is as follows.

Bn((t — s)%, x) = By (t2, x) — 2sBu(t, x) + s Bp(1, x) (7)

where
k=n
Bn(1, x) = Z Cﬁxk(l —x)t k=1
k=0
k=n k
By(t, x) = Z fC,’ixk(l )" R = x[x+(1-x)]" =x
k= "
2 L _UNVR gk nk_n-1 5 X
B"(t’x)_kz_;)ﬁc"x (1-x) —Tx +;
We know that the function M(t) is bounded since it is continuous
in the interval [0, 1]. Therefore, for any element ¢ € [0, 1], there is
a positive number D satisfying |M(t)| < D. Further, based on the
Cantor Theorem, for any given number € > 0 and ¢, s € [0, 1], we
have |M(t) — M(s)| < §, where |t —s| < § and § > 0. Contrarily, if
|t —s| > &, we have

IM(t) - M(s)| < 2D < 25—?(1* —5)?

Therefore, for any t,s € [0, 1], we have

e 2D

-5 = (=9t < M) - M(s) < §+i—?(t—s)2 ®)

Based on the Eqn.(1), the above formulas can be further decom-
posed as follows.

SR -y
< Bp(M, x) - f(s) 9)
<fe i—f["‘n"z (x5
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Let s = x. Because x(1 — x) < % for all x € [0, 1], we have

k=n k € D
K~k ki n—k _ £
> M(—)CRxk (1~ x) M)l < 5+ s (10)
k=0
Therefore, whenn > N,N = [%1 , we have
k=n k
Z M(=)Ck xR - )" * - M(x)| < e 11)
n
k=0

Hence, we prove that the Bernstein polynomial can be used to
approximate any continuous function with given error bound e.

1.2 Least square approximation algorithm

Given a continuous function M(x) on the finite interval [a, b], the
goal of Least Square Approximation Algorithm is to find an optimal
polynomial p(x) that satisfies the following definition.

b
IM(x) - p(x)I3 = JE%&/G P)M(x) = s(x)Pdx (12)

where {{,(x)|n = 1,--- N} is a set of linearly independent poly-
nomial function, and p(x) is the weight function. s(x) can be repre-
sented as s(x) = apo(x) + a1y1(x) + - - - + anPn(x). Then, we can
get the p(x) by solving the following multivariate function.

bJ=n

Hao s+ an) =min [ 3 p0MG0) - apsfdx (1)
a 55

Based on the necessary condition of solving extreme value in
multivariate function, let f—;k =0,k=0,1,2,--- ,N, we have

b Jj=n
=2 [ pIMe) - @k dx =0 (1)
a 5o

day

Based on the definition of inner product, we have
Jj=n

D @i (i), () = (M(x), Y (x)) = 0 (15)

Jj=0

b

where (Y (x), Yj(x) = [, p)Yr(x)yj(x)dx and (M(x), ¥ (x))

= fa b P(x)M(x)Y (x)dx, respectively. Therefore, we have
Jj=n
Z aj(Yic(x), ¥ (%)) = (M(x), ¥ (x)), k =(0,1,2,---, N)  (16)
j=0

The above equations can be extended to the following system of
equations.

0. v0) (Yo, Y1) (Y0, YN) ag (Y0, M(x))
( W1, ¥0) (‘//1.’, }01) (‘//ITV‘VWN) )( a ):( (1//1,./.\’.'(9()) )
WN-%0)  (YN- Y1) (YN-¥N) (¥n, M(x))

Since {¢n(x)|n = 1,--- N} is a set of linearly independent polyno-
mial function, above equation set has unique solution (aé, aj, -« a”l‘v).
Hence, we can calculate the least square approximation polynomial
p(x) = agyo(x) + ajyn(x) + - - - ay Yn(x) satistying the definition

an

b
MG = pls = min, [ oM s )
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Table 4: Experimental Environment for Detection Accuracy under Different Attacks

Dataset Task Model Total layers Corll;/;:::mn Fullylzslglsected Attack technique
NNTA VGG-Face[47] Face classification VGG-16 18 14 4 MOdlfy pa1.rameters
with trigger
TPA GTSRB[31] Traffic sign classification CNN 9 7 2 Retrain model with
data poisoning
MCA | CIFAR-10[46] Image classification CNN 9 7 2 Compress the
original model
AWM AT&T[10] Face classification MLP 1 0 1 Arbitrary
modification
1.3 Experimental configuration and results Table 9: Detection Accuracy under AWM

Table 5: Datasets selected for inference accuracy

datasets Instances | Features | Classes
Breast tissues 106 9 6
Crab 200 6 2
Ovarian 216 100 2
Wine 100 10 2
Climate 540 17 2
Fertility 100 10 2

Table 6: Detection Accuracy under NNTA

Solutions # of samples | Top-1 | Top-3 | Top-5

1 90.4% 92.3% 96.6%

SecureDL 3 91.2% | 94.5% 100%

5 95.7% 100% 100%

1 73.1% 77.8% 82.8%

SSFDNN 3 83.1% 89.3% 94.2%

5 87.4% 91.2% 100%

1 17.5% 23.6% 25.7%

Original model 3 19.2% | 29.4% | 35.9%
5 23.4% 34.1% 39.5%

Table 7: Detection Accuracy under TPA

Solutions # of samples | Top-1 | Top-3 | Top-5

1 87.4% 90.1% 92.3%

SecureDL 3 89.1% | 92.4% 100%

5 91.7% 100% 100%

1 68.3% 71.9% 79.7%

SSFDNN 3 80.1% 84.6% 91.2%

5 85.3% 89.2% 97.4%

1 12.1% 20.3% 24.3%

Original model 3 16.3% | 24.7% | 30.1%
5 21.4% 30.3% 34.1%

Table 8: Detection Accuracy under MCA

Solutions # of samples | Top-1 | Top-3 | Top-5

1 91.6% 93.7% 96.8%

SecureDL 3 93.2% 100% 100%

5 95.9% 100% 100%

1 75.2% 79.8% 84.2%

SSFDNN 3 83.7% 89.7% 95.2%

5 88.4% 94.6% 100%

1 18.7% 24.3% 27.9%

Original model 3 22.7% | 32.4% | 37.3%
5 24.2% 35.3% 40.3%
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Figure 5: Running time with SIMD.

The running time of using SIMD technology to perform classifi-
cation tasks is shown in Figure 5, where we require SecureDL to
classify Breast tissues in the ciphertext. For Figure 5(a), the selected
CNN network consists of two convolutional layers ( containing
20 feature maps and 50 feature maps, respectively), two average
pooling layer and two fully connected layers (256 and 10 neurons,
respectively). We can see that with the increase of batch size, the
running time of SIMD basically keeps a constant. Moreover, Se-
cureDL only takes 0.63 seconds to return results for a single query,
even when the batch size is taken to be 282. For Figure 5(b), we
increase the complexity of the CNN network used for classifica-
tion, i.e., the selected CNN network consists of three convolutional
layers ( containing oner 20 feature maps and two 50 feature maps,
respectively), two average pooling layer and two fully connected
layers (256 and 10 neurons, respectively). SecureDL also only takes
0.88 seconds to return results for a single query, when the batch
size is taken to be 282. By increasing the batch size to 6144, the run-
ning time decreases to 0.04 second per instance. Therefore, SIMD
technology can effectively improve the ability to process ciphertext.
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It is worth mentioning that larger batch sizes inevitably increase
the size of the network, even it can speed up inference. Therefore,
there is a trade-off between memory and runtime, and we should
choose the appropriate batch size based on the size of the dataset.

Table 10: Running time of classification over encrypted
dataset of Breast tissues

#CL* | Classification(s) | #C | Noise Reduction(s)
1 201.23 21 140.22
2 220.56 28 153.03
3 241.34 35 166.91
4 263.63 42 179.15
5 283.17 49 190.23

Table 11: Running time of classification over encrypted
dataset of Crab

#CL* | Classification(s) | #C | Noise Reduction(s)
1 193.36 21 124.15
2 221.17 28 153.46
3 240.54 35 166.29
4 261.12 32 178.61
5 283.67 49 191.17

The running time of SecureDL in different data sets is shown
Table 10 to Table 12, where the batch size is set 576. The benchmark
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model consists of two convolutional layers ( containing 20 feature
maps and 50 feature maps, respectively), two average pooling layer
and two fully connected layers (256 and 10 neurons, respectively).
Then, we increase the complexity of the benchmark model (by
adding different numbers of convolutional layers containing 50
feature maps) and record the classification time under the changed
model. We can see that as the number of added convolutional
layers rises, it will increase the running time of SecureDL in the
ciphertext, and also require more interaction between the server
and the user to implement the noise reduction. However, SecureDL
also only needs at most 0.61 seconds to process the classification of
an instance, even if the additional 5 convolutional layers are added
to the benchmark model (shown in Table 12).

Table 12: Running time of classification over encrypted
dataset of Ovarian

#CL* | Classification(s) | #C | Noise Reduction(s)
1 233.63 21 150.17
2 251.16 28 164.39
3 272.64 35 178.38
4 294.70 42 190.29
5 314.63 49 202.03
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