
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2018

Learning probabilistic models for model checking: an evolutionary Learning probabilistic models for model checking: an evolutionary

approach and an empirical study approach and an empirical study

Jingyi WANG

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Qixia YUAN

Jun PANG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
WANG, Jingyi; SUN, Jun; YUAN, Qixia; and PANG, Jun. Learning probabilistic models for model checking:
an evolutionary approach and an empirical study. (2018). International Journal on Software Tools for
Technology Transfer. 20, (6), 689-704.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5903

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5903&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5903&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

International Journal on Software Tools for Technology Transfer (2018) 20:689–704
https://doi.org/10.1007/s10009-018-0492-7

FASE 2017

Learning probabilistic models for model checking: an evolutionary
approach and an empirical study

Jingyi Wang1 · Jun Sun1 ·Qixia Yuan2 · Jun Pang2

Published online: 25 April 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Many automated system analysis techniques (e.g., model checking, model-based testing) rely on first obtaining a model of
the system under analysis. System modeling is often done manually, which is often considered as a hindrance to adopt model-
based system analysis and development techniques. To overcome this problem, researchers have proposed to automatically
“learn” models based on sample system executions and shown that the learned models can be useful sometimes. There are
however many questions to be answered. For instance, how much shall we generalize from the observed samples and how
fast would learning converge? Or, would the analysis result based on the learned model be more accurate than the estimation
we could have obtained by sampling many system executions within the same amount of time? Moreover, how well does
learning scale to real-world applications? If the answer is negative, what are the potential methods to improve the efficiency
of learning? In this work, we first investigate existing algorithms for learning probabilistic models for model checking and
propose an evolution-based approach for better controlling the degree of generalization. Then, we present existing approaches
to learn abstract models to improve the efficiency of learning for scalability reasons. Lastly, we conduct an empirical study
in order to answer the above questions. Our findings include that the effectiveness of learning may sometimes be limited and
it is worth investigating how abstraction should be done properly in order to learn abstract models.

Keywords Probabilistic model checking · Model learning · Genetic algorithm · Abstraction

1 Introduction

Many system analysis techniques rely on first obtaining a
system model. The model should be accurate and often is
required to be at a ‘proper’ level of abstraction. For instance,
model checking [3,11] works effectively if the user-provided
model captures all the relevant behavior of the system and
abstracts away the irrelevant details. With such a model as
well as a given property, a model checker would automati-
cally verify the property or falsify it with a counterexample.

This research is partly supported by T2MOE1704 Singapore.
Q. Yuan was supported by the National Research Fund (FNR),
Luxembourg (Grant 7814267). J. Pang was partially supported by the
project SEC-PBN (funded by the University of Luxembourg) and the
ANR-FNR project AlgoReCell (INTER/ANR/15/11191283).

B Jingyi Wang
wangjyee@gmail.com

1 Singapore University of Technology and Design, Singapore,
Singapore

2 University of Luxembourg, Luxembourg City, Luxembourg

Alternatively, in the setting of probabilistic model checking
(PMC, see Sect. 2) [3,5], the model checker would calculate
the probability of satisfying the property.

Model checking is perhaps not as popular as it ought to be
due to the fact that a good model is required beforehand. For
instance, a model which is too general would introduce spu-
rious counterexamples, whereas the model checking result
based on amodelwhich under-approximates the relevant sys-
tem behavior is untrustworthy. In the setting of PMC, users
are required to provide a probabilistic model (e.g., a Markov
chain [3]) with accurate probabilistic distributions, which is
even more challenging.

In practice, system modeling is often done manually,
which is both time-consuming and error-prone. What is
worse, it could be infeasible if the system is a black box
or it is so complicated that no accurate model is known (e.g.,
the chemical reaction in a water treatment system [49]). This
is often considered by industry as one hindrance to adopt
otherwise powerful techniques like model checking. Alter-
native approacheswhichwould rely less onmanualmodeling
have been explored in different settings. One example is

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-018-0492-7&domain=pdf

690 J. Wang et al.

statistical model checking (SMC, see Sect. 2) [47,62]. The
main idea is to provide a statistical measure on the likeli-
hood of satisfying a property, by observing sample system
executions and applying standard techniques like hypothesis
testing [4,21,62]. SMC is considered useful partly because it
can be applied to black box or complex systemswhen system
models are not available.

Another approach for avoiding manual modeling is to
automatically learn models. A variety of learning algo-
rithms have been proposed to learn a variety of models,
e.g., [7,13,45,46]. It has been shown that the learned models
can be useful for subsequent system analysis in certain set-
tings, especially so when having a model is a must. Recently,
the idea of model learning has been extended to system anal-
ysis through model checking. In [9,34,35], it is proposed to
learn a probabilistic model first and then apply techniques
like PMC to calculate the probability of satisfying a property
based on the learned model. On the one hand, learning is
beneficial, and it solves some known drawbacks of SMC or
even simulation-based system analysis methods in general.
For instance, since SMC relies on sampling finite system exe-
cutions, it is challenging to verify unbounded properties [43,
60], whereas we can verify unbounded properties based on
the learned model through PMC. Furthermore, the learned
model can be used to facilitate other system analysis tasks
like model-based testing and software simulation for com-
plicated systems. On the other hand, learning essentially is a
way of generalizing the sample executions. It is thus worth
investigating how the sample executions are generalized and
whether indeed such learning-based approaches are justified.

In particular, we would like to investigate the following
research questions. Firstly, how can we control the degree of
generalization for the best learningoutcome, since it is known
that both over-fitting or under-fitting would cause problems
in subsequent analysis? Secondly, often it is promised that
the learnedmodelwould converge to an accuratemodel of the
original system, if the number of sample executions is suffi-
ciently large. In practice, there could beonly a limited number
of sample executions and thus it is valid to question how fast
the learning algorithms converge. Furthermore, do learning-
based approaches offer better analysis results if alternative
approaches which do not require a learned model, like SMC,
are available? Besides, how well does learning scale to real-
world complex systems with many system variables? If not,
do we have any approach to handle the issue?

Contributions We mainly make the following contribu-
tions in order to answer the above research questions. Firstly,
we propose a new approach (Sect. 4) to better control the
degree of generalization than existing approaches (Sect. 3)
in probabilistic model learning. The approach is inspired
by our observations on the limitations of existing learning
approaches. Experiment results show that our approach con-
verges faster and learns models which are much smaller than

those learned by existing approaches while providing better
or similar analysis results. We consider it is an advantage
to learn smaller models as they are often easier to compre-
hensive and easier to model check. Secondly, we develop a
software toolkit Ziqian, realizing previously proposed learn-
ing approaches for PMC as well as our approach so as to
systematically study and compare them in a fair way. The
tool is written in a generic manner and is friendly to exten-
sion. Thirdly, we conduct an empirical study on comparing
different model learning approaches against a suite of bench-
mark systems, two real-world systems, as well as randomly
generated models (Sect. 6). One of our findings suggests that
learning models for model checking might not be as effec-
tive compared to SMC given the same time limit. However,
the learned models may be useful when manual modeling
is impossible. Lastly, we investigate learning in the context
of abstraction to deal with the state space explosion problem
and reduce the cost of learning.Weshow that current abstrac-
tion technique for probabilisticmodel learning can onlywork
for a limited class of properties. Thus, it isworth investigating
how to do abstraction for learning properly. From a broader
point of view, our work is a first step toward investigating
the recent trend on adopting machine learning techniques to
solve software engineering problems. We remark that there
is an extensive amount of existing research on learning non-
probabilistic models (e.g., [1]), which is often designed for
different usage and is thus beyond the scope of this work.We
review related work and conclude this paper in Sect. 7.

2 Preliminary

In this work, the probabilistic model that we focus on is
discrete-time Markov chains (DTMC) [3]. The reason is that
most existing learning algorithms generate DTMC, and it
is still ongoing research on how to learn other probabilistic
models like Markov Decision Processes (MDP) [6,9,34,35,
46]. Furthermore, the learned DTMC is intended for proba-
bilistic analysis using methods like PMC. In the following,
we briefly introduce DTMC, PMC as well as SMC.
Markov chain A DTMC D is a triple tuple (S, ıini t , Tr),
where S is a countable, nonempty set of states; ıini t : S →
[0, 1] is the initial distribution s.t.

∑
s∈S ıini t (s) = 1; and

Tr : S × S → [0, 1] is the transition probability assigned to
every pair of states which satisfies the following condition:
∑

s′∈S T r(s, s′) = 1. D is finite if S is finite.
An example DTMC modeling the egl protocol [30,31] is

shown in Fig. 1. The egl protocol is for exchanging com-
mitment to a contract between parties who do not trust each
other. Commitment is identified with the party’s digital sig-
nature on the contract. The main property that the protocol is
achieving is fairness such that in any case party A can obtain
party B’s commitment if party B already has part A’s com-

123

Learning probabilistic models for model checking 691

Fig. 1 DTMC of egl protocol

mitment. Figure 1 has 4 states which represent whether party
A has obtained party B’s commitment and the other way
around. For example, the initial state a represents 00 which
means that neither A or B has obtained each other’s com-
mitment and the terminal state d represents 11 which means
that both A or B has obtained each other’s commitment.

Paths of DTMCs are maximal paths in the underlying
digraph, defined as infinite state sequences π = s0s1s2 · · · ∈
Sω such that Tr(si , si+1) > 0 for all i ≥ 0. We write
PathD(s) to denote the set of all infinite paths of D starting
from state s. The probability of exhibiting a path frag-
ment π = s0s1 · · · sn is given by Tr(s0, s1) × Tr(s1, s2) ×
· · · Tr(sn−1, sn).
Probabilistic model checking PMC [3,5] is a formal anal-
ysis technique for stochastic systems including DTMC and
MDP. Given a DTMCD = (S, ıini t , Tr) and a set of propo-
sitions�, we can define a function L : S → � which assigns
a valuation of the propositions in � to each state in S. Once
each state is labeled, given a path in PathD(s), we can obtain
a corresponding sequence of propositions labeling the states.

Let �� and �ω be the set of all finite and infinite strings
over �, respectively. A property of the DTMC can be spec-
ified in temporal logic. Without loss of generality, we focus
on Linear Time Temporal logic (LTL) and probabilistic LTL
in this work. An LTL formula ϕ over � is defined by the
syntax:

ϕ:: = true | σ | ϕ1 ∧ ϕ2 | ¬ϕ | Xϕ | ϕ1Uϕ2

where σ ∈ � is a proposition; X is intuitively read as ‘next’
andU is read as ‘until’. We remark commonly used temporal
operators like F (which reads ‘eventually’) and G (which
reads ‘always’) can be defined using the above syntax, e.g.,
Fϕ is defined as trueUϕ. Given a string π in �� or �ω,
we define whether π satisfies a given LTL formula ϕ in the
standard way [3].

Given a path π of a DTMC, we write π |� ϕ to denote
that the sequence of propositions obtained from π satisfies
ϕ and π �|� ϕ otherwise. Furthermore, a probabilistic LTL
formula φ of the form Pr	
r (ϕ) can be used to quantify the
probability of a system satisfying the LTL formula ϕ, where

	
∈ {≥,≤,=} and r ∈ [0, 1] is a probability threshold. A
DTMC D satisfies Pr	
r (ϕ) if and only if the accumulated
probability of all paths obtained from the initial states of D
which satisfy ϕ satisfies the condition 	
 r . Given a DTMC
D and a probabilistic LTL property Pr	
r (ϕ), the PMC prob-
lem can be solved using methods like the automata-theoretic
approach [3]. We skip the details of the approach and instead
remark that the complexity of PMC is doubly exponential in
the size of ϕ and polynomial in the size of D.
Statistical model checking SMC is a Monte Carlo method
to solve the probabilistic verification problem based on sys-
tem simulations. Its biggest advantage is perhaps that it does
not require the availability of system models [12]. The idea
is to provide a statistical measure on the likelihood of satisfy-
ing ϕ based on the observations by applying techniques like
hypothesis testing [4,21,62]. In the following, we introduce
how SMC works and refer readers to [3,62] for details.

Intuitively, SMC works by sampling system behaviors
randomly (according to certain underlying probabilistic dis-
tribution) and observing how often a given property ϕ is
satisfied. We then infer statistical property of the actual
probability of the system satisfying ϕ. Because system simu-
lations are finite, in order to tell whether a simulation satisfies
ϕ, SMC is often limited to bounded properties, i.e., properties
which can be validated or invalidated after a bounded num-
ber of steps.1 Without loss of generality, we further restrict
the property to be of the form: P≥p(φ U≤t ψ), which reads:
there is a probability no less than p such that φ is always
satisfied until ψ is in t time steps is.

Given a system of which we can reliably sample its
behavior according to its underlying probabilistic distribu-
tion, SMC verifies a given bounded property using methods
like hypothesis testing [59]. Hypothesis testing is a statisti-
cal process to decide the truthfulness of twomutual exclusive
statements, say H0 and H1. In the setting of SMC, H0 is the
hypothesis that P≥p(φ U≤t ψ) is satisfied, and H1 is the
alternative hypothesis (i.e., that it is not satisfied). Besides,
two parameters are required from users. One is the targeted
assurance level, denoted as θ , over the system, and the other
is a parameter σ used to identify the indifference region. The
indifference region refers to the region (θ −σ, θ +σ), which
is used to avoid exhaustive sampling and obtain the desired
control over the precision [62]. The probability of accepting
H1 given that H0 holds (i.e., false negative) is required to
be at most α and the probability of accepting H0 if H1 holds
(i.e., false positive) should be nomore than β. In practice, the
error bounds (i.e., α, β) and σ can be decided by how much
testing resource is available as more resource is required for
a smaller error bounds or a smaller indifference region.

There are two main acceptance sampling methods to
decidewhen the hypothesis testing procedure can be stopped.

1 Refer to [43,60] for work on SMC of unbounded properties.

123

692 J. Wang et al.

One is fixed-size sampling test, which often results in a large
number of tests [62]. The other one is sequential probability
ratio test (SPRT), which yields a variable sample size. SPRT
is faster thanfix-samplingmethods as the testing process ends
as soon as a conclusion is made. The basic idea of SPRT is
to calculate the probability ratio, after observing a test result
and comparing with two stopping conditions [53]. If either of
the conditions is satisfied, the testing stops and returns which
hypothesis is accepted. Readers can refer to [62] for details.

3 Probabilistic model learning

Learning probabilistic models from sampled system execu-
tions for the purpose of PMC has been explored extensively
recently [7,9,13,34,35,45,46]. In this section, we briefly
present existing probabilistic model learning algorithms for
two different settings.

3.1 Learn frommultiple executions

In the setting that the system can be reset and restarted mul-
tiple times, a set of independent executions of the system can
be collected as input for learning. Learning algorithms in
this category make the following assumptions [34]. First, the
underlying system can be modeled as a DTMC. Second, the
sampled system executions are mutually independent. Third,
the length of each simulation is independent.

Let� denote the alphabet of the system observations such
that each letter e ∈ � is an observation of the system state.
A system execution is then a finite string over �. The input
in this setting is a finite set of strings
 ⊆ ��. For any string
π ∈ ��, let prefix(π) be the set of all prefixes of π including
the empty string 〈〉. Let prefix(
) be the set of all prefixes
of any string π ∈
. The set of strings
 can be naturally
organized into a tree tree(
) = (N , root, E) where each
node in N is a member of prefix(
); the root is the empty
string 〈〉; and E ⊆ N × N is a set of edges such that (π, π ′)
is in E if and only if there exists e ∈ � such that π · 〈e〉 = π ′
where · is the sequence concatenation operator.

The idea of the learning algorithms is to generalize
tree(
) by merging the nodes according to certain crite-
ria in certain fixed order. Intuitively, two nodes should be
merged if they are likely to represent the same state in the
underlying DTMC. Since we do not know the underlying
DTMC, whether two states should be merged is decided
through a procedure called compatibility test. We remark
the compatibility test effectively controls the degree of gen-
eralization. Different types of compatibility test have been
studied [7,29,44]. We present in detail the compatibility test
adopted in the AALERGIA (hereafter AA) algorithm [34] as
a representative. First, each node π in tree(
) is labeled with
the number of strings str in
 such that π is a prefix of str.

Let L(π) denote its label. Two nodes π1 and π2 in tree(
)

are considered compatible if and only if they satisfy two
conditions. The first condition is last(π1) = last(π2) where
last(π) is the last letter in a string π , i.e., if the two nodes are
to be merged, they must agree on the last observation (of the
system state). The second condition is that the future behav-
iors from π1 and π2 must be sufficiently similar (i.e., within
Angluin’s bound [2]). Formally, given a node π in tree(
),
we can obtain a probabilistic distribution of the next obser-
vation by normalizing the labels of the node and its children.
In particular, for any event e ∈ �, the probability of going
from node π to π · 〈e〉 is defined as: Pr(π, 〈e〉) = L(π ·〈e〉)

L(π)
.

We remark the probability of going from node π to itself
is Pr(π, 〈〉) = 1− ∑

e∈� Pr(π, 〈e〉), i.e., the probability of
not making anymore observation. Themulti-step probability
from node π to π · π ′ where π ′ = 〈e1, e2, . . . , ek〉, written
as Pr(π, π ′), is the product of the one-step probabilities:

Pr(π, π ′) = Pr(π, 〈e1〉) × Pr(π · 〈e1〉, 〈e2〉)
× · · · × Pr(π · 〈e1, e2, . . . , ek−1〉, 〈ek〉)

Two nodes π1 and π2 are compatible if the following is
satisfied:

|Pr(π1, π) − Pr(π2, π)| <
√
6ε log(L(π1))/L(π1)

+√
6ε log(L(π2))/L(π2)

for all π ∈ ��. We highlight that ε used in the above con-
dition is a parameter which effectively controls the degree
of state merging. Intuitively, a larger ε leads to more state
merging, thus fewer states in the learned model.

Ifπ1 andπ2 are compatible, the two nodes aremerged, i.e.,
the tree is transformed such that the incoming edge of π2 is
directed toπ1.Next, for anyπ ∈ �∗, L(π1·π) is incremented
by L(π2 · π). The algorithm works by iteratively identifying
nodes which are compatible and merging them until there
are no more compatible nodes. After merging all compatible
nodes, the last phase of the learning algorithms normalizes
the tree so that it becomes a DTMC.

Example Assume that we are given a set of 917 samples

of the egl protocol (shown in Fig. 1) and construct the tree
tree(
) accordingly as shown in Fig. 2. The labels on the
nodes are the numbers of times the corresponding string is a
prefix of some samples in
. For instance, node a is labeled
with 917 because 〈a〉 is the prefix of all samples (since it is
the only initial state).

The tree can be viewed as the initial learned model which
has no generalization. Next, the tree is generalized by merg-
ing nodes. Assume that node 〈aa〉 and node 〈a〉 in Fig. 2 pass
compatibility test and are to be merged. Firstly, transitions to
〈aa〉 are directed to 〈a〉, which increases the number associ-
ated with 〈a〉 to 1817; then numbers labeled with decedents

123

Learning probabilistic models for model checking 693

Fig. 2 Example tree representation of samples

of 〈aa〉 are added to the corresponding decedent nodes of
〈a〉. That is, the numbers of 〈a〉’s decedents are updated to
the numbers after arrow as shown in Fig. 2. For instance,
since the state label of L(〈aa〉 · 〈b〉) is 2, we update the label
for node 〈ab〉 from 8 to 10. Afterward, the subtree rooted at
〈aa〉 (dashed circle nodes, aa inclusive) is pruned.

3.2 Learn from a single execution

In the setting that the system cannot be easily restarted, e.g.,
real-world cyber-physical systems.We are limited to observe
the system for a long time and collect a single, long execution
as input. Thus, the goal is to learn a model describing the
long-run, stationary behavior of a system, in which system
behaviors are decided by their finite variable length memory
of the past behaviors.

In the following,wefixα to be the single systemexecution.
Given a string π = 〈e0, e1, . . . , ek〉, we write suffix(π) to be
the set of all suffixes of π , i.e.,

suffix(π) = {〈ei , . . . , ek〉|0 ≤ i ≤ k} ∪ {〈〉}.

Learning algorithms in this category [9,45] similarly con-
struct a tree tree(α) = (N , root, E) where N is the set of
suffixes of α; root = 〈〉; and there is an edge (π1, π2) ∈ E
if and only if π2 = 〈e〉 · π1. For any string π , let #(π, α)

be the number of times π appears as a substring in α. A
node π in tree(α) is associated with a function Prπ such
that Prπ (e) = #(π ·〈e〉,α)

#(π,α)
for every e ∈ �, which is the like-

lihood of observing e next given the previous observations
π . Effectively, function Prπ defines a probabilistic distribu-
tion of the next observation. An example tree T is shown in
Fig. 3. For simplicity, assume there are only two observa-
tions a and b. The numbers associated with the nodes are the

predicted probability of having a and b (in this order) as the
next observation.

Based on different suffixes of the execution, different
probabilistic distributions of the next observation will be
formed. For instance, the probabilistic distribution from the
node 〈〉 would predict the distribution without looking at the
history, whereas the node corresponding to the sequence of
all previous observations would have a prediction based the
entire history. The central question is how far we should look
into the past in order to predict the future. As we observe
more history, we will make a better prediction of the next
observation. Nonetheless, constructing the tree completely
(no generalization) is infeasible and the goal of the learning
algorithms is thus to grow a part of the tree which would give
a “good enough” prediction by looking at a small amount of
history. The questions are then: what is considered “good
enough” and how much history is necessary. The answers
control the degree of generalization in the learned model.

In the following, we present the approach in [9] as a
representative of algorithms proposed in the setting. Let
fre(π, α) = #(π,α)

|α|−|π |−1 be the relative frequency of having
substring π in α (where |π | is the length of π). Algo-
rithm 1 shows the algorithm for identifying the right tree
by growing it on-the-fly. Initially, at line 1, the tree T con-
tains only the root 〈〉. Given a threshold ε, we identify the set
S = {π |fre(π, α) > ε} at line 2, which are substrings appear-
ing often enough in α and are candidate nodes to grow in the
tree. The loop from line 3 to 7 keeps growing T . In particu-
lar, given a candidate node π , we find the longest suffix π ′
in T at line 4 and if we find that adding π would improve the
prediction of the next observations by at least ε, π is added,
alongwith all of its suffixes if they are currentlymissing from
the tree (so that we maintain all suffixes of all nodes in the
tree all the time). Whether we add node π into tree T or not,
we update the set of candidate S to include longer substrings
of α at line 6. When Algorithm 1 terminates, the tree con-
tains all nodes which would make a good enough prediction.
Afterward, the tree is transformed into a DTMC where the
leafs of tree(α) are kept as states in the DTMC. We briefly
introduce the transformation here and readers are referred to
Appendix B of [45] for more details. For a state s and next
symbol σ , the next state s′ = Tr(s, σ) is a suffix of sσ .
However, this is not guaranteed to be a leaf in the learned T .
Thus, the first step is to extend T to T ′ such that for every leaf
s, the longest prefix of s is either a leaf or an internal node in
T ′. The transition functions are defined as follows. For each
node s in T ∩ T ′ and σ ∈ �, let P ′(s, σ) = P(s, σ). For
each new nodes s′ in T ′ − T , let P ′(s′, σ) = P(s, σ), where
s is deepest ancestor of s′ in T .

Example The left of Fig. 3 shows an example PST after learn-
ing. The three leafs of the tree will be taken as states in the
DTMC, i.e.,aa,ba andb. The transitions are formedby suffix

123

694 J. Wang et al.

Fig. 3 The left figure is an
example PST, where each node
is associated with a distribution
over all the symbols, i.e. {a, b}.
The right figure is the DTMC
model after transformation

Algorithm 1 Learn PST
1: Initialize T to be a single root node representing 〈〉;
2: Let S = {σ | f re(σ, α) > ε} be the candidate suffix set;
3: while S is not empty do
4: Take any π from S; Let π ′ be the longest suffix of π in T ;
5: (B) If fre(π, α) · ∑

σ∈� Pr(π, σ) · log Pr(π,σ)
Pr(π ′,σ)

≥ ε

add π and all its suffixes which are not in T to T ;
6: (C) If fre(π, α) > ε, add 〈e〉 · π to S for every e ∈ � if fre(〈e〉 ·

π, α) > 0;
7: end while

matching. For example, starting from state ba, we go to state
aa if we observe a because aa is a suffix of baa. Similarly,
we go to state b if we observe b because b is the suffix of aab.
Assume that the observation so far is α = 〈· · · aba〉. Given
the model shown in Fig. 3, the next observations are pre-
dicted using the probability distribution of its longest suffix
in the tree. For instance, the probability of observing a next
would be predicted using the probability distribution associ-
ated with node 〈ba〉, which is Pr〈ba〉(a) = 0.75. For another
example, the predicted probability to generate string 〈abaa〉
after α is computed as: Pr〈ba〉(a) · Pr〈aa〉(b) · Pr〈b〉(a) ·
Pr〈ba〉(a) = 0.75 · 0.75 · 0.5 · 0.75.

4 Learning through evolution

Model learning essentially works by generalizing the sam-
ple executions. The central question is thus how to control
the degree of generalization. To find the best degree of
generalization, both [34] and [9] proposed to select the ‘opti-
mal’ ε value using the golden section search of the highest
Bayesian Information Criterion (BIC) score. Golden section
search is a technique which is suitable to find the min-
imum or maximum of a strictly unimodal function [58].
For instance, in [34], the BIC score of a learned model
M , given the sample executions
, is computed as follows:
log(PrM (
)) − μ × |M | × log(|
|) where |M | is the num-
ber of states in M ;
 is the total number of observations and
μ is a constant (set to be 0.5 in [34]) which controls the rel-
ative importance of the size of the learned model. This kind
of approach to optimize BIC is based on the assumption that
the BIC score is a concave function of the parameter ε. Our

empirical study (refer to details in Sect. 6), however, shows
that this assumption is flawed and the BIC score can fluctuate
with ε.

In the following, we propose an alternative method for
learning models based on genetic algorithms (GA) [26]. The
method is designed to select the best degree of generalization
without the assumptionofBIC’s concaveness. The idea is that
instead of using a predefined ε value to control the degree of
generalization, we systematically generate candidate models
and select the ones using the principle of natural selection
so that the “fittest” model is selected eventually. In the fol-
lowing, we first briefly introduce the relevant background on
GA and then present our approach in detail.

4.1 Genetic algorithms

GA [26] are a set of optimization algorithms inspired by the
“survival of the fittest” principle of Darwinian theory of nat-
ural selection. Given a specific problem whose solution can
be encoded as a chromosome, a genetic algorithm typically
works in the following steps [15]. First, an initial popula-
tion (i.e., candidate solutions) is created either randomly or
hand-picked based on certain criteria. Second, each candidate
is evaluated using a predefined fitness function to see how
good it is. Third, those candidates with higher fitness scores
are selected as the parents of the next generation. Fourth,
a new generation is generated by genetic operators, which
either randomly alter (a.k.a. mutation) or combine fragments
of their parent candidates (a.k.a. crossover). Lastly, step 2-
4 are repeated until a satisfactory solution is found or some
other termination condition (e.g., timeout) is satisfied.GAare
especially useful in providing approximate ‘optimal’ solu-
tions when other optimization techniques do not apply or are
too expensive, or the problem space is too large or complex.

GA are suitable for solving our problem of learning
DTMC because we view the problem as finding an optimal
DTMC model which not only maximizes the likelihood of
the observed system executions but also satisfies additional
constrains like having a small number of states. To apply GA
to solve our problem, we need to develop a way of encod-
ing candidate models in the form of chromosomes, define
operators such as mutation and crossover to generate new
candidate models, and define the fitness function to selection

123

Learning probabilistic models for model checking 695

better models. In the following, we present the details of the
steps in our approach.

4.2 Learn frommultiple executions

We first consider the setting where multiple system execu-
tions are available. Recall that in this setting, we are given
a set of strings
, from which we can build a tree repre-
sentation tree(
). Furthermore, a model is learned through
merging the nodes in tree(
). The space of different ways of
merging the nodes thus corresponds to the potential models
to learn. Our goal is to apply GA to search for the best model
in this space. In the following, we first show how to encode
different ways of merging the nodes as chromosomes.

Let the size of tree(
) (i.e., the number of nodes) be X
and let Z be the number of states in the learned model. A
way of merging the nodes is a function which maps each
node in tree(
) to a state in the learned model. That is, it
can be encoded as a chromosome in the form of a sequence of
integers 〈I1, I2, . . . , IX 〉where 1 ≤ Ii ≤ Z for all i such that
1 ≤ i ≤ X . Intuitively, the number Ii means that node i in
tree(
) ismapped into state Ii in the learnedmodel. Besides,
the encoding is done such that infeasible models are always
avoided. Recall that two nodes π1 and π2 can be merged
only if last(π1) = last(π2), which means that two nodes
with different last observation should not be mapped into
the same state in the learned model. Thus, we first partition
the nodes into |�| groups so that all nodes sharing the same
last observation are mapped to the same group of integers.
A chromosome is then generated such that only nodes in the
same group can possibly be mapped into the same state. The
initial population is generated by randomly generating a set
of chromosomes this way. We remark that in this way all
generated chromosomes represent a valid DTMC model.

Formally, the chromosome 〈I1, I2, . . . , IX 〉 represents a
DTMC M = (S, ıini t , Tr) where S is a set of Z states. Each
state s in S corresponds to a set of nodes in tree(
). Let
nodes(s) denote that set. Tr is defined such that for all states
s and s′ in M ,

Tr(s, s′) =
∑

x∈nodes(s)
∑

e∈�|〈s,e〉∈nodes(s′) L(x · 〈e〉)
∑

x∈nodes(s) L(x)
,

where the nominator is the total number of occurrence of
all the nodes grouped to state s and the denominator is the
total number that we observe a transition from a node in
state s to a node in state s′. Specifically, the initial dis-
tributions ıini t is defined such that for any state s ∈ S,
ıini t (s) = ∑

x∈nodes(s) L(x)/L(〈〉), where the nominator is

Algorithm 2 Model learning by GA from multiple execu-
tions
Require: tree(5) and the alphabet �
Ensure: A chromosome encoding a DTMC D
1: Let Z be |�|; Let Best be null;
2: repeat
3: Let population be an initial population with Z states;
4: Let generation be 1;
5: repeat
6: Let newBest be the fittest in population;
7: if newBest is fitter than Best then
8: Set Best to be newBest ;
9: end if
10: for all fit pairs (p1, p2) in population do
11: Crossover (p1, p2) to get children C1 and C2;
12: Mutate C1 and C2;
13: Add C1 and C2 into population;
14: Remove (p1, p2) from population;
15: end for
16: Select chromosomes with better fitness scores
17: generation ← generation + 1;
18: until generation > someT hreshold
19: Z ← Z + 1;
20: until Best is not improved
21: return Best

the number of occurrence of node 〈〉 and the denominator is
the total number that we observe a node in s right after 〈〉.2

Next, we define the fitness function. Intuitively, a chro-
mosome is good if the corresponding DTMC model M
maximizes the probability of the observed sample executions
and the number of states in M is small. We thus define the
fitness function of a chromosome as: log(PrM (
)) − μ ×
|M | × log|
| where |M | is the number of states in M and
|
| is the total number of letters in the observations and μ

is a constant which represents how much we favor a smaller
model size. The fitness function, in particular, the value of
μ, controls the degree of generalization. If μ is 0, tree(
)

would be the resultantmodel; whereas ifμ is infinity, amodel
with one state would be generated. We remark that this fit-
ness function is the same as the formula for computing the
BIC score in [34]. Compared to existing learning algorithms,
controlling the degree of generalization in our approach is
more intuitive (i.e., different value of μ has a direct effect
on the learned model). In particular, a single parameter μ is
used in our approach, whereas in existing algorithms [9,34],
a parameterμ is used to select the value of ε (based on a false
assumption of the BIC being concave), which in turn controls
the degree of generalization. From a user point of view, it is
hard to see the effect of having a different ε value since it
controls whether two nodes are merged in the intermediate
steps of the learning process.

2 Notice that if we consider node 〈〉 into consideration, the initial dis-
tribution will be 1 over 〈〉 since 〈〉 is not compatible with any other
nodes.

123

696 J. Wang et al.

Next, we discuss how candidate models with better fitness
score are selected for the next round of evolution. Selection
directs evolution toward bettermodels by keeping good chro-
mosomes and weeding out bad ones based on their fitness.
Two standard selection strategies are applied. One is roulette
wheel selection. Suppose f is the average fitness of a pop-
ulation. For each individual M in the population, we select
fM/ f copies of M . The other is tournament selection. Two
individuals are chosen randomly from the population and a
tournament is staged to determine which one gets selected.
The tournament is done by generating a random number r
between zero and 1, and comparing it to a predefined num-
ber p (which is larger than 0.5). If r is smaller than p, the
individual with a higher fitness score is kept. We refer the
readers to [26] for discussion on the effectiveness of these
selection strategies.

After selection, genetic operators like mutation and
crossover are applied to the selected candidates. Mutation
works by mapping a random node to a new number from
the same group, i.e., merging the node with other nodes with
the same last observation. For crossover, chromosomes in
the current generation are randomly paired and two chil-
dren are generated to replace them. Following standard
approaches [26], we adopt three crossover strategies.

– One-point crossover A crossover point is randomly cho-
sen, one child gets its prefix from the father and suffix
from the mother. Reversely for the other child.

– Two-point crossover Two crossover points are randomly
chosen, which results in two crossover segments in
the parent chromosomes. The parents exchange their
crossover segments to generate two children.

– Uniform crossover One child gets its odd bit from father
and even bit from mother. Reversely for the other child.

We remark that during mutation or crossover, we guarantee
that only chromosomes representing valid DTMC models
are generated, i.e., only two nodes with the same last obser-
vations are mapped to the same number (i.e., a state in the
learned model).

The details of our GA-based algorithm is shown as Algo-
rithm 2. Variable Z is the number of states in the learned
model. We remark that the number of states in the learned
model M is unknown in advance. However, it is at least the
number of letters in alphabet�, i.e., when all nodes in tree(5)
sharing the same last observation aremerged. Since a smaller
model is often preferred, the initial population is generated
such that each of the candidate models is of size |�|. The size
of the model is incremented by 1 after each round of evolu-
tion. Variable Best records the fittest chromosome generated
so far, which is initially set to be null (i.e., the least fit one).
At line 3, an initial population of chromosome with Z states
are generated as discussed above. The loop from line 5 to 18

Table 1 GA encoding with 4 states

a aa ab aac abd acd aacd

1 1 2 3 4 4 4

Table 2 GA encoding with 5 states

a aa ab aac abd acd aacd

1 1 2 3 4 4 5

then lets the population evolve through a number of genera-
tions, during which crossover, mutations and selection take
place. At line 19, we then increase the number of states in the
model in order to see whether we can generate a fitter chro-
mosome. We stop the loop from line 2 to 20 when the best
chromosome is not improved after increasing the number of
states. Lastly, the fittest chromosome Best is decoded to a
DTMC and presented as the learned model.

Example We use an example to illustrate how the above
approach works. For simplicity, assume we have the follow-
ing collection of executions
 = {〈aacd〉, 〈abd〉, 〈acd〉}
from the model shown in Fig. 1. There are in total 7 pre-
fixes of these execution (including the empty string). As a
result, the tree tree(
) contains 8 nodes. Since the alphabet
{a, b, c, d} has size 4, the nodes (except the root) are parti-
tioned into 4 groups so that all nodes in the same group have
the same last observation. The initial population contains a
singlemodelwith 4 states,where all nodes in the same groups
are mapped into the same state as shown in Table 1. After
one round of evolution, models with 5 states are generated
(by essentially splitting the nodes in one group to two states
as shown in Table 2, aacd is split from abd and acd) and
evaluated with the fitness function. The evolution continues
until the fittest score does not improve anymore when we add
more states.

4.3 Learn from a single execution

In the following, we describe our GA-based learning if there
is only one system execution. Recall that we are given a sin-
gle long system observation α in this setting. The goal is to
identify the shortest dependent history memory that yields
the most precise probability distribution of the system’s next
observation. That is, we aim to construct a part of tree(α)

which transforms to a “good” DTMC. A model thus can be
defined as an assignment of each node in tree(α) to either
true or false. Intuitively, a node is assigned true if and only
if it is selected to predict the next observation, i.e., the cor-
responding suffix is kept in the tree which later is used to
construct the DTMCmodel. A chromosome (which encodes

123

Learning probabilistic models for model checking 697

a model) is thus in the form of a sequence of boolean variable
〈B1, B2, . . . , Bm〉where Bi represents whether the i-th node
is to be kept or not. We remark that not every valuation of the
boolean variables is considered a valid chromosome. By defi-
nition, if a suffix π is selected to predict the next observation,
all suffixes of π are not selected (since using a longer mem-
ory as in π predicts better) and therefore their corresponding
value must be false. During mutation and crossover, we only
generate those chromosomes satisfying this condition so that
only valid chromosomes are generated.

A chromosome defined above encodes a part of tree(α),
which can be transformed into a DTMC following the
approach in [45]. Let M be the corresponding DTMC. The
fitness function is defined similarly as in Sect. 4.2. We define
the fitness function of a chromosome as log(PrM (α))−μ×
|M |×log(|α|)where PrM (α) is the probability of exhibiting
α inM ,μ is a constant that controls the weight of model size,
and |α| is the size of the input execution. Mutation is done
by randomly selecting one boolean variable from the chro-
mosome and flip its value. Notice that afterward, we might
have to flip the values of other boolean values so that the
chromosome is valid. We skip the discussion on selection
and crossover as they are the same as described in Sect. 4.2.

We remark that, compared to existing algorithms in learn-
ing models [9,34,35], it is straightforward to argue that the
GA-based approaches for model learning do not rely on the
assumption needed for BIC. Furthermore, the learned model
improves monotonically through generations.

5 Learning based on abstraction

Probabilistic model learning is potentially very expensive.
Imagine a systemwith many observable variables, the alpha-
bet size for learning will be large. For instance, the PRISM
model of egl protocol has dozens of integer or Boolean
variables [30,31]. Even worse, if there exist real-typed (e.g.
double or float) variables, the alphabet size will be infinite
which immediately renders learning infeasible. One solu-
tion to this problem is to apply abstraction to system traces
before learning and learn abstract system models based on
the abstract traces instead. Figure 4 shows an overview of
learning abstract models. Given the original system traces,
we first project each concrete state into the abstract state
space defined by some abstraction functions. Then, we apply
the above-mentioned learning algorithms to learn abstract
models from the abstract traces in a standard way. Thus, the
central question is, how should we perform abstraction to
obtain abstract traces?

In general, abstraction should be done at a ‘proper’ level.A
too coarse abstractionwould leave out toomuch information.
The learned model afterward may not be precise enough to
verify a given property. In contrast, the learning cost will

Traces Model

Abstraction

Learning

Learning
Abstract model Abstract traces

Fig. 4 An overview of learning an abstract model

keep high if the abstraction is too conservative and too many
details are kept. In the following, we present two kinds of
abstraction technique from literature and pose the remaining
research challenges to identify a ‘proper’ level of abstraction
in terms of verifying or falsifying a property.

5.1 Abstraction by filtering irrelevant variables

A direct approach is to take the properties to verify into
account and abstract away all the variables which are irrele-
vant to the properties. Suppose ϕ is the property to verify, V
is the set of all variables of the system and Vϕ is the set of vari-
ables that appeared inϕ.We abstract each systemobservation
e ∈ � by removing variables in {v|v ∈ V and v /∈ Vϕ}. By
doing so, we derive an abstract alphabet �Vϕ , where the size
of the abstract alphabet is reduced to the combination of the
variables relevant to the property only. We thus obtain the
abstract system traces by abstract each system observation
one by one. Afterward, we can apply a learning algorithm
described in the above sections to learn the abstract model.

5.2 Predicate abstraction

Abstraction by filtering irrelevant variables as described
above could improve the efficiency of learning in some
cases. However, if there remain real-typed variables after
the abstraction, the alphabet for learning will still be infi-
nite, which renders learning infeasible. In the following, we
present predicate abstraction, which is proposed in [16], to
tackle the infinite state space problem for learning.

A predicate ϕ is a Boolean expression over the set of sys-
tem variables V . Given a set of predicates {ϕ1, ϕ2, . . . , ϕn},
we can map a system observation into an abstract system
observation, which is a bit vector of length n and the i-th bit
is 1 if ϕi is evaluated to be true at current system observa-
tion and 0 otherwise. Thus, the alphabet size after predicate
abstraction is bounded by 2n even when the original alphabet
size is infinite. An example of predicate abstraction is given
in Fig. 5. Similarly, we can obtain the abstract system traces
by abstract each system observation one by one and learn the
abstract model based on the abstract system traces afterward.

123

698 J. Wang et al.

Fig. 5 An example of predicate abstraction given two predicates ϕ1 and
ϕ2. A black dot is a concrete system observation. An abstract system
observation 10 represents those concrete observations where ϕ1 is true
and ϕ2 is false

5.3 A ‘proper’ level of abstraction

A selection of variables or the set of predicates defines an
abstraction level over the system traces. The central ques-
tion is how to choose a ‘proper’ set of variables or predicates
which leads to a ‘proper’ level of abstraction. Intuitively, a
‘proper’ abstraction should just capture all the information
relevant to the property and based on which we learn the
abstract model. One basic heuristic is to take the property to
verify into account and only take those variables or predicates
that are relevant to the property as the abstraction strategies
described above. It is proved in [41] that this kind of abstrac-
tion can only work under certain conditions. One condition
is that the property ϕ we are verifying is the bounded frag-
ment of PLTL. Or alternatively, the learning algorithmwe are
using converges for non-determinism model learning [14] as
well. In these cases, we can guarantee the correctness of
Pr(M |� ϕ) = Pr(M# |� ϕ) in the limit (M# is the learned
abstract model). However, a deterministic learning algorithm
like AA may not converge anymore after we adopt abstrac-
tion [41], since the abstraction introduces non-determinism
in the trace level. As a result, we cannot reliably verify the
property on the learned abstract model, which is problem-
atic. Thus, how to identify a ‘proper’ level of abstraction in
general remains a research challenge.

6 Empirical study

We implemented both state-of-the-art and GA-based learn-
ing algorithms from both multiple executions and a single

execution together in a self-contained tool called Ziqian for
systematic comparison. The tool and its usage is available at
GitHub [54] with approximately 6K lines of Java code. The
tool makes use of a parallel evolutionary computation engine
called WatchMaker [15] for GA-based learning. ziqian also
supports learning at a user-defined abstraction level. Besides,
it has recently been extended to support automatic abstrac-
tion refinement to verify or falsify a given safety property.
More details could be found at [54] and [57].

In this work, since the primary goal of learning themodels
is to verify properties over the systems, we evaluate the learn-
ing algorithms by checking whether we can reliably verify
properties based on the learned model, by comparing verifi-
cation results based on the learned models and those based
on the actual models (if available). All results are obtained
using PRISM [32] on a 2.6GHz Intel Core i7 PC running
OSX with 8GB memory. The constant μ in the fitness func-
tion of learning by GA is set to 0.5.We acknowledge that the
learned models could be useful in many other ways and it is
beyond the scope of this work to evaluate whether they are
useful in general.

Our test objects can be categorized in two groups. The first
group contains all systems (brp, lse, egl, crowds, nand, and
rsp) from the PRISM benchmark suite for DTMCs [30] and
a set of randomly generated DTMC models (rmc) using an
approach similar to the approach in [50]. We refer the read-
ers to [30,31] for details on the PRISMmodels as well as the
properties to be verified. For these models, we collect multi-
ple executions. The second group contains two real-world
systems, from which we collect a single long execution.
One is the probabilistic boolean networks (PBN), which is a
modeling framework widely used to model gene regulatory
networks (GRNs) [48]. In PBN, a gene is modeled with a
binary valued node and the interactions between genes are
expressed by Boolean functions. For the evaluation, we gen-
erate random PBNs with 5, 8 and 10 nodes, respectively,
using the tool ASSA-PBN [38]. The other is a real-world raw
water purification system called the Secure Water Testbed
(SWaT) [49]. SWaT is a complicated systemwhich involves a
series of water treatments like ultra-filtration, chemical dos-
ing, dechlorination through an ultraviolet system, etc. We
regard SWaT as a representative complex system for which
learning is the only way to construct a model. Our evalua-
tion consists of the following parts (all models as well as the
detailed results are available at [55]). We have the following
findings by conducting the empirical study over the above
test subjects.

Finding 1. Assumptions required by existing learning
algorithms may not hold, which motivates our proposal of
GA-based algorithms. Existing learning algorithms [9,34]
require that the BIC score is a unimodal function of ε in
order to select the best ε value which controls the degree
of generalization. Figure 6 shows how the absolute value of

123

Learning probabilistic models for model checking 699

Fig. 6 How the absolute values of BIC score change over ε

BIC scores (|BIC|) of representative models change with ε.
It can be observed that this assumption is not satisfied and
ε is not controlling the degree of generalization nicely. For
example, the |BIC| (e.g., for brp, PBN and egl) fluctuate
with ε. Besides, we observe climbings of |BIC| for lse when
ε increases, but droppings for crowds, nand and rsp. What’s
worse, in the case (e.g., PBN) of learning from a single exe-
cution, if the range of ε is selected improperly, it is very likely
that an empty model (a tree only with root 〈〉) is learned.

Finding 2. Both GA and AA converge to more accurate
results if sufficient time for learning is given. In the rest of
the section, we adopt absolute relative difference (ARD) as
a measure of accuracy of different approaches. The ARD is
defined as |Pest − Pact |/Pact between the precise result Pact
and the estimated results Pest , which can be obtained by AA,
GA as well as SMC. A smaller ARD implies a better esti-
mation of the true probability. Figure 7 shows how the ARD
of different systems change when we gradually increase the
time cost from 30s to 30min by increasing the size of train-
ing data. We remark that some systems (brp, egl, lse) are not

applicable due to different reasons explained later. In gen-
eral, both AA and GA converge to relatively accurate results
when we are given sufficient time. But there are also cases
of fluctuation of ARD, which is problematic in reality, as in
such cases, we would not know which result to trust (given
the different verification results obtained with different num-
ber of sampled executions), and it is hard to decide whether
we have gathered enough system executions for reliable ver-
ification results.

Finding 3. Statistical model checking always produces
more accurate results, however, the learned model could be
useful for later analysis. We compare the accuracy of AA,
GA, and SMC for benchmark systems given the same amount
of time in Fig. 8. We remark that due to the discrimination of
system complexity (state space, variable number/type, etc.),
different systems can converge in different speed. For SMC,
we adopt the statisticalmodel checking engine of PRISMand
select the confidence interval method. We fix confidence to
0.001 and adjust the number of samples to adjust time cost.
We have the following observations based on Fig. 8. Firstly,
for most systems, GA results in more accurate results than
AA given same amount of time. This is especially true if
sufficient time (20m or 30m) are given. However, it should
be noticed that SMC produces significantly more accurate
results. Secondly, we observe that model learning works well
if the actual model contains a small number of states. Cases
like randommodels with 8 states (rmc-8) are good examples.
For systems with more states, the verification results could
deviate significantly (like nand-20-3, rsp-11).

Among our test subjects, PBN and SWaT are represen-
tative systems for which manual modeling is extremely
challenging. Furthermore, SMC is not applicable as it is
infeasible to sample the executions many times for these sys-
tems. We evaluate whether we can learn precise models in
such a scenario.

For PBN, we use the tool ASSA-PBN [38] to generate the
data to learn from. First, a set of steady states which repre-
sents whether a gene node is activated are generated. Notice

Fig. 7 Convergence of AA and GA over time. The numbers after the system of legends are one kind of system configuration

123

700 J. Wang et al.

Fig. 8 The comparison of accuracy of AA, GA, and SMC given same amount of time, which varies from 30s to 30min. The horizontal-axis point
represents a benchmark system with certain configuration in Fig. 7

that the number of states depends on the number of gene
nodes. Then, transition probabilities are assigned between
each state. In this way, we can evaluate the accuracy of the
learned model directly with the generating model by com-
paring the differences between the transition probabilities.
Following [48], we use mean squared error (MSE) to mea-
sure how precise the learned models are. MSE is computed
as follows: MSE = 1

n

∑n
i=1(Ŷi − Yi)2 where n is the num-

ber of states in PBN and Yi is the steady-state probabilities
of the original model and Ŷi is the corresponding steady-
state probabilities of the learned model. We remark that the
smaller its value is, the more precise the learned model is.

Table 3 shows the MSE of the learned models with for PBN
with 5, 8, and 10 nodes, respectively. Note that AA and GA
learn the same models and thus have the same MSE, while
GA always consumes less time. We can observe the MSEs
are very small, which means the learned models of PBN are
reasonably precise.

For the SWaT system, since it is a real-world system of
which we do not have the actual model, we must define
the preciseness of the learned model without referring to
the actual model. We propose to evaluate the accuracy of
the learned models by comparing the predicted observations
against a set of test data collected from the actual system.

Table 3 Results of PBN steady-state learning

Nodes # States Trajectory
size
(×103)

Time cost (s) MSE (×10−7) # Nodes # States Trajectory
size
(×103)

Time cost (s) MSE (×10−7)

PST GA PST GA

5 32 5 37.28 6.37 36.53 8 256 5 29.76 2.36 1.07

15 161.57 53.49 15.21 15 105.87 26.4 0.03

25 285.52 182.97 6.04 25 197.54 73.92 0.37

35 426.26 348.5 7.75 35 310.87 122.61 0.94

45 591.83 605.1 5.74 45 438.09 429.81 0.78

50 673.55 767.7 4.28 50 509.59 285.66 0.34

10 1024 5 902.69 266.74 1.78 10 1024 15 5340.54 2132.68 0.61

10 2772.56 1010.16 1.01 20 8477.24 3544.82 0.47

123

Learning probabilistic models for model checking 701

Table 4 Results of learned
abstract model of egl protocol

System Parameters Property Actual SMC AA GA

egl L = 2, N = 5 Unfair A 0.5156 0.505 0.4961 0.4961

Unfair B 0.4844 0.472 0.5039 0.5039

L = 2, N = 10 Unfair A 0.5005 0.525 0.4619 0.4619

Unfair B 0.4995 0.494 0.5381 0.5381

The intuition behind is that the learned model is considered
to be more precise if it could generate the testing data with
high probability. Thus, we compare the average probability
of generating each observation in the testing data referring to
the learned model, which is defined as P̄obs = P1/|td|

td , where
td is the test data, |td| is its length and Ptd is the probabil-
ity of generating td with the learned model, to evaluate how
good the models are. The higher the probability, the more
precise is the learned model considered to be. In particu-
lar, we apply steady-state learning proposed in [9] (hereafter
PST) andGA to learn from executions of different length and
observe the trends over time. We select 3 critical sensors in
the system (out of 50), named ait502, ait504 and pit501,
and learnmodels on how the sensor readings evolve over time
(a more complete case study can be found in [28]). During
the experiments, we find it very difficult to identify an appro-
priate ε for PST in order to learn a nonempty useable model.
Our GA-based approach however does not have such prob-
lem. Eventually we managed to identify an optimal ε value
and both PST and GA learn the same models given the same
training data. A closer look at the learned models reveals that
they are all first-order Markov chains. This makes sense in
the way that sensor readings in the real SWaT system vary
slowly and smoothly. Applying the learned models to predict
the probability of the test data (from another day with length
7000), we observe a very good accuracy. In our experiment,
the average generating probability using the learned model
for ait502 and pit501 is over 0.97, and the number is 0.99
for ait504, which are reasonably precise.

Finding 4. GA learns models with much fewer states than
AA. Models with fewer states are better than models with
many states since they are easier for humans to understand
the system.We thus compare the number of states learned by
GA and AA, respectively. The results are shown in Table 5.
It can be seen that GA usually learns models with signifi-
cantly fewer states than models learned by AA. The reason
is that GA always starts with a model with the number of
states being the size of the learning alphabet. The model size
increases only when adding a state will significantly improve
our generalization of the system traces. On the other hand,
the model learned by AA may contain a lot more states. The
reasons are as follows. Note that every prefix node is poten-
tially a system state in the learnedmodel,which ismuchmore
than the alphabet size. AA compares the difference of future

Table 5 Comparison of number of states in the learned models by AA
and GA respectively

Data size nand-20-3 crowds-5-5 rsp-7 rmc-8

AA GA AA GA AA GA AA GA

10,000 1717 88 5062 97 181 128 168 8

20,000 1749 90 8285 100 128 128 181 8

30,000 1714 90 10,232 100 128 128 44 8

40,000 1866 90 13,269 100 128 128 21 8

50,000 2040 90 16,190 101 128 128 24 8

distributions of two prefix nodes and merges them if they
are similar enough decided by parameter ε. A strict bound ε

may lead to a model with even more states. Notice that for
small models with few states, AA and GA may agree on the
learned models.

Finding 5. Abstraction reduces the cost of learning sig-
nificantly, however, it is worth investigating how abstraction
should be done under different scenarios. Learning does not
work when the state space of underlying system is too large
or even infinite. If there are too many system variables to
observe (or when float/double typed variables exist), which
induces a very large (or even infinite) state space, learning
will become infeasible. For example, to verify the fairness
property of egl protocol, we need to observe dozens of inte-
ger variables. Our experiment suggests that AA and GA take
unreasonable long time to learn a model, e.g., more than
days. In order to apply learning in this scenario, we thus have
to apply abstraction on the sampled system executions and
learn from the abstract traces.Only by doing so,we are able to
reduce the learning time significantly. In fact, to learnmodels
in reasonably long time (e.g. within hours), we already man-
ually select variables, i.e., filtering some irrelevant variables,
for nand and crowds protocol. In the process, we find that
if we abstract away all the relevant variables or else the set
of variables is not selected properly, the verification results
will always be 1 for unbound properties. Meanwhile, we also
applied predication abstraction for egl protocol using the two
predicates in the property to verify and successfully verified
the properties. Notice that the properties to verify for egl pro-
tocol are unbounded. However, how to identify the ‘proper’
level of abstraction (select the right set of variables or predi-
cates) is highly non-trivial in general and is to be investigated
in the future (Table 4).

123

702 J. Wang et al.

Fig. 9 Inconsistencies between the verification results based on the
learned model and the actual results

Finding 6. Both learning and statistical model checking
suffer from the rare event problem. The rare event problem
is a major threat to the validity of both learning and statis-
tical model checking. For the brp system, the probability of
satisfying the given properties are very small. As a result,
a system execution satisfying the property is unlikely to be
observed and learned from. Consequently, the verification
results based on the learned models are 0. It is confirmed that
standard SMC is also ineffective for these properties since it
is also based on random sampling. One possible solution to
tackle rare event problem is to combine importance sampling
with model learning, which we regard as future direction.

Finding 7. There are other complications which might
make learning ineffective. For the lse protocol, the verifi-
cation results based on the learned models may deviate from
actual results for properties that show the probability of elect-
ing a leader in L rounds, with a different value for L . Figure 9
shows how the verification results change when we change
the bounded step L . Notice that AA and GA learn exactly
the same models. While the actual results ‘jump’ twice as L
increases, the results based on the learned model are smooth
and deviate from actual results significantly when L is 3, 4 or
5, while results based on SMC are consistent with the actual
results.One possible reason is that there are someunfortunate
state merging, which merges the states which will never sat-
isfy the property to those states who will satisfy the property.

7 Related work

This work is initially inspired by the recent work on adopt-
ing machine learning to learn a variety of system models
(e.g., DTMC, stationarymodels andMDPs) formodel check-
ing in order to avoid manual model construction [9,34–37].
This work is an attempt to empirically study whether such
kind of learning approaches are applicable in real-world set-
tings. In [41], an abstract model is learned for statistical
model checking. There is also a recent effort which aims to

build an abstract probabilistic model to verify safety PLTL
properties [57]. They start with the coarsest abstraction and
iteratively addmore details (in the form of a new predicate) to
refine the abstraction until a property is verified or falsified.

The study of such learning algorithms is often based on
grammar inference [13],which traces back to automata learn-
ing [1,51]. Existing probabilistic model learning algorithms
are often based on algorithmsdesigned for learning determin-
istic (probabilistic) finite automata, which are investigated
and evidenced in many previous works including but not
limited to [7,8,10,18–20,25,44,45,52]. It is also related to
the work on Markov chain estimation [17,56].

SMC [12,33,47,62,63] is the main competitor of learning-
based approaches for model checking when a system model
is not available. There are some recent work on extending
SMC to unbounded properties [43,60]. Besides, our proposal
on adopting genetic algorithms is related to work on applica-
tions of evolutionary algorithms for system analysis. In [22],
genetic algorithm is integrated to abstraction refinement for
model checking.

This work is also remotely related to the work in [46],
which learns continuous time Markov chains. In addition,
in [6], learning algorithms are applied in order to verify
Markov decision processes, without constructing explicit
models. The work is also remotely related to the previous
work comparing the effectiveness of PMC and SMC [61].
Lastly, this work relies on the PRSIM model checker as the
verification engine [32] and the case studies are taken from
various practical systems and protocols including [23,24,27,
38–40,42].

8 Conclusion

In thiswork,we investigate the validity of probabilisticmodel
learning for the purpose of probabilistic model checking. We
also propose a novel GA-based approach to overcome lim-
itations of existing probabilistic model learning algorithms.
To reduce learning cost and make learning more realistic,
we introduce two kinds of abstraction techniques for learn-
ing abstract models. Lastly, we conducted an empirical study
to systematically evaluate the effectiveness and efficiency of
all these probabilistic model learning approaches compared
to statistical model checking over a variety of systems. We
also discuss the potential challenges to adopt probabilistic
model learning for model checking to real-life applications
and introduce a possible direction to solve the problem.

References

1. Angluin, D.: Learning regular sets from queries and counterexam-
ples. Inf. Comput. 75(2), 87–106 (1987)

123

Learning probabilistic models for model checking 703

2. Angluin, D.: Identifying languages from stochastic examples
(1988). Technical Report YALEU/DCS/RR-614 (Yale University,
Department of Computer Science)

3. Baier, C., Katoen, J.-P., et al.: Principles of Model Checking, vol.
26202649. MIT Press, Cambridge (2008)

4. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time
properties. In: FSTTCS2006: Foundations of SoftwareTechnology
and Theoretical Computer Science, pp. 260–272. Springer (2006)

5. Bianco, A., De Alfaro, L.: Model checking of probabilistic and
nondeterministic systems. In: Foundations of Software Technology
and Theoretical Computer Science, pp. 499–513. Springer (1995)

6. Brázdil, T., Chatterjee, K., Chmelík, M., Forejt, V., Křetínskỳ, J.,
Kwiatkowska, M., Parker, D., Ujma, M.: Verification of Markov
decision processes using learning algorithms. In: Automated Tech-
nology for Verification and Analysis, pp. 98–114. Springer (2014)

7. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars
by means of a state merging method. In: Grammatical Inference
and Applications, pp. 139–152. Springer (1994)

8. Carrasco, R.C., Oncina, J.: Learning deterministic regular gram-
mars from stochastic samples in polynomial time. Inf. Theor. Appl.
33(1), 1–19 (1999)

9. Chen,Y.,Mao,H., Jaeger,M., Nielsen, T.D., Larsen,K.G., Nielsen,
B.: Learning Markov models for stationary system behaviors. In:
NASA Formal Methods, pp. 216–230. Springer (2012)

10. Clark, A., Thollard, F.: Pac-learnability of probabilistic determin-
istic finite state automata. J. Mach. Learn. Res. 5, 473–497 (2004)

11. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT
Press, Cambridge (1999)

12. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-
physical systems. In: Automated Technology for Verification and
Analysis, pp. 1–12. Springer (2011)

13. De laHiguera, C.: Grammatical Inference, vol. 96. CambridgeUni-
versity Press, Cambridge (2010)

14. Denis, F., Esposito, Y., Habrard, A.: Learning rational stochastic
languages. In: COLT, vol. 4005, pp. 274–288. Springer (2006)

15. Dyer,D.W.:Watchmaker framework for evolutionary computation.
http://watchmaker.uncommons.org. Accessed 23 Apr 2018

16. Graf, S., Saïdi, H.: Construction of abstract state graphs with pvs.
In: International Conference on Computer Aided Verification, pp.
72–83. Springer (1997)

17. Guédon, Y.: Estimating hidden semi-Markov chains from discrete
sequences. J. Comput. Graph. Stat. 12(3), 604–639 (2003)

18. Guttman, O., Vishwanathan, S.V.N., Williamson, R.C.: Learnabil-
ity of probabilistic automata via oracles. In: International Con-
ference on Algorithmic Learning Theory, pp. 171–182. Springer
(2005)

19. Habrard, A., Bernard, M., Sebban, M.: Improvement of the state
merging rule on noisy data in probabilistic grammatical infer-
ence. In: EuropeanConference onMachine Learning, pp. 169–180.
Springer (2003)

20. Hammerschmidt, C.A., Verwer, S., Lin, Q., State, R.: Inter-
preting finite automata for sequential data. arXiv preprint
arXiv:1611.07100 (2016)

21. Havelund, K., Roşu, G.: Synthesizing monitors for safety proper-
ties. In: Tools and Algorithms for the Construction and Analysis
of Systems, pp. 342–356. Springer (2002)

22. He, F., Song, X., Hung, W.N.N., Gu, M., Sun, J.: Integrating
evolutionary computation with abstraction refinement for model
checking. IEEE Trans. Comput. 59(1), 116–126 (2010)

23. Leen, H., Sellink, M.P.A., Vaandrager, F.W.: Proof-Checking a
Data Link Protocol. Springer, Berlin (1994)

24. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett.
35(2), 63–67 (1990)

25. Heule,M.J.H.,Verwer, S.: Exact dfa identification using sat solvers.
In: InternationalColloquiumonGrammatical Inference, pp. 66–79.
Springer (2010)

26. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT
Press, Cambridge (1992)

27. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks.
Inf. Comput. 88(1), 60–87 (1990)

28. Wang, J., Sun, J., Jia, Y., Qin, S., Xu, Z.: Toward ‘verifying’ a water
treatment system. arXiv preprint arXiv:1712.04155 (2016)

29. Christopher, K., Pierre, D.: Stochastic grammatical inference with
multinomial tests. In: Grammatical Inference: Algorithms and
Applications, pp. 149–160. Springer (2002)

30. Kwiatkowska,M., Norman, G., Parker, D.: The PRISMbenchmark
suite. In: Proceedings of the 9th International Conference onQuan-
titative Evaluation of SysTems (QEST’12), pp. 203–204. IEEE CS
Press (2012)

31. Kwiatkowska, M., Norman, G., Parker, D.: PRISM DTMC bench-
mark models. http://www.prismmodelchecker.org/benchmarks/.
Accessed 23 Apr 2018

32. Kwiatkowska, M., Norman, G., Parker, D.: Prism: Probabilistic
symbolic model checker. In: Computer Performance Evaluation:
Modelling Techniques and Tools, pp. 200–204. Springer (2002)

33. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking:
an overview. In: International Conference on Runtime Verification,
pp. 122–135. Springer (2010)

34. Mao,H., Chen,Y., Jaeger,M., Nielsen, T.D., Larsen,K.G., Nielsen,
B.: Learning probabilistic automata for model checking. In: 2011
Eighth International Conference onQuantitative Evaluation of Sys-
tems (QEST), pp. 111–120. IEEE (2011)

35. Mao,H., Chen,Y., Jaeger,M., Nielsen, T.D., Larsen,K.G., Nielsen,
B.: LearningMarkov decision processes for model checking. arXiv
preprint arXiv:1212.3873 (2012)

36. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G.: Learn-
ing deterministic probabilistic automata from a model checking
perspective. Mach. Learn. 105(2), 255–299 (2016)

37. Mediouni, B.L., Nouri, A., Bozga, M., Bensalem, S.: Improved
learning for stochastic timed models by state-merging algorithms.
In: NASA Formal Methods Symposium, pp. 178–193. Springer
(2017)

38. Mizera, A., Pang, J., Yuan,Q.: ASSA-PBN: a tool for approximate
steady-state analysis of large probabilistic Boolean networks. In:
Proceedings of the 13th International Symposium on Automated
Technology for Verification and Analysis, LNCS. Springer (2015).
http://satoss.uni.lu/software/ASSA-PBN/. Accessed 23 Apr 2018

39. Norman, G., Parker, D., Kwiatkowska, M., Shukla, S.: Evaluating
the reliability of nand multiplexing with prism. IEEE Trans. Com-
put. Aided Des. Integr. Circuits Syst. 24(10), 1629–1637 (2005)

40. Norman, G., Shmatikov, V.: Analysis of probabilistic contract sign-
ing. J. Comput. Secur. 14(6), 561–589 (2006)

41. Nouri, A., Raman, B., Bozga, M., Legay, A., Bensalem, S.: Faster
statistical model checking bymeans of abstraction and learning. In:
International Conference on Runtime Verification, pp. 340–355.
Springer (2014)

42. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transac-
tions. ACM Trans. Inf. Syst. Secur. (TISSEC) 1(1), 66–92 (1998)

43. Rohr, C.: Simulative model checking of steady state and time-
unbounded temporal operators. In: Transactions on Petri Nets and
Other Models of Concurrency VIII, pp. 142–158. Springer (2013)

44. Ron, D., Singer, Y., Tishby, N.: On the learnability and usage of
acyclic probabilistic finite automata. In: Proceedings of the Eighth
Annual Conference onComputational LearningTheory, pp. 31–40.
ACM (1995)

45. Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning
probabilistic automata with variable memory length. Mach. Learn.
25(2–3), 117–149 (1996)

46. Sen, K., Viswanathan, M., Agha, G.: Learning continuous time
Markov chains from sample executions. In: Proceedings of the
First International Conference on the Quantitative Evaluation of
Systems, 2004. QEST 2004, pp. 146–155. IEEE (2004)

123

http://watchmaker.uncommons.org
http://arxiv.org/abs/1611.07100
http://arxiv.org/abs/1712.04155
http://www.prismmodelchecker.org/benchmarks/
http://arxiv.org/abs/1212.3873
http://satoss.uni.lu/software/ASSA-PBN/

704 J. Wang et al.

47. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of
black-box probabilistic systems. In: Computer Aided Verification,
pp. 202–215. Springer (2004)

48. Shmulevich, I., Dougherty, E.R., Zhang, W.: From boolean to
probabilistic boolean networks asmodels of genetic regulatory net-
works. Proc. IEEE 90(11), 1778–1792 (2002)

49. SUTD. Secure water treatment testbed. http://itrust.sutd.edu.sg/
research/testbeds/secure-water-treatment-swat/. Accessed 23 Apr
2018

50. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical
automata constructions. In: Logic for Programming, Artificial
Intelligence, and Reasoning, 12th International Conference, LPAR
2005, Montego Bay, Jamaica, December 2–6, 2005, Proceedings,
pp. 396–411 (2005)

51. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11),
1134–1142 (1984)

52. Verwer, S., de Weerdt, M., Witteveen, C.: A likelihood-ratio test
for identifying probabilistic deterministic real-time automata from
positive data. In: International Colloquium on Grammatical Infer-
ence, pp. 203–216. Springer (2010)

53. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math.
Stat. 16(2), 117–186 (1945)

54. Wang, J.: ziqian. https://bitbucket.org/jingyi_wang/ziqian_
develop. Accessed 23 Apr 2018

55. Wang, J.: ziqian evaluation. https://bitbucket.org/jingyi_wang/
ziqian_evaluation. Accessed 23 Apr 2018

56. Wang, J., Chen, X., Sun, J., Qin, S.: Improving probability
estimation through active probabilistic model learning. In: Interna-
tional Conference on Formal Engineering Methods, pp. 379–395.
Springer (2017)

57. Wang, J., Sun, J., Qin, S.: Verifying complex systems probabilisti-
cally through learning, abstraction and refinement. arXiv preprint
arXiv:1610.06371 (2016)

58. Wikipedia. Golden section search. https://en.wikipedia.org/wiki/
Golden-section_search. Accessed 23 Apr 2018

59. Younes, H.L.: Verification and planning for stochastic processes
with asynchronous events. Technical report, DTIC Document
(2005)

60. Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of
probabilistic properties with unbounded until. In: FormalMethods:
Foundations and Applications, pp. 144–160. Springer (2011)

61. Younes,H.L.S.,Kwiatkowska,M.,Norman,G., Parker,D.:Numer-
ical vs. statistical probabilistic model checking. Int. J. Softw. Tools
Technol. Transf. 8(3), 216–228 (2006)

62. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of dis-
crete event systems using acceptance sampling. In: Computer
Aided Verification, pp. 223–235. Springer (2002)

63. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model
checking with a focus on time-bounded properties. Inf. Comput.
204(9), 1368–1409 (2006)

123

http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/
http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/
https://bitbucket.org/jingyi_wang/ziqian_develop
https://bitbucket.org/jingyi_wang/ziqian_develop
https://bitbucket.org/jingyi_wang/ziqian_evaluation
https://bitbucket.org/jingyi_wang/ziqian_evaluation
http://arxiv.org/abs/1610.06371
https://en.wikipedia.org/wiki/Golden-section_search
https://en.wikipedia.org/wiki/Golden-section_search

	Learning probabilistic models for model checking: an evolutionary approach and an empirical study
	Citation

	Learning probabilistic models for model checking: an evolutionary approach and an empirical study
	Abstract
	1 Introduction
	2 Preliminary
	3 Probabilistic model learning
	3.1 Learn from multiple executions
	3.2 Learn from a single execution

	4 Learning through evolution
	4.1 Genetic algorithms
	4.2 Learn from multiple executions
	4.3 Learn from a single execution

	5 Learning based on abstraction
	5.1 Abstraction by filtering irrelevant variables
	5.2 Predicate abstraction
	5.3 A `proper' level of abstraction

	6 Empirical study
	7 Related work
	8 Conclusion
	References

