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In multiagent systems, social norms serves as an important technique in regulating agents’ behaviors to en-

sure effective coordination among agents without a centralized controlling mechanism. In such a distributed

environment, it is important to investigate how a desirable social norm can be synthesized in a bottom-up

manner among agents through repeated local interactions and learning techniques. In this article, we propose

two novel learning strategies under the collective learning framework, collective learning EV-l and collective

learning EV-g, to efficiently facilitate the emergence of social norms. Extensive simulations results show that

both learning strategies can support the emergence of desirable social norms more efficiently and be ap-

plicable in a wider range of multiagent interaction scenarios compared with previous work. The influence

of different topologies is investigated, which shows that the performance of all strategies is robust across

different network topologies. The influences of a number of key factors (neighborhood size, actions space,

population size, fixed agents and isolated subpopulations) on norm emergence performance are investigated

as well.
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1 INTRODUCTION

In multiagent systems (MASs), social norms (conventions) play an important role in regulating
agents’ behaviors to ensure effective coordination among agents. Social norms have been suc-
cessfully applied in a wide variety of practical distributed systems such as electronic institutions
(Criado et al. 2011), norm-supported computational societies (Alexander et al. 2009), and normative
ad-hoc networks (Alexander et al. 2005).

There usually exist two major approaches of obtaining a social norm: the top-down approach
(Morales et al. 2013; Agotnes and Wooldridge 2010) and the bottom-up approach (Sen and Airiau
2007; Yu et al. 2013, 2016; Yang et al. 2016). The top-down approach investigates how to efficiently
synthesize an effective social norm for all agents beforehand, while the bottom-up approach fo-
cuses on investigating how an effective social norm can emerge through repeated local interactions
among agents. In distributed multiagent environments, since there does not exist a centralized con-
troller and the desirable norm of the system may vary when the environment changes, which is
unpredictable beforehand, it is not feasible to precompute any norm for agents to employ before
their interaction starts. Thus the bottom-up approach seems to be more suitable in this kind of
distributed and dynamic environment. Investigating what kind of mechanism can facilitate agents
towards a consistent and desirable social norm through local interaction is important to ensure the
effective coordination among agents and overall high performance of the system. One significant
observation is that a norm (convention) can be defined as an equilibrium that everyone is expected
to follow during interactions, whereas multiple equilibria may coexist, and norms can be evolved
through local learning (Young 1996; Sen and Airiau 2007). Following this observation, a natural
research question to ask is how a desirable social norm can emerge in a bottom-up manner within
a given (local) interaction context through the way of local learning?

Until now, much effort has been devoted by researchers from the normative MASs area to in-
vestigating the emergence of norms in agent societies through different manners of learning. Sen
and Airiau (2007) first proposed applying a number of existing multiagent learning algorithms to
the social learning framework to investigate the emergence of social norms through learning in
a population of agents. However, their social learning framework is based on the assumption of
random interaction and does not consider the underlying topology, which may not be able to ac-
curately reflect the actual interaction patterns in the real world. Later, a great deal of work (Sen
and Sen 2010; Villatoro et al. 2009, 2011; Yu et al. 2013) extended this social learning framework by
taking into consideration complex networks (e.g., small-world and scale-free network) to model
the underlying topology of the agent society, and a number of learning strategies and mechanisms
have been proposed to facilitate the convergence to social norms through local interaction.

One commonly adopted abstraction of a norm in previous work is that it corresponds to a Nash
equilibrium where all agents choose identical actions, which usually can be modeled as a coordi-
nation game (see Figure 1(a)). This kind of abstraction covers a number of practical scenarios, such
as distributed robots coordinating on which target object to work on together and wireless nodes
coordinating on which channel to reserve for control message (Mihaylov et al. 2014). However, it
is often the case that the norms in practical scenarios correspond to other forms of Nash equilib-
ria requiring agents to choose different actions, which cannot be (efficiently) handled in previous
work (Yu et al. 2013). One representative example is considering that two drivers arrive at a road
intersection simultaneously from two neighboring roads (Sen and Airiau 2007). To avoid colli-
sions, one feasible norm is that each driver always yields to the driver on his/her left-hand side.
This kind of scenario can be modeled as a two-player anti-coordination game (see Figure 1(b)),
in which the norms correspond to the Nash equilibria (i.e., (a,b) and (b,a)) with complementary
actions for each player. Furthermore, more complicated scenarios involve multiple Nash equilibria
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Efficient and Robust Emergence of Norms through Heuristic Collective Learning 23:3

Fig. 1. Payoff matrices for (a) coordination game (CG), (b) anti-coordination game (ACG), (c) coordination

game with high penalty (CGHP), and (d) fully stochastic coordination game with high penalty (FSCGHP).

while only some of them correspond to norms. In this kind of scenario, it is very likely for agents
to converge to the non-norm equilibrium to avoid the high mis-coordination cost, and this issue
has not been addressed by previous work (Sen and Airiau 2007; Yu et al. 2013) yet. One specific
example is shown in Figure 1(c), in which there exist two equilibria (a,a) and (c, c ) representing
the norms and a non-norm equilibrium (b,b). Due to the high penalty cost for miscoordination
(i.e., reaching (a, c ) or (c,a)), it is very likely for agents to converge to the non-norm equilibrium
(b,b). Last but not least, it would be more challenging for the norm(s) to evolve if the interaction
environment becomes stochastic. One representative example is shown in Figure 1(d), which is a
stochastic version of the CGHP game in Figure 1(c). This game shares the same norm with the
deterministic version in Figure 1(c), except that the payoff for each outcome is non-deterministic
due to the stochasticity of the interaction environment.

To tackle the above challenges, we propose two novel learning strategies: collective learning EV-l

and collective-learning EV-g, under the networked collective learning framework, which is applicable
to a wide variety of scenarios for norm emergence. Under the networked collective learning frame-

work, there are a population of agents where each agent is allowed to interact with its neighbors
determined by the underlying network topology. The interaction between each pair of agents is
modeled as a two-player m-action strategic game. During an interaction, each agent is assigned
randomly to be the row or column player. During each round, each agent first learns and estimates
the best action to play with each neighbor separately and then synthesizes an overall best-response
action to interact with all neighbors. In collective learning EV-l, the best-response action is synthe-
sized based on local exploration while it is based on global exploration in collective learning EV-g.
Besides, to overcome the possible side-effects of high mis-coordination cost and uncertainty of the
environment, we propose that each agent’s learning strategy should incorporate both the opti-
mistic assumption and the relative frequency information of each action based on its experience
with its neighbors. At the end of each round, each agent updates its learning strategy against each

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 4, Article 23. Publication date: October 2017.



23:4 J. Hao et al.

neighbor based on its past experience accordingly. We extensively evaluate the learning perfor-
mance of both collective learning EV-l and collective learning EV-g and show that both strategies
enable agents to reach consistent norms more efficiently in a wider range of games than previous
approaches. We also empirically find that the performance of collective learning EV-l and EV-g is
robust across different topologies. The influence of different parameters and factors (neighbor-
hood size, population size, action space, fixed agents and isolated subpopulation) on the learning
performance of collective learning EV-l and EV-g are also investigated.

The remainder of the article is organized as follows. In Section 2, the networked collective learn-
ing framework and the collective learning strategy are described. In Section 3, we present the
learning performance of collective learning EV-l and collective learning EV-g under the networked
collective learning framework in different types of interaction scenarios by comparing it with pre-
vious work, and also investigate the influence of different parameters. In Section 4, we give a brief
overview of previous work on norm emergence in MASs. Last, Section 5 concludes with pointing
out future directions.

2 NETWORKED COLLECTIVE LEARNING FRAMEWORK

Under the networked collective learning framework, there are a population of agents in which
each agent’s neighbors are determined by the underlying network topology. Three major topolo-
gies are considered: ring network, small-world network (Réka and Barabási 2002), and scale-free
network (Barabási et al. 2000). Each agent i learns its policy (i.e., which norm to adopt) through
repeated pairwise interactions with all its neighbors each round. The interaction between each
pair of agents is modeled as a two-player, m-action stage game. These stage games typically have
pure strategy Nash equilibria. In each round, each agent is paired with a randomly selected agent
from its neighborhood to interact. Following the setting in previous work (Sen and Airiau 2007),
one agent is randomly chosen as the row player and the other agent as the column player during
each interaction. The agents are assumed to know their roles (states), that is, either as row player
or column player, before the start of each interaction.

The overall networked collective learning framework is presented in Algorithm 1. At the begin-
ning of each round t , each agent first determines the set St

i,r and St
i,c of its current best-response

policy against each of its neighbors as either the row and column player, respectively (line 3).
Formally, we have

St
i,r =

{
P t,r

i,1 , P
t,r
i,2 , . . . , P

t,r
i,N (i )

}
(1)

and

St
i,c =

{
P t,c

i,1 , P
t,c
i,2 , . . . , P

t,c
i,N (i )

}
, (2)

where N (i ) is agent i’s neighborhood size and P t,r
i,k

and P t,c
i,k

are agent i’s current best response

policy towards its neighboring agent k when it is the row and column player, respectively.
Following that, the sets St

i,r and St
i,c of best response actions are synthesized into a single

best response policy P t,r
i,∗ and P t,c

i,∗ , respectively (line 4), which will be used as the overall strategy
to interact with all of its neighbors in the current round of interaction t . This models people’s
collective decision-making process in which people make collective decisions based on multiple
feedbacks. How the agents determine the best responses against their neighbors and synthesize the
overall best-response actions will be described in detail in Section 2.2. In each round, each agent
i has the opportunity to interact with each of its neighbors once. The interaction between each
agent and each of its neighbors is modeled as a two-player stage game, in which their roles are
assigned randomly (line 6–11). During each interaction, each agent uses its best response policy
(P t,r

i,∗ or P t,c
i,∗ ) to play the game with its partners and receives a reward accordingly. It is assumed
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ALGORITHM 1: Overall Description of the Networked Collective Learning Framework

1: for a number of rounds do

2: for each agent i do

3: Determine its best-response policy set St
i,r and St

i,c respectively.

4: Synthesize its single best-response policy as the row and column player P t,r
i,∗ and P t,c

i,∗
based on St

i,r and St
i,c .

5: end for

6: for each agent i do

7: for each neighboring agent j do

8: Play a stage game under role s (randomly assigned)
9: Update its learning strategy against each neighbor j using 〈P t,s

i,∗ ,R
t
i, j 〉.

10: end for

11: end for

12: end for

that each agent can only perceive the action and payoff of its own during each interaction. At the
end of each interaction, each agent updates its learning strategy towards each neighbor based on
its current round experience (line 9).

2.1 Network Topology

We focus on three representative network topologies (ring network, small-world network, and
scale-free network) in this article and briefly describe the characteristic of each topology in this
section (Wang and Chen 2003).

—Ring network: As a widely studied and regular network, in a typical ring network, each node
connects to k nearest-neighbor nodes on each side. Each node shares the same connectivity
degree in a ring network. The diameter and average path length of the ring network is
increased with the size N of the network and goes to infinity as N → ∞. The clustering
coefficient of the ring network is increased with the connectivity degree k , and the network
becomes fully connected eventually. We denote a ring network as RW k

N
, where N is the size

of the network and k is the connectivity degree of the network.
—Small-world network: In a typical small-world network, its connectivity (degree) distribution

peaks at an average value and decays exponentially on both sides, that is, the connection
degree of most nodes is the same. This kind of networks is also featured by high clustering

coefficients and short average path lengths. We denote a small-world network as SW
k,ρ
N

,
whereN is the size of the network,k is its average connectivity degree, and ρ is the re-wiring
probability indicating the degree of the network randomness. The small-world network
reflects the “what a small world” phenomenon reflected in many practical networks such as
collaboration networks (e.g., the co-authorship of research articles) and the social influence
networks (Réka and Barabási 2002).

—Scale-free network: Different from small-world networks, the connectivity distribution of a
scale-free network follows the power-law distribution, that is, for each node, the probability
of being connected to k adjacent nodes is proportional to k−γ (γ is a constant). Intuitively
this indicates most of the nodes have very few connections while only a few nodes have very
large connections. This kind of “scale-free” feature has been observed in many real-world
networks such as the connection network of web pages (Barabási et al. 2000) and citation
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23:6 J. Hao et al.

network of research articles (Redner 1998). A scale-free network can usually be denoted as
SF

γ

N
, where N represents the network size.

2.2 Collective Learning Strategy

In general, to achieve coordination on efficient norms, an agent’s behavior varies depending on
its current role (its perceived state). For example, considering the problem of “rule of the road” in
which two drivers arrive at an intersection simultaneously from two neighboring roads and decide
which one yields to avoid collision (Sen and Airiau 2007). In this case, one desirable norm is that
the agent on the right side always yields to agents coming from its left side. This requires any pair
of encountering agents to choose different actions, and thus a suitable coordination policy must
be a set of policies specifying an action for each state to avoid any possible miscoordinations. For
example, one intuitive policy would be “always yielding to the car on the left-hand side”, which
can be represented as “Stop when the neighboring car is on your left-hand side and move when
the neighboring car is on you right-hand side.”

Formally, we propose that each agent i holds a Q-value Qi, j (s,a) for each action a under each
state s ∈ {Row,Column} against each of its neighbors j, which keeps a record of action a’s past
performance against neighbor j and serves as the basis for making decisions. Given the learning
information at the end of each round t , each agent i updates its Q-values for each neighbor j
following Equation (3),

Qt+1
i, j (s,a) = Qt

i, j (s,a) + α t
i, j (s ) ×

[
Rt

i, j (s,a) −Qt
i, j (s,a)

]
, (3)

whereRt
i, j (s,a) is agent i’s immediate reward in the current round when interacting with its neigh-

bor j by choosing action a and α t
i, j (s ) is its current learning rate in state s for its neighbor j.

There are three major factors that may influence an agent’s success rate of converging to norms.
One is its neighbor agents’ behaviors, which is changing dynamically and usually leads to low pay-
off due to the mis-coordination among agents. Thus the agents are likely to be motivated to sub-
optimal norms to avoid high mis-coordination cost through learning. One specific strategic game
modeling this kind of situation is shown in Figure 1(c), in which the agents are very liable to con-
verge to the suboptimal outcome (b,b) due to the high mis-coordination cost of −30. To deal with
the influence of the neighbor agents’ behaviors, we update the Q-value in an optimistic manner
by ignoring the penalty due to mis-coordination. Another factor is the stochastic property of the
environment, which leads to the problem of how the agents should distinguish between the explo-
ration of the opponents and the stochasticity of the environment. We can handle the stochasticity
of the environment by taking the relative frequencies of different rewards of an action into consid-
eration during the Q-value update. The last factor is the network-based learning environment in
which each agent interacts with multiple interaction partners each round and may learn towards
different directions (different optimal actions may be learned for different partners), thus impeding
the emergence of a consistent norm in the system. We can handle this issue by employing synthesis
strategies for each agent to come up with a single action to interact with all interaction partners.

To this end, we employ the Frequency Maximum Q-value heuristic (FMQ) (Kapetanakis and
Kudenko 2002) as the updating heuristic to compute the estimated values of the actions. The FMQ
heuristic was proposed to overcome the mis-coordination problem in fixed-agent repeated inter-
action framework. This heuristic is not only based on the optimistic assumption but also takes
into consideration the relative frequency of the maximum reward being received for each action.
In the networked collective learning framework, since each agent interacts with all its neighbors
each round, we propose applying the FMQ heuristic on the combination of its past history and its
current round experience with all neighbors.
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Specifically, for each agent i , let us denote its learning experience in the current round t as
P t

i = {〈at
i,1,R

t
i,1〉, . . . , 〈at

i,N (i )
,Rt

i,N (i )
〉}, where N (i ) is its neighborhood size. Also let us classify P t

i

into two distinct subsets P t
i,r and P t

i,c based on the role of the agent i (namely Row (r) or Column
(c) player) during each interaction. Based on the FMQ heuristic, each agent i assesses the relative
performance EVi, j (s,a) of each action a against the neighboring agent j under the current state s
as follows:

EV t+1
i, j (s,a) = Qt+1

i, j (s,a) + c × f t+1 (s,a) × Rt
max (s,a), (4)

where

—Rt
max (s,a) = max{R | 〈a,R〉 ∈ P t

i,s }, s ∈ {r , c}, which is the highest payoff in the set P t
i,s ,

— f t+1 (s,a) is the frequency of receiving the reward of Rt
max (s,a) until now by choosing

action a,
—c is the weighting factor determining the relative importance of Rt

max (s,a).

The value of f t+1 (s,a) is obtained based on the combination of the past history and the current-
round experience with all neighbors and is computed as follows:

f t+1 (s,a) = f t (s,a) +
1

t + 1
[f t

s (s,a) − f t (s,a)], (5)

where f t
s (s,a) is the average frequency of receiving the reward of Rt

max (s,a) by choosing action
a based on the current round experience P t

i,s only.
Based on its corresponding set of EV-values, each agent chooses its best response action against

each neighbor under each state using the ϵ-greedy mechanism. Specifically, each agent chooses
its action with the highest EV-value with probability 1 − ϵ (randomly selection in case of a tie)
to exploit the action with best estimated performance currently and makes random choices with
the rest of probability ϵ to ensure that those actions with potentially better performance have the
opportunity to be explored.

Finally, each agent synthesizes a single best-response action for both roles based on the sets
St

r and St
c of best-response actions against each neighbor under the row and column role. This

synthesis process imitates people’s collective decision-making process in which people usually
consult with multiple alternative opinions before making the final decision (Polikar 2006). Given
St

r = {at
i (1),at

i (2), . . . ,at
i (N (i ))} and St

c = {bt
i (1),bt

i (2), . . . ,bt
i (N (i ))}, respectively, each agent

synthesizes the overall best-response actions under both roles based on the majority voting. The
relative preference pt

i (s,a) of each action a in state s ∈ {r , c} is determined by the number of times
that this action is selected as the best-response action against different neighbors. Formally, it can
be represented as follows:

pt
i (s,a) =

⎧⎪⎨⎪⎩
∑N (i )

1 I (a,at
i (i )) if s = r∑N (i )

1 I (a,bt
i (i )) if s = c

, (6)

whereN (i ) is the neighborhood size of agent i , and I (a,at
i (i )) and I (a,bt

i (i )) represent the indicator
function defined as follows:

I (a,a′) =

{
1 if a = a′

0 otherwise
. (7)

Agent i’s overall best-response actions in round t (namely at,∗
i and bt,∗

i ) are determined as the
actions with the highest preferences under the row (r) and column (c) states, respectively. At the
early stage of learning, the agents may not have an accurate estimation of the EV-value of each ac-
tion against each neighbor, and thus the synthesized actions may not be the optimal best-response
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23:8 J. Hao et al.

actions. It is necessary for the agents to make additionally random explorations initially to ex-
plore those actions with possibly better performance. We distinguish two general ways of making
explorations: local exploration and global exploration.

Local exploration. The exploration is made before synthesizing the overall best-response
action. Each agent makes explorations to determine the best-response action against each
neighbor in each state based on the ϵ-greedy mechanism as previously mentioned. The
synthesized best-response action is always selected as the action with the highest prefer-
ence. We denote the collective learning strategy with local exploration as collective learn-

ing EV-l.
Global exploration. The exploration is made after the best-response action has been syn-
thesized. The best-response action against each neighbor under each state is always de-
termined as the action with the highest EV-value without the ϵ-greedy exploration. After
that, each agent synthesizes the overall best-response action and then makes explorations
following the ϵ-greedy mechanism. We denote the collective learning strategy with global
exploration as collective learning EV-g.

3 EXPERIMENTAL SIMULATION

3.1 Performance Evaluation

We evaluate the performance of both collective learning EV-l and collective learning EV-g in different
types of interaction scenarios by comparing it with previous work: collective learning-l and g (Yu
et al. 2013, 2014) and pairwise learning (Sen and Airiau 2007). Pairwise learning only allows each
agent to interact with one randomly selected neighbor each round. To make the comparison fair,
we modify pairwise learning to allow each agent to interact and learn with all neighbors each
round, which we denote as pairwise learning-c. Thus all learning strategies we compare here are
evaluated under the same framework.

Unless mentioned otherwise, the initial learning rate α and the initial exploration rate ϵ are
set to 0.8 and 0.9, respectively, which are all decreased exponentially (α/ϵ = αinit/ϵinit ∗ 0.9t ).
The initial Q-values are randomly generated within the range of [0,1]. Another key parameter is
the weighting factor c , which reflects the optimistic degree of an agent’s updating strategy. We
have extensively analyzed the influence of different values of c on the norm emergence perfor-
mance and found that there would be no significant performance increase when c becomes larger
than 10 across all games. Thus, in the rest of all simulation results, the weighting factor c is set
to 10. The average connection degree of all networks is set to 6. All experiments are conducted
within a population of 100 agents in the small-world network, and all results are averaged over
1,000 runs. The influence of different network topologies will be discussed in Section 3.2 in detail.

Coordination Game (CG). We start with the simplest testbed of the coordination game (Fig-
ure 1(a)) adopted in Yu et al. (2013), in which there exist two different norms: (a,a) and (b,b). This
game represents the “rule of the road” scenario where two cars decide which side of road to drive,
and two norms correspond to either driving on the left or on the right. Figure 2(a) shows the
dynamics of the average payoff of agents as the function of the number of rounds for different
learning strategies. We can see that all strategies enable agents to coordinate towards achieving
an average payoff of 1. Figure 2(b) shows the average frequency of converging to each outcome
under collective learning EV-l over 1000 runs. We can see that both norms ((a,a) and (b,b)) can
be reached with equal frequency (converged in the same number of runs). This is reasonable,
since the coordination game itself is symmetric, and there is no difference between these two
norms. Besides, collective learning EV-l and EV-g converge faster than collective learning-l and g,
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Fig. 2. The dynamics of the average payoffs of agents in coordination game under different approaches.

Fig. 3. The dynamics of the average payoffs of agents in anti-coordination games under different approaches.

respectively, and pairwise learning-c is the slowest one. Another observation is that learning
strategies with local explorations converge faster than strategies with global explorations.

Anti-Coordination Game (ACG). Next we consider a scenario where individuals need to choose
different actions to reach a consensus on which norm to adopt, which can be naturally modeled
as an anti-coordination game in Figure 1(b). One practical example is considering two cars in a
road junction choosing which car should yield to another one. Both norms correspond to yielding
to either the left-hand or right-hand car. We also consider another non-symmetric variant of this
anti-coordination game by changing the payoff profile under (a,b) from (2, 1) to (0, 0). This variant
game consists of one optimal norm (b,a) and one suboptimal norm (a,b) to model the preferences
on different norms.

Figure 3(a) shows the dynamics of the average payoff of agents with the number of rounds aver-
aged over the above two anti-coordination games for different learning strategies. We can observe
that the agents using collective learning EV-l/EV-g and the pairwise learning-c are able to success-
fully achieve the highest average payoff of 1.5, while fail for both collective learning-l and g (Yu
et al. 2013). Lower average payoff (about 7–11%) is achieved for both collective learning-l and g
due to high miscoordination on a consistent norm. The advantage of collective EV-l/EV-g would
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Fig. 4. The dynamics of the average payoffs of agents in CGHP under different approaches.

be more obvious when the payoff difference between successful and unsuccessful coordination are
enlarged. The reason is that in collective learning-l/g, the agents cannot distinguish their roles and
always adopt the same action when they are assigned as different roles. Thus mis-coordination oc-
curs when two agents during an interaction choose the same action. Another observation is that
both collective learning EV-l and EV-g converge faster than pairwise learning-c. We hypothesize
that it is because agents can gain more experience under the collective learning framework and
also the action synthesis mechanism enables agents to coordinate with each other more efficiently.
Finally, Figure 2(b) gives the expected frequency of converging to different outcomes under collec-
tive learning EV-l averaged over 1,000 runs. We can see that all agents can eventually reach either
of the norms (a,b) or (b,a) with equal frequency.

Coordination Game with High Penalty (CGHP). Next we consider one variant of the coordina-
tion game with high mis-coordination cost as shown in Figure 1(c). In this game, similarly to the
coordination game, there exist two desirable norms (a,a) and (c, c ). However, this game also has
one suboptimal norm (b,b), to which the agents are very likely to converge due to the high mis-
coordination cost of −30 when reaching (a, c ) or (c,a).

Figure 4(a) shows the dynamics of the average payoff of agents using different learning strate-
gies. From Figure 4(a), we can see that the agents can successfully reach one consistent norm
(achieve the average payoff of 10) eventually using both collective learning EV-l and EV-g un-
der the collective learning framework. In contrast, the agents fail to reach norm (actually reach
the subnorm (b,b)) and only achieve the average payoff of 7 under both collective learning-l/g
(Yu et al. 2013) and pairwise learning-c (Sen and Airiau 2007). The reason is that collective learn-
ing EV-l/EV-g is able to prevent agents from reaching those outcomes with high mis-coordination
cost partially due to the incorporation of the optimistic assumption. For collective learning-l/g and
pairwise learning-c, the agents are intimidated by the high cost of −30 when reaching either (a, c )
or (c,a) due to mis-coordination at the early stage and thus converge to the non-norm outcome
(b,b) eventually. Besides, Figure 2(b) illustrates the expected frequency of converging to different
outcomes under collective learning EV-l in CGHP averaged over 1,000 runs. From Figure 2(b), we
can see that all agents can eventually reach either of the norms (a,a) or (c, c ) with equal frequency.

Fully Stochastic Coordination Game with High Penalty (FSCGHP). Finally, we consider the fully
stochastic version of the CGHP shown in Figure 1(d). In FSCGHP, each outcome is associated with
two possible payoffs, and the agents receive one of them with probability 0.5, which models the
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Fig. 5. The dynamics of the average payoffs of agents in FSCGHP under different approaches.

uncertainty of the interaction. This game is in essence the same with the CGHP in which there exist
two desirable norms (a,a) and (b,b) but is more challenging to achieve. Figure 5(a) illustrates the
dynamics of the average payoff of agents employing collective learning EV-l/EV-g and collective
learning-l/g (Yu et al. 2013) and pairwise learning (Sen and Airiau 2007), respectively.

The results are similar as the CGHP: The agents employing both collective learning EV-l and EV-
g are able to reach a consistent norm under the collective learning framework while fail using other
learning strategies. Both collective learning-l/g and pairwise learning converge to the suboptimal
outcome (b,b). Since collective learning EV-l/g takes into consideration frequency information, it
is able to overcome the noises from the environment. In contrast, other approaches fail for two
reasons: (1) They might mistakenly consider the outcome (b,b) as the optimal one that produces
the highest payoff 14 with probability 0.5, and (2) the high mis-coordination cost of (a, c ) and (c,a)
makes agents stay away from reaching the outcomes (a,a) and (c, c ). Last, we provide the expected
frequency of converging to different outcomes under collective learning EV-l averaged over 1,000
runs in Figure 2(b). It is obvious that all agents can eventually reach either of the norms (a,a) or
(c, c ) with equal frequency. We notice that there is a sharp increase in the percentage of agents
reaching (b,b) around 300 rounds. We hypothesize this is due to agents’ inaccurate estimation of
the frequency of achieving the maximum payoff by choosing action b. This inaccurate estimation
lead to the consequence that the estimated EV-value of action b is temporarily higher than the
rest of actions (see Equation (4)). After sufficient rounds of interactions, the frequency estimation
becomes accurate, and thus the EV-values of action a (or c) becomes the highest.

Summary and Discussion. From previous results, we can see that both collective learning EV-l
and EV-g are able to support norm emergence in a much wider variety of interaction scenarios
than previous work (Sen and Airiau 2007; Yu et al. 2013). Besides, two important observations
can be found here: (1) Agents converge to norms faster under collective learning framework than
social learning framework. In other words, collective learning framework is more efficient than
the social learning framework in terms of norm emergence, since under the collective learning
framework each agent interacts with all neighbors each round and synthesizes all the interactions
and thus learns faster. (2) Agents converge to norms faster using local exploration than global
exploration under the collective learning framework. The agents are able to make more efficient
explorations under the local exploration scheme and thus evolve norms faster, since the agents
make independent explorations against each neighbor under local exploration scheme, while only
one exploration is made under the global exploration scheme.
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Table 1. Average Number of Rounds Needed Before Converging to a Consistent Norm

Average No. Collective Collective Collective Collective pairwise

of Rounds learning EV-l learning EV-g learning-l learning-g learning

Small-world 132 /138/ 277/
443

261/ 271/ 623/
674

133/ X/ X/ X 327/ X/ X/ X 263/ 271/
X/ X

Scale-free 131/ 141/ 287/
486

259/ 259/ 641/
659

144/ X/ X/ X 323/ X/ X/ X 264/ 268/
X/ X

Ring 136/ 143/ 292/
431

265/ 272/ 638/
674

146/ X/ X/ X 332/ X/ X/ X 268/ 268/
X/ X

Random 137/ 148/ 293/
456

268/ 275/ 650/
682

147/ X/ X/ X 337/ X/ X/ X 270/ 276/
X/ X

3.2 Evaluation Under Different Network Topologies

The previous section has shown the superior learning performance of both collective-learning EV-
l and EV-g using the small-world network as the underlying topology. In this section, we further
evaluate the performance of collective-learning EV-l and EV-g under a number of different net-
work topologies compared with previous approaches. Three representative network topologies
are considered here: ring network, small-world network, and scale-free network. Small-world and
scale-free networks are two representative network topologies modeling real-world community
structures. We also consider the case of random network where there is no fixed network topol-
ogy and each agent simply interacts with a fixed and same number of agents randomly selected
from the system each round. To make the evaluation results comparable, the number of agents
that each agent interacts with in the random network is set to be equal to the expected connection
degree (average neighbors of each agent) of the above three topologies, which are set to 6. Other
parameters are set to the same as Section 3.1.

Table 1 lists the average number of rounds required before convergence for all learning strategies
under different network topologies for all four types of games (each entry contains the results for
the four games and “X” denotes that agents fail to converge to one consistent norm). Note that All
the results are averaged over 1,000 times.

From Table 1, we can see that the results share similar patterns across all network topologies as
follows:

—Both collective learning EV-l and collective learning EV-g are always able to achieve coordi-
nation on norms for all four types of games;

—Both collective learning-l and collective learning-g can only succeed in coordination games,
while fail in the rest of games;

—Pairwise learning can succeed in both coordination and AC games, while fail in the rest of
games.

—for all networks, it generally takes longer time to converge to norms (or fails to converge)
when the game becomes more challenging.

From the above results, we can observe that the performance of collective learning EV-l and EV-g

is robust towards different network topologies. Also collective learning EV-l can enable agents to
converge to norms in all different types of games and more efficiently than all other approaches.
Another observation is that the underlying topology itself actually has no influence on the norm
emergence for all the approaches we evaluated. To evolve norms through local learning, it does
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Fig. 6. The dynamics of the average payoffs of agents for collective learning EV-l under the fully connected

network.

not matter how the agents are actually interconnected in the system. The key factor is the way that
each agent interacts with each other (determined by the learning framework) and how agents learn
and make decisions through interaction (controlled by the learning strategy). The norm emergence
performance is independent of the network topology and the identities of agents that they interact
with (all agents are assumed to adopt the same learning strategy).

To further validate our hypothesis, we consider an extreme case—a fully connected network in
which each agent is connected to all the rest of agents in the system. Each agent interacts with all
other agents each round under all the previous approaches. We evaluate the norm convergence rate
of all the previous approaches under the fully connected network. Simulation results show that the
convergence rate is increased for all approaches we considered here. We give two representative
results of collective learning EV-l under coordination game and penalty game for illustration in
Figures 6(a) and (b), respectively. From both figures, we can observe that the average number of
rounds needed before convergence is significantly reduced for both cases when the underlying
topology is changed from a small-world network to a fully connected network.

3.3 Influence of the Size of Neighborhood, Population, and Action Space

Next we evaluate the influences of other parameters on norm emergence, which are indepen-
dent of the network topologies. We only present the results for collective learning EV-l under the
small-world network averaged over coordination games. The payoffs of the coordination games
are randomly generated and the results are averaged over 1,000 runs. The parameter settings fol-
low the setting in Section 3.1 except the parameter being evaluated is changed. The results for
collective learning EV-g are similar and omitted.

Influences of the neighborhood size. Figure 7(a) shows the dynamics of average payoffs of agents
when the average neighborhood size varies. We can observe that the norm emergence rate becomes
faster with the increase of the average neighborhood size. This is because the agents become more
clustered with the increase of the average neighborhood size, and agents with a long distance
become closer to each other. Therefore, agents need fewer interactions to reach a consistent norm
when the neighborhood size is increased.

Influences of the size of the population. Figure 7(b) shows the dynamics of average payoffs of
agents when the population size varies. We can see that the rate of norm convergence is delayed
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Fig. 7. The influence of different parameters on the learning performance of agents.

as the population size increases. Since agents make collective decisions based on local interactions
only, the increase of the population size requires more efforts for agents to reach a consistent norm.

Influences of the number of actions. Figure 7(c) shows the dynamics of average payoffs of agents
when the agents’ action space varies. We can see that the increase of the action space results in
the delayed convergence of norms. This is because a larger action space indicates the existence of
more suboptimal actions, and the agents need more time and experience to distinguish between
the optimal action and the rest of suboptimal ones before reaching a consistent norm.

3.4 Influence of Fixed Agents

From the results in Section 3.1, we can see that all norms are evolved with equal frequency over
multiple runs if multiple norms coexist. This is reasonable, since all norms in the games we eval-
uated here are symmetric and the agents do not have any preference over different norms. In this
section, we investigate the extraneous influence from outside on the direction of norm emergence.
Specifically we consider injecting a small number of agents with fixed behaviors (adopting a par-
ticular norm already). We study the influence of this small amount of fixed agents on the overall
norm emergence of the system. For this study, we use the CGHP game (Figure 1(c)) and consider
a population of 1,000 agents using collective learning EV-l. Similar results can be observed across
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Fig. 8. Influence of fixed agents.

all the previous games we considered. The behavior of the fixed agents is adopting the norm of
choosing action a under each state. The location of each fixed agent is randomly selected for all
network topologies.

Figure 8 shows the frequency of the two norms are evolved when the number of fixed agents is
increased gradually under the four network structures. For all four networks, initially both norms
((a,a) and (c, c)) are evolved with equal frequency. As the number of fixed agents increases, the
frequency of evolving norm (a,a) is gradually increased and reaches 1 eventually. On the other
hand, the number of fixed agents required for the population to converge to norm (a,a) with 100%
frequency varies for different network topologies: Random > Small-world > Scale-free > Ring.
Intuitively, for a random network, it requires the least number of fixed agents, since it allows
interaction between any pair of agents, thus accelerating the spread speed of the fixed agents’
influence to the rest of the population. In contrast, for the rest of topologies, the information
transmission speed is bounded by their average path length. Besides, for small-world and scale-
free networks, a fixed agent may be assigned to the node with very large number of connections (a
hub), and thus it is expected to have better performance than ring networks, which can be verified
from our simulation results.
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Fig. 9. Norm emergence in isolated subpopulations.

3.5 Norm Emergence in Isolated Subpopulations

In human society, we can observe the existence of contradictory norms in different isolated so-
cieties/countries. For example, the “rule of the road” regarding which side of road to drive is dif-
ferent in different countries. In this section, we study how this phenomenon can be replicated in
our collective learning framework. We consider two groups of agents that have high intra-group
interaction frequency but rare inter-group interaction frequency. We are interested in investigat-
ing whether different norms can be emerged between these two isolated subgroups and when the
same norm can be evolved among them. For our study, we consider two subpopulation of equal
size (500 agents per subpopulation) and use the CGHP game and collective learning EV-l for illus-
tration purpose. Similar results can be observed across all the previous games we considered. For
each agent, during its interaction with its neighbors, it interacts with each of its neighbors with
probability 1-p, while interacting with one agent randomly selected from another subpopulation
with probability p.

Figure 9 shows the dynamics of the frequency of converging to a consistent norm (a,a) or (c,c)
when the interaction frequency between subpopulations is increased gradually under the four
network structures. Initially when there is no interaction between the two subpopulations, these
two subpopulations evolve their norms independently. Thus we can see that the total frequency of
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converging to a consistent norm is 0.5. For 50% of the runs, the two subpopulations evolve different
norms. With the interaction frequency p increased, we can see that the frequency of converging
to a consistent norm is increased gradually. For all four networks, the two subpopulations can al-
ways succeed in evolving towards a consistent norm when their inter-subpopulation interaction
frequency p exceeds certain threshold. Besides, by comparing the results among the four topolo-
gies, we observe that random network performs best: It only requires 10% of random interaction
between subpopulations to reach a consistent norm with 100% frequency. We hypothesize that it
is due to the fastest information exchange speed in random network, since it allows an agent to
interact with any other agents with equal probability.

4 PREVIOUS WORK

Until now, much research effort has been devoted to investigating the emergence of norms in agent
societies through local interaction in the bottom-up manner. Shoham and Tennenholtz (1997) first
investigated the norm emergence problem in agent society based on a simple and natural strategy—
the highest cummulative reward (HCR). Sen and Airiau (2007) later proposed a social learning
framework to investigate the emergence of social norms in a population of agents using three
existing representative multiagent learning approaches in anti-coordination game. However, this
framework only allows random interaction among agents and does not take into consideration the
fact that in practice agents’ interaction might be constrained by the underlying topologies they
are situated in.

Later, a great deal of work (Sen and Sen 2010; Villatoro et al. 2009) extended this social learning
framework by taking into consideration complex network topologies (i.e., the small-world and
scale-free network) to model the underlying interaction of the agent society and investigated the
influence of different network topologies and different system parameters (e.g., population size,
neighborhood size) on the overall learning performance of converging to social norms. Villatoro
et al. (2011) employed two social instruments (namely rewiring and observation) to facilitate the
emergence of norms in agent society through dissolving the metastable subnorms. Simulation
results showed that the combination of observation and rewiring enables agents to coordinate on
norms by eliminating the subnorms efficiently. However, all these studies are based on the simple
interaction protocol that each agent is only allowed to interact with one randomly chosen neighbor
each round. In real-life situations, individuals may interact with multiple neighbors simultaneously
and also make collective decisions based on the multiple available choices, which is not modeled
in the social learning framework. Besides, only coordination game and anti-coordination game are
considered in previous work, which cannot handle more complicated games such as penalty game
and climbing game.

Yu et al. (2013, 2014) proposed two strategies (collective learning-l and collective learning-g) to
promote the emergence of norms where agents are allowed to make collective decisions within
networked societies. The authors focused on the “rule of the road” example modeled as a two-
player coordination game and showed that their collective learning framework can promote faster
norm convergence compared with social learning framework. However, their framework is de-
signed only for the special case of coordination game. Similarly, Yu et al. (2016) recently propose
a novel learning model to study the consensus formation problem among a population of agents.
Each agent is allowed to adjust its behavior based on its own opinion and the guided one, which is
generated following evolutionary game theory. However, in practice, the norm emergence problem
can be much more complex and challenging, which may require agents to coordinate on differ-
ent actions and also require agents to have the ability of overcoming high mis-coordination cost
and the noise of the environment. All the above challenges cannot be handled by their proposed
strategies.
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Recently, a number of hierarchical learning strategies (Yu et al. 2015; Yang et al. 2016) have
also been proposed to improve the norm emergence rate for the huge action space problem. For
example, in Yang et al. (2016), subordinate agents report their information to their supervisors,
while supervisors can generate instructions (rules and suggestions) based on the information col-
lected from their subordinates. Subordinate agents heuristically update their strategies based on
both their own experience and the instructions from their supervisors. Experimental results show
that introducing hierarchical organization into agent society can significantly increase the norm
emergence rate.

Fixed strategy agents play a critical role in influencing the direction of norm emergence and
have received wide range of attention in previous work (Sen and Airiau 2007; Marchant et al.
2015; Franks et al. 2013; Griffiths and Anand 2012; Genter et al. 2015; James et al. 2015). Fixed
strategy agents are those who always select the same action regardless of its efficiency or others’
choices. Previous work has shown that inserting relatively small numbers of fixed strategy agents
can significantly influence much larger populations when placed in networked social learning
framework.

There also exist another line of work (Matlock and Sen 2009; Griffiths and Luck 2010a, 2010b;
Griffiths 2008; Hao and Leung 2013; Chan et al. 2015) investigating effective mechanism (e.g., tag-
based mechanism) to facilitate norm emergence in selfish agent-based systems. Griffiths and Luck
(2010b) investigated the question of how a suitable set of norms can be established in a group
of selfish agents. They proposed a tag-based interaction protocol and explored different factors
that affect the adoption and longevity of cooperative norms in tag-based interaction environment.
McDonald and Sen (2009, 2007) proposed three new tag mechanisms facilitate cooperation among
selfish agents. The first tag mechanism is called Tag matching patterns (one and two-sided). Each
agent is equipped with both a tag and a tag-matching string, which determines the interaction
pattern among agents. The second mechanism is payoff sharing mechanism, which requires each
agent to share part of its payoff with its opponent. This mechanism is shown to be effective in pro-
moting socially optimal outcomes in both the prisoner dilemma game and the anti-coordination
game; however, it can be applied only when side-payment is allowed. The last mechanism they
propose is called a paired reproduction mechanism. It is a special reproduction mechanism that
makes copies of matching pairs of individuals with mutation at corresponding place on the tag of
one and the tag-matching string of the other at the same time. The purpose of this mechanism is
to preserve the matching between this pair of agents after mutation to promote the survival rate
of cooperators. Simulation results show that this mechanism can help sustaining the percentage of
agents coordinating on socially optimal outcomes at a high level in both the prisoner dilemma and
anti-coordination games. To summarize, all the work in this line focuses on the non-cooperative
environment and investigate effective incentive mechanism to induce selfish agents towards so-
cially optimal norms. However, our line of work focuses on the cooperative environment and how
to overcome the stochasticity and dynamics in distributed environment to achieve efficient norm
emergence.

5 CONCLUSION AND FUTURE WORK

We proposed two novel learning strategies for agents to converge to consistent norms through
local interaction in different distributed multiagent environments under the collective learn-
ing framework. Extensive simulation shows that collective learning EV-l and EV-g can enable
agents to reach consistent norms more efficiently and in a wider variety of games compared with
previous approaches under both collective learning and social learning framework. The influ-
ence of different system parameters is also investigated. We find that the topology itself has no
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significant influence on the norm emergence and norm emergence rate is increased with the in-
crease of population size, action space, and the decrease of neighborhood size.

We empirically showed that the heuristic learning strategies under the collective learning frame-
work is robust to the underlying network topology in terms of norm emergence, it would be in-
teresting to further investigate how this desirable property can be theoretically verified. Another
worthwhile direction is to apply the heuristic learning strategies to other multiagent coordination
problems such as coordination in cooperative games under the collective learning framework. Last,
it would also be worthwhile to investigate how the norm emergence rate can be further improved
using abstraction techniques such as hierarchical multiagent learning (Makar et al. 2001).
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