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ABSTRACT
Sequential user behavior modeling plays a crucial role in online
user-oriented services, such as product purchasing, news feed con-
sumption, and online advertising. The performance of sequential
modeling heavily depends on the scale and quality of historical
behaviors. However, the number of user behaviors inherently fol-
lows a long-tailed distribution, which has been seldom explored. In
this work, we argue that focusing on tail users could bring more
benefits and address the long tails issue by learning transferrable
parameters from both optimization and feature perspectives. Specif-
ically, we propose a gradient alignment optimizer and adopt an
adversarial training scheme to facilitate knowledge transfer from
the head to the tail. Such methods can also deal with the cold-start
problem of new users. Moreover, it could be directly adaptive to
various well-established sequential models. Extensive experiments
on four real-world datasets verify the superiority of our framework
compared with the state-of-the-art baselines.

CCS CONCEPTS
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1 INTRODUCTION
With the rapid development of the Internet, the applications of user
sequential scenarios have become essential and pervasive, such as
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e-commerce system, news/articles suggestion, and click-through
rate (CTR) prediction [12, 13, 30–32]. In such applications, each
user’s behaviors can be represented as sequences in chronological
orders, and his/her future behaviors can be predicted with given
historical behaviors. Modeling users’ complex sequential behaviors
is challenging and critically important for providing a personalized
recommendation in real-world applications [29].
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Figure 1: Histogram of the number of users over the number
of user’s behaviors of the Amazon Music dataset.

Generally, the performance of sequential user behavior modeling
heavily depends on the scale and quality of historical behaviors. To
achieve the desired performance, it is required to have enough his-
torical behaviors for each user for sufficient modeling. In real-world
applications, however, the number of user’s behaviors inherently
follows a long-tailed distribution as shown in 1, in which the num-
ber of historical behaviors of per user varies significantly from
hundreds or thousands for head users to as few as one for tail users
[1, 24]. Although existing approaches for sequential user behavior
modeling achieve promising results on those few data-rich head
users, they leave many data-poor tail users ill-served. In fact, this
common property of real-world datasets encourages a skewed user
behavior prediction policy where many tail users are modeled far
worse than others.

In contrast, focusing on tail users can bring more benefits: (1) Al-
though head users take a large share of total user-item interactions,
the number of tail users is much larger than that of head users.
Improving the performance of tail users can significantly increase
the retention rate and scale of users, thereby producing massive
profits. (2) Compared with the performance over head users where
is good enough and has limited room for improvement, tail users
embrace relatively large improvement, which means the endeavor
to explore the tail users can bring much more improvements. (3)
Attention on the tail users can also boost the performance on the
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head. The infrequent patterns lie in the tail could provide a comple-
mentary understanding of the head. (4) In practice, when a learned
model is deployed in an online setting, it requires to deal with new
users who have no interactions available during training phase [7].
Focusing on those more diverse and noisy tail users is helpful for
learning a robust model that can generalize well on new users.

Given these issues with conventional sequential models, how can
we learn a model that is focusing on improving recommendation
accuracy for badly-modeled tail users? While it focuses on the
tail, could we enhance the general performance of both head users
and tail users? Could it improve the performance of new users
simultaneously?

In this paper, we aim to address the long-tailed sequential user be-
havior modeling by learning transferrable parameters. The key idea
is that some internal information is more transferrable across users,
while others can cause interference. Encouraging the expression of
such information during training can improve the performance of
tail users, thereby generating an unbiased model which can perform
well on both long and tail users. Such a model can also deal with
the cold-start problem of new users that are common in real-world
applications. Specifically, we address the problem of learning trans-
ferrable parameters from both the optimization perspective and
feature perspective. In optimization perspective, we develop a
gradient alignment optimization method, which could maximize
transfer while minimizing interference across users. In the learning
process, we update a mini-batch of users with gradient descent.
For each pair of users, the gradient angle implies the transferrable
ability between these two users. The more consistent the directions
of the gradients, the more knowledge they can share. Based on this,
we impose an auxiliary loss to maximize the dot product between
the gradients generated by different users. In feature perspective,
we introduce a discriminator which takes a sequential embedding
as input and classifies whether it belongs to a head user or a tail
user. As the model achieves equilibrium, the discriminator cannot
well differentiate head users from tail users. Consequently, head
users are mixed with tail users in the embedding space. In this way,
the bias caused by a large amount of data from head users could be
reduced, thus facilitating knowledge transfer from the head to the
tail.

The main contributions of this work are summarized as follows:

• To the best of our knowledge, this is the first work that
addresses the long-tailed sequential user behavior modeling.
We argue that focusing on tail users can bring more benefits
and achieve this by learning transferrable parameters.
• To learn transferrable parameters, we propose a gradient
alignment optimizer to transfer knowledge across users from
the optimization perspective. Moreover, we introduce an
adversarial training method to learn frequency-agnostic se-
quential embedding, which facilitates knowledge transfer
from the feature perspective. The proposed method could be
adaptive to various well-established sequential models, such
as GRU4REC [8], CASER [26] and SASR[9].
• We conduct extensive experiments by evaluating the pro-
posed method on real-world datasets, and show that it out-
performs the existing state-of-the-art baselines for sequential
user behavior modeling task.

2 RELATEDWORK
In this section, we will review several lines of works closely related
to this paper, including sequential user behavior modeling, gradient
alignment, and adversarial training.

2.1 Sequential User Behavior Modeling
User behavior modeling, which captures users’ preferences from
behavior data, is critically important since it contributes significant
improvement for real-world applications. Researchers have pro-
posed various approaches, from traditional collaborative filtering
models [10, 15] to deep representation learning models [18, 37].
These models focus on mining the static relationships between
users and items, ignoring the dynamics of users’ preferences im-
plied in sequential interactions.

Nowadays, sequential user behavior modeling has attracted con-
siderable attention due to its superiority in capturing item-to-item
sequential patterns. Early work [19, 28, 38] mostly focus on Markov
chain [17] models. [23] employs Markov decision processes in the
recommender system to provide recommendations using sequential
information. With the success of deep learning, researchers adopt
(deep) neural network [8, 11, 14, 34] to model the sequential dynam-
ics. Particularly, [8] uses Gated Recurrent Units to encode previous
behaviors into a hidden vector for the recommendation. Besides
that, [26] proposes a sequential model to learn sequential patterns
using both horizontal and vertical convolutional filters. Recently,
self-attention [27] attains promising results in various NLP tasks.
[9] firstly adopts the self-attention mechanism for sequential user
behavior modeling, achieving state-of-the-art performance on the
sequential recommendation.

Although the aforementioned methods achieve satisfactory re-
sults on sequential user behavior modeling task, they ignore the
problem of long-tailed distribution, which may cause performance
degradation for tail users. In this paper, we address this issue by
learning transferrable parameters.

2.2 Gradient Alignment
The idea of gradient alignment has been well studied in various
fields. Leap [2] utilizes gradient alignment to transfer knowledge
across the learning process. [20] attempts to solve the continual
learning problem by considering a temporally symmetric trade-
off between transfer and interference, which is implemented by
encouraging gradient alignment across examples. More recently,
[35] presents the Lookahead optimization method, which improves
learning stability and achieves faster convergence. In each step,
the updating rule encourages the model parameters towards the
aligned direction of gradients generated by different mini-batches.
Different from previous works, we use gradient alignment to learn
transferrable parameters in sequential user behavior modeling task.

2.3 Adversarial Training
Adversarial training is a well-studied problem [5, 25], in which
two or more models learn together by pursuing competing goals.
A representative work of adversarial training is Generative Ad-
versarial Nets [4, 21], in which a discriminator and a generator
compete with each other: the generator aims to generate samples
similar to the real ones from random noise, and the discriminator
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aims to distinguish between the generated and the real samples.
The networks are trained jointly using backpropagation on the
prediction loss in a mini-max fashion: update generator to mini-
mize the loss while also updating discriminator to maximize the
loss. In this work, we try to learn frequency-agnostic sequential
embedding with the help of adversarial training. Specifically, we
introduce a discriminator to differentiate sequential embeddings of
head users and tail users while the prediction model aims to fool
the discriminator to misclassify users and minimize the prediction
loss simultaneously. In this way, the bias caused by the long-tail
distribution of the number of user behaviors could be eliminated.
A similar optimization approach has shown promising results in
the neural word embedding literature [3].

3 PROPOSED METHODOLOGY
In this section, we first give the notations and preliminaries of
sequential user behavior modeling. Then we present how to learn
transferrable parameters across users from optimization perspective
and feature perspective, respectively. The structure of the proposed
method is illustrated in Figure 2.

3.1 Problem Formulation
Assume we have a set of users U = {u1,u2, · · · ,u |U | } and a uni-
verse of items I = {i1, i2, · · · , i |I | }. Each user u is associated with
a sequence of items sorted by time, which is represented as Su =
{Su1 , S

u
2 , · · · , S

u
t , · · · , S

u
|Su | }, where Sut ∈ I denotes a user u ever

interacted with the item Sut at time t . The objective is to seek a
prediction model such that for a given prefix item subsequence
S(u,t ) = {Sut−L , S

u
t−L+1, · · · , S

u
t−1} including the most recent L items

before time t , it can generate a ranking score for all items:

yu = f (S(u,t ) ;θ ). (1)

The prediction model f is a composition of the sequence embedding
function ϕ and a score function h, which can be written as f (·) =
h(ϕ (·)). We denote the parameters of prediction model f as θ . The
binary cross entropy loss is often used as the optimization target
[9, 26]:

L =
∑
u

∑
j ∈Su

[− log(σ (yu, j )) −
∑
k<Su

log(1 − σ (yu,k ))], (2)

whereσ is the sigmoid function. Since the number of non-interactive
items is relatively large, we follow the negative sampling strategy
[19, 26] to choose the negative instances. The major notations in
this paper are listed in table 1.

Table 1: List of notations.

Notation Meaning
U, I the sets of users and items
Su the item sequence of user u
f ,θ the prediction model and parameters
fd ,θd the discriminator and parameters
yu the prediction scores of user u
α , β the learning rates of inner and outer update
k the inner update times
λ the adversarial hyper-parameter

The problem of long tails makes existing sequential models per-
form poorly on tail users. To address this problem, we formulate
each user as an individual task and then learn transferrable pa-
rameters across different tasks. For each user u, we extract ev-
ery L successive items as input and their next one item as the
target from Su . Then we can get a corresponding training task
Tu = {(S(u,t ) , Sut ) |t ∈ {L + 1,L + 2, ..., |Su |}}. Given a set of train-
ing tasks {T1,T2, · · · ,T|U | }, we aim to strike a balance between the
performance of data-rich head users and data-poor tail users by
exploiting transferrable model parameters.

3.2 Gradient Alignment
The intuition behind our method is that when training with multi-
ple tasks, some internal information are more transferrable across
tasks while others can cause interference [20]. Taking two users i
and j as examples, the corresponding training tasks are Ti and Tj ,
respectively. At each iteration, we sample K subsequences from Ti
and Tj separately for update. These two mini-batches are denoted
asDi andDj . Then, we can define operational measures of transfer
and interference between these two distinct mini-batches. Formally,
the concept of transfer is formulated as:

∂L (Di ;θ )
∂θ

·
∂L (Dj ;θ )
∂θ

> 0, (3)

where · is the dot product operator. It indicates that solving the task
of user i will facilitate the learning process of the task of user j , and
vice versa (Figure 3(a)). In contrast, the concept of interference is
formulated as:

∂L (Di ;θ )
∂θ

·
∂L (Dj ;θ )
∂θ

< 0. (4)

It implies that learning the task of user i can impede the learning
process of user j and vice versa (Figure 3(b)). The potential for trans-
fer is maximized when weight sharing is maximized while potential
for interference is maximized when weight sharing is minimized.
Since the tail users have limited data for training, encouraging the
emergence of such transferrable parameters naturally transfer the
knowledge from data-rich head users to data-poor tail users. More-
over, the transferrable parameters enjoy a better generalization
capability, which facilitate the prediction of new users.

To maximize transfer and minimize interference, we incur an
auxiliary loss to the objective, which can bias the learning process
to that direction. According to Eq. (3) and (4), we evaluate the
gradients of randomly sampled mini-batches from different users.
By maximizing the inner product between the gradients of different
mini-batches, we promote the model transferability by sharing
parameters where gradient directions align. To this end, we can
express our optimization objective as:

θ =arдmin
θ
EDi&Dj

[
L (Di ;θ ) + L (Dj ;θ ) − α

∂L (Di ;θ )
∂θ

·
∂L (Dj ;θ )
∂θ

]
.

(5)

Overall, the first two terms focus on the minimum of the expected
loss over tasks, while the last term enables knowledge transfer
across users by maximizing the inner product between different
gradients.
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Figure 3: (a) A depiction of transfer across users. (b) A depic-
tion of interference across users.

However, directly optimizing the above objective requires to
explicitly compute second derivatives, which is quite expensive.
Motivated by [16], we approximate the objective in (5) with a first
order Taylor expansion to reduce computational overhead. Specifi-
cally, the training process is divided into two phases: inner update
and outer update. In inner update phase, we perform k gradient
updates with learning rate α . At each time, we randomly select one
user and sample a mini-batch from corresponding task for update:

θk = θk−1 + α
∂L (Dk ;θk−1)
∂θk−1

. (6)

These inner updates start with parameters θ and result in param-
eters θk . Then we enter outer update phase: updating the model
parameters θ in the direction θ − θk :

θ = θ − β ∗ (θ − θk ), (7)

where β is the learning rate. According to taylor’s theorem, the
above update process is approximately equivalent to optimize the

following objective:
θ =arдmin

θ
ED1, · · · ,Dk



k∑
i=1


L (Di ;θ ) −

1
2

i−1∑
j=1

α
∂L (Di ;θ )
∂θ

·
∂L (Dj ;θ )
∂θ




,

(8)

where D1, · · · ,Ds are mini-batches sampled from different tasks.
Compared to the original objective in (5), Eq. (8) also contains the
transferability-promoting terms. The difference lies in the impor-
tance of different users. Eq. (8) assigns high importance to the early
chosen user in the inner update. As we randomly choose user at
each inner update, Eq. (8) does not bring any bias towards users.

3.3 Adversarial Training
Although gradient alignment could encourage knowledge trans-
fer across users, the prediction model, especially for the sequence
embedding function, will be largely dominated by the head users
which have more data available for training. More severely, the
sequential embeddings of head users and tail users tend to lie in
different spaces. It will consequently limit the performance of pre-
diction using the embeddings. To address this issue, we develop an
adversarial training method [4] to mix head users and tail users into
a common embedding space and thus produce frequency-agnostic
sequential embedding. Specifically, we adopt a discriminator to
categorize users into two classes: head or tail. We hope that the
discriminator optimizes its parameters to maximize its classifica-
tion accuracy, while the prediction model is optimized towards a
low training loss as well as fooling the discriminator to misclassify
head users and tail users. When the whole optimization process
converges, the discriminator cannot well classify head users and tail
users. In this way, the bias caused by the large amount of data from
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head users could be reduced, thus facilitating knowledge transfer
from the head to the tail.

To begin with, we divide users into two parts based on the num-
ber of historical behaviors and use R ∈ {0, 1} to indicate this prop-
erty: R = 1 for head users; R = 0 for tail users. Let fd and θd denote
the discriminator and its parameters respectively, then the loss of
the discriminator Ld can be defined as:

Ld (D;θ ,θd ) =R log fd (ϕ (D;θ );θd )
+ (1 − R) log(1 − fd (ϕ (D;θ );θd ).

(9)

Following the principle of adversarial training, we develop a mini-
max objective to train the prediction model and the discriminator
as below:

min
θ,θd

max
θd
L (D;θ ) − λLd (D;θ ,θd ), (10)

where λ is a hyper-parameter to trade off the two loss terms.
Now we summarize the training process of our method in Al-

gorithm 1. In each iteration, we perform k inner updates and one
outer update. the proposed method requires k ≥ 2, where the up-
date depends on the higher-order derivatives of the loss function.
Otherwise, if we set k to be 1, it will degrade to a classic joint op-
timization over all tasks. It is worth mentioning that our method
is model agnostic and can be applied to any existing models for
sequential recommendation, such as GRU4REC [8], CASER [26]
and SASR [9], which are used for our empirical study.
Algorithm 1 Proposed Algorithm

Input: U: the set of existing users
Input: T : the set of training tasks
Input: α , β : the learning rates of inner and outer update
Input: k : the inner update times
Input: λ: the adversarial hyper-parameter
Randomly initialize the prediction model parameters θ and the
discriminator parameters θd
for iter = 1, 2, . . . do

Θ← θ , Θd ← θd ;
for all i = 1, 2, ...,k do

Select a user u and corresponding task T ;
Sample a mini-batch D from T ;
Update θ ,θd by SGD according to Eq. (10) with learning
rate α ;

end for
Update the prediction model: θ ← Θ + β (Θ − θ );
Update the discriminator: θd ← Θd + β (Θd − θd );

end for

4 EXPERIMENTS
In this section, we conduct experiments on real-world datasets to
evaluate the proposed method. We aim to answer the following
research questions:
RQ 1 How effective is the proposed method compared with the

state-of-the-art competitors?
RQ 2 Does the proposed method actually improve the performance

of tail users?
RQ 3 Howdo the gradient alignment and adversarial training affect

the performance of the proposed method?

4.1 Experimental Setting
4.1.1 Dataset. We conduct experiments on the following publicly
accessible datasets: Amazon1, MovieLens2 and MovieTweetings3.

Amazon. This dataset contains a series of product purchase
histories crawled from the Amazon website. Top-level product
categories are used to split the dataset into separate subsets. Here,
we conduct experiments on the Digital Music (Music) and Video
Games (Game) category.

MovieLens. This movie rating dataset is widely used in rec-
ommendation tasks. In our experiment, we use the version that
includes 1 million user ratings: MovieLens 1M (ML1M).

MovieTweetings. This is a dataset consisting of ratings on
movies that are contained in well-structured tweets on Twitter.

For dataset preprocessing, we follow the common practice in pre-
vious works [6, 33, 36]. For all datasets, we convert explicit ratings
into implicit binary feedbacks. After that, we group interactions by
user ID, and construct each user’s sequence by sorting according
to the timestamps. In order to reduce the impact of noise data, we
filter out inactive items with fewer than 5 related records, and then
remove users with less than 10 feedbacks. Detail statistics of the
datasets are summarized in table 2. Finally, each dataset is randomly
divided into two parts according to users: 80% of the users as exist-
ing users, and the remaining 20% as new users for the analysis of
cold start problem. For existing users, we use the most recent item
in the interaction sequence of each user for evaluation, and the rest
items for training.

4.1.2 Evaluation Metrics. The following metrics are used to evalu-
ate the quality of recommendation, which are also widely used in
previous works [9, 33, 36].

HR@N (Hit Ratio) is widely used as a measure of predictive
accuracy. It represents the proportion of the desired item amongst
the top-N items in all test cases. It is computed as:

HR@N =
1
|U|

∑
u ∈U
I(Ru,дu ≤ N ), (11)

where I is an indicator function. дu is the test item of user u, and
Ru,дu is the rank of дu generated by the model.

NDCG@N (Normalized Discounted Cumulative Gain) records
the position of the hit by assigning larger scores on higher ranks.
It is computed as:

NDCG@N =
1
|U|

∑
u ∈U

I(Ru,дu ≤ N )

loд2 (Ru,дu + 1)
. (12)

Basically, the higher these metrics, the better the performance of
the model. To make results more stable, we repeate each experiment
ten times for each metric and compute the average results.

4.1.3 Baselines. To demonstrate the effectiveness of the proposed
method, we compare to the following sequential user behavior
modeling methods.

- GRU4REC. [8] This is a representative deep learning based
method which adopts RNN to model users’ sequential behaviors.

1http://jmcauley.ucsd.edu/data/amazon/
2http://grouplens.org/datasets/movielens/
3https://github.com/sidooms/MovieTweetings
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Table 2: Statistics of the evaluation datasets.
Dataset #Users #Items #Interactions #Records/user #Records/item #Density
Music 2,831 13,410 63,054 22.27 4.70 0.163 %
Game 7,519 19,977 145,520 19.35 7.28 0.097 %
ML1M 6,040 3,706 1,000,209 165.57 269.89 4.468 %
MovieTweetings 12,605 10,910 654,658 51.94 60.01 0.476 %

- CASER. [26] This CNN based method attempts to capture
sequential patterns on both individual-level and union-level with
the help of horizontal and vertical convolutional filters.

- SASR. [9] This is a self-attention based sequential model which
adopts an attention mechanism to identify relevant items for pre-
dicting the next item.

The above three baselines are representative sequential user
behavior modeling methods based on RNN, CNN and self-attention,
respectively. Since our framework is model agnostic, we use it
to train the above three baselines. For fair comparisons, models
trained by our method shares the same model architecture as the
baselines. For simplicity, we use “-TP” denote models trained by our
method compared with baselines. In the experiments, we adopt grid
search to select the best parameters for each model. The embedding
size is turned from {10, 15, · · · , 50}, the regularization parameter
and learning rate are selected from {1e−4, 1e−3, · · · , 1}. All other
hyper-parameters and initialization strategies are those suggested
by the methods’ authors. For our method, we adopt SGD optimizer
and fix the update times k = 2 in inner update phase. For outer
update phase, we employ adam optimizer, whose learning rate β is
adam’s suggested setting 0.001. For adversarial training, we simply
set 20% users with the most interactions as head users and the rest
as tail users, which is the same as the pareto principle [22]. The
adversarial hyper-parameter λ is tuned from {0, 0.01, 0.1, 1, 10}.

4.2 Performance Comparison
To answer RQ1, we evaluate the recommendation performance of
the proposed method and all baselines. Results are shown in Table
3 and we can draw following observations.

Observations about our framework. First, for existing users,
models trained using the proposed method consistently achieve bet-
ter performance than their conventional counterparts, showing the
benefits of learning transferrable parameters. Our method encour-
ages knowledge transfer across users, leading to a general model.
Such a model will not be biased to either head or tail users but
achieves good performance on both of them. Second, all methods
perform worse on new users than existing users, which indicates
that these sequential models cannot handle user cold-start problem
well. Generally speaking, sequential models can make recommen-
dations based on previous interactions without relying on the user
profile. However, sequential patterns learned from existing users
may not suitable for new users, which leads to performance degrada-
tion for new users. Third, models trained by our method outperform
their conventional counterparts when facing new users. This result
indicates that the proposed method can effectively enhance the
sequential model’s ability to deal with the cold start problem of
new users. The reason is that our method focuses on those more
diverse and noisy tail users, which is helpful for learning a more
robust model that can perform well on new users. Finally, besides

the above evaluation of different methods, Figure 4 shows models
trained by our method are stably superior to their conventional
counterparts with different lengths of the recommendation list.

Other observations. First, all methods achieve better results
on MovieTweetings and ML1M datasets than Music and Game
datasets. The major reason is that Music and Game datasets are
more sparse than MovieTweetings and ML1M datasets, and the data
sparsity declines the recommendation performance. Second, SASR
outperforms than GRU4REC and CASER in most cases. The main
reason is that SASR adopts the self-attention mechanism to attend
items adaptively that would better reflect the user’s preference.
Finally, the best performing models are not consistent on different
datasets, which suggests that we should choose the appropriate
model according to the actual situation. It should be emphasized
that our method is model agnostic and can be well adapted to
various well-established sequential models.

4.3 Performance on Head Users and Tail Users
To answer RQ2, we divide the evaluation by the number of user’s
historical interactions. Specifically, for both existing and new users,
we treat 20% of the users with the most historical interactions as
head users and denote the rest as tail users, which is the same as
the training phase. The results are shown in Figure 5.

First of all, we can notice that all methods perform better on
head users than on tail users. This result confirms our conjecture
that head users have more data available for training than tail users,
resulting in better performance. Second, for both existing and new
users, models trained by our method achieve significant improve-
ments on tail users than their conventional counterparts. On the
other hand, the performance improvement of head users brought
by our method is relatively small compared to tail users. Even in
some cases, there is a certain decrease in the performance of head
users (i.e., CASER-TP compared to CASER on both Game and Movi-
eTweetings datasets for new users). In other words, models trained
using our method will pay more attention to tail users, which helps
achieve a balanced performance instead of biased towards head
users. This result demonstrates that the proposed method can ef-
fectively transfer knowledge from head users to tail users, thereby
achieving a general model that performs well on both head users
and tail users. Finally, by comparing Game and MovieTweetings
datasets, we find that the performance gap between head users and
tail users on Game dataset is larger than MovieTweetings dataset.
Moreover, models trained using our method can achieve a more bal-
anced performance on Game dataset than MovieTweetings dataset,
and the performance improvement of tail users is more significant.
The reason could be that Game dataset is more sparse and the
information gap between head users and tail users is larger than
MovieTweetings dataset. In contrast, MovieTweetings dataset is
relatively dense. Tail users have more data, enough to achieve good
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Table 3: Performance comparison of all methods in terms of HR@10 and NDCG@10. The best results are boldfaced.

Type Method Music Game ML1M MovieTweetings
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Existing users

GRU4REC 0.0238 0.0125 0.0324 0.0167 0.2036 0.1090 0.1482 0.0767
GRU4REC-TP 0.0287 0.0139 0.0359 0.0189 0.2194 0.1196 0.1586 0.0850
CASER 0.0499 0.0254 0.0598 0.0319 0.2314 0.1278 0.1502 0.0786
CASER-TP 0.0556 0.0314 0.0638 0.0330 0.2469 0.1335 0.1596 0.0870
SASR 0.0530 0.0295 0.0607 0.0298 0.2210 0.1133 0.1516 0.0787
SASR-TP 0.0605 0.0320 0.0640 0.0321 0.2411 0.1256 0.1629 0.0876

New users

GRU4REC 0.0194 0.0102 0.0266 0.0135 0.1945 0.0999 0.1444 0.0771
GRU4REC-TP 0.0247 0.0111 0.0306 0.0156 0.2094 0.1058 0.1535 0.0823
CASER 0.0442 0.0230 0.0532 0.0259 0.2119 0.1116 0.1420 0.0771
CASER-TP 0.0512 0.0291 0.0552 0.0280 0.2293 0.1185 0.1523 0.0843
SASR 0.0495 0.0242 0.0532 0.0259 0.2127 0.1083 0.1440 0.0750
SASR-TP 0.0548 0.0295 0.0566 0.0282 0.2227 0.1147 0.1599 0.0860
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Figure 4: Top-N recommendation evaluation with different values of N on HR and NDCG.

performance. Therefore, the performance improvement brought
by learning transferrable parameters of our method is weaker on
MovieTweetings dataset than Game dataset.

4.4 Impact of Gradient Alignment and
Adversarial Training

For the proposed method, there are two key parameters related to
gradient alignment and adversarial training. The first is the inner
update times k . Figure 6 shows the performance of our method
for varying inner update times k on ML1M and MovieTweetings
datasets. The second is the adversarial hyper-parameter λ. Figure
7 shows the performance of our method for varying adversarial
hyper-parameter λ on ML1M and MovieTweetings datasets.

First, by examining the influence of the inner update times k , we
found that the performance of ourmethod is worst whenk = 1. This

is reasonable since it only optimizes the expected loss over all users,
without considering the gradient alignment between different users,
which can learn transferrable parameters from an optimization
perspective. By further investigating the performance when k ≥ 2,
we found that there are only slight differences when increasing the
inner update times compared to the significant improvement as k
from 1 to 2. One possible explanation is that knowledge transfer
across users can be achieved for any value of k ≥ 2. Increasing the
value of k , which is greater than 2 cannot significantly change the
effect of knowledge transfer.

Second, by examining the influence of λ, we found that better
performance is achieved by balancing the impact of prediction loss
and adversarial loss, while either a large or small value of λ will
adversely degrade the performance. Presumably, this is because a
too large value of λ means the prediction model spends too much
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Figure 5: Recommendation evaluation on head users and tail users.
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Figure 6: Impact of inner update times k .
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Figure 7: Impact of adversarial parameter λ.

effort to learn frequency-agnostic sequential embedding, resulting
in insufficient sequential modeling problem. On the contrary, a too
small value of λ cannot effectively transfer knowledge from head
users to tail users, resulting in a biased model, then reducing the
performance of our method.

5 CONCLUSION
In this paper, we propose to solve the long-tailed distribution prob-
lem in sequential user behavior modeling by learning transferrable

parameters. Specifically, we propose a gradient alignment optimizer
to encourage knowledge transfer from the optimization perspec-
tive. Moreover, we introduce an adversarial training method to
learn frequency-agnostic sequential embedding, which facilitates
knowledge transfer from the feature perspective. Experiments on
real-world datasets demonstrate the effectiveness of the proposed
method, by comparing with the state-of-the-art baselines.
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