
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2020

Automated synthesis of local time requirement for service Automated synthesis of local time requirement for service

composition composition

Étienne ANDRÉ

Tian Huat TAN

Manman CHEN

Shuang LIU

Jun SUN
Singapore Management University, junsun@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
ANDRÉ, Étienne; TAN, Tian Huat; CHEN, Manman; LIU, Shuang; SUN, Jun; LIU, Yang; and DONG, Jin Song.
Automated synthesis of local time requirement for service composition. (2020). Software and Systems
Modeling. 19, 983-1013.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5882

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5882&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5882&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5882&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5882&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Étienne ANDRÉ, Tian Huat TAN, Manman CHEN, Shuang LIU, Jun SUN, Yang LIU, and Jin Song DONG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/5882

https://ink.library.smu.edu.sg/sis_research/5882

Software and Systems Modeling (2020) 19:983–1013
https://doi.org/10.1007/s10270-020-00787-5

REGULAR PAPER

Automated synthesis of local time requirement for service composition

Étienne André1 · Tian Huat Tan2 ·Manman Chen3 · Shuang Liu4 · Jun Sun5 · Yang Liu6 · Jin Song Dong7,8

Received: 20 February 2018 / Revised: 26 February 2020 / Accepted: 27 February 2020 / Published online: 13 March 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Service composition aims at achieving a business goal by composing existing service-based applications or components. The
response time of a service is crucial, especially in time-critical business environments, which is often stated as a clause in
service-level agreements between service providers and service users. To meet the guaranteed response time requirement of a
composite service, it is important to select a feasible set of component services such that their response time will collectively
satisfy the response time requirement of the composite service. In this work, we use the BPEL modeling language that aims
at specifying Web services. We extend it with timing parameters and equip it with a formal semantics. Then, we propose a
fully automated approach to synthesize the response time requirement of component services modeled using BPEL, in the
form of a constraint on the local response times. The synthesized requirement will guarantee the satisfaction of the global
response time requirement, statically or dynamically. We implemented our work into a tool, Selamat and performed several
experiments to evaluate the validity of our approach.

Keywords Web service composition · Parameter synthesis · Modeling Web services · Formal semantics · BPEL · Parametric
model checking

Communicated by Gary Leavens.

Étienne André, Jin Song Dong and Yang Liu are partially supported
by CNRS STIC-Asie project CATS (“Compositional Analysis of
Timed Systems”). Étienne André is partially supported by the ANR
national research program ANR-14-CE28-0002 PACS (“Parametric
Analyses of Concurrent Systems”). Étienne André and Jun Sun are
partially supported by the ANR-NRF French-Singaporean research
program ProMiS (ANR-19-CE25-0015).

B Étienne André
eandre93430@lipn13.fr

1 CNRS, Inria, LORIA, Université de Lorraine, Nancy, France

2 IBM, Singapore, Singapore

3 Autodesk, Singapore, Singapore

4 College of Intelligence and Computing, Tianjin University,
Tianjin, China

5 Singapore Management University, Singapore, Singapore

6 Nanyang Technological University, Singapore, Singapore

7 National University of Singapore, Singapore, Singapore

8 Griffith University, Brisbane, Australia

1 Introduction andmotivation

Service-oriented architecture is a paradigm where building
blocks are used as services for software applications. Ser-
vices encapsulate their functionalities and information and
make them available through a set of operations accessible
over a network infrastructure using standards like SOAP [39]
andWSDL [25]. To make use of a set of services to achieve a
business goal, service composition languages such as BPEL
(Business Process Execution Language) [6] have been pro-
posed. A service that is composed by other services is called
a composite service, and services that the composite service
makes use of are called component services.

The requirement on the service response time is often an
important clause in service-level agreements (SLAs), espe-
cially in business where timing is critical. An SLA is a
contract between service consumers and service providers
specifying the expected quality of service (QoS) level.
Henceforth, we refer to the response time requirement of
composite services as global time requirement, and to the
set of constraints on the response times of the component
services as local time requirement. The response time of a
composite service is highly dependent on that of each com-
ponent service. It is therefore crucial to derive local time

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00787-5&domain=pdf
http://orcid.org/0000-0001-8473-9555

984 É. André et al.

requirements (i.e., requirements for the component services)
from the global time requirement, so that it will help in the
selection of component services when building a composite
service while satisfying the response time requirement.

An additional motivation for our work is that of microser-
vices. As pointed out by [74], many big players in the market
(e.g., Netflix, Amazon and Microsoft Azure) have adopted
microservice architecture [57] by decomposing their existing
monolithic applications into smaller, and highly decoupled
services (also known as microservices). These services are
then composed for fulfilling their business requirements. For
example, Netflix decomposed their monolithic DVD rental
application into services that work together and that stream
digital entertainment to millions of Netflix customers every
day. Services of Netflix are hosted in a cloud provided by
Amazon EC2 [7], which offers about 40 instance types.
The problem of composition of Web services with a large
set of microservices is more and more relevant now, as the
microservices are getting more popular than ever (see e.g.,
[56,67]). This justifies the use of techniques for which dif-
ferent services can be compared to and eventually selected.
Service-oriented architecture and microservice architectures
are conceptually similar: service-oriented architecture is a
term that is used earlier and also widely used in literature.
Microservice architecture ismore of a newer term that is used
and practice widely in current industry, for the purpose of
agile development. (For detailed comparison, see e.g., [21].)
The methods developed here are applicable to both service-
oriented architecture and microservice architecture.

Consider an example of a stock indices service, which has
an SLA with the subscribed users requiring that the stock
indices shall be returned within 3 s upon request. The stock
indices service makes use of several component services,
including a paid service, for requesting stock indices. The
stock indices service providerwould be interested in knowing
the local time requirement of the component services, while
satisfying the global response time requirement. To avoid
discarding any service candidates that might be part of a
feasible composition, the synthesized local time requirement
needs to be as weak as possible, i.e., to maintain as many
combinations of local time requirements as possible. This is
crucial as having a faster service might incur a higher cost.

1.1 Contribution

In this paper, we present a fully automated technique to per-
form a rigorous model-based analysis of Web services, in
order to synthesize the local time requirement in composite
services. Our approach performs an analysis of the composite
service model behavior, using techniques inspired by param-
eter synthesis for timed systems.Our synthesis approachdoes
not only avoid bad scenarios in the service composition, but
also guarantees the fulfillment of the global time requirement.

Composite
Service (CS)

synthesizes

refines
Refined

Local Time
Constraint
(rLTC)

Static
Local Time
Constraint
(sLTC)

Global Time
Constraint

Input

Labeled Transition
System (LTS) of CS

Output

generate

Fig. 1 General approach

We use as a formalism BPEL, which is a de facto stan-
dard language for specifying service composition. BPEL
supports control flow structures that involve complex timing
constructs (e.g., <pick> control structure) and concurrent
execution of activities (e.g., <flow> control structure). Due
to the non-determinism in both time and control flow, it
is unknown which execution path will be executed at run-
time. Such a combination of timing constructs, concurrent
calls to external services, and complex control structures
makes it a challenge to synthesize the local time requirement.
More precisely, response times of component services can be
dependent; therefore, constraint between services may be of
the form, e.g., tfs > ths (for two parametric component ser-
vice times), rendering the problem quite delicate. In addition,
there may be multiple possibilities of component services’
response times that are satisfiable. This can be particularly
delicate to find out with only manual human inspection.

Figure 1 illustrates the main steps of our approach for
synthesizing local time requirements. The required inputs
are the specification of the composite service and its global
time requirement. The output will be local time requirements
(at design time, and then at runtime) given in the form of a
linear constraint.

We first propose a formal semantics for BPEL composite
services augmented with timing parameters, i.e., constants,
the value of which is not known at design time; this symbolic
semantics is given in the form of a labeled transition system
(LTS).

Based on the LTS resulting from the input composite ser-
vice, we then propose an approach to synthesize local time
requirements of component services, represented as a (linear)

123

Automated synthesis of local time requirement for service composition 985

constraint, which we refer to as the local time constraint.
During the design phase of a composite service, the local
time constraint is synthesized based on all possible execu-
tion paths of the model, since it is unknown which execution
path will be executed at runtime. (This will depend on the
dynamic behavior of the system.) The local time constraint of
a composite service that is synthesized during the design time
is called the static local time constraint (hereafter sLTC).

The synthesized sLTC has several advantages. Firstly,
when creating a newcomposite service, it allows the selection
of feasible services from a large pool of services with similar
functionalities but different local response times. Secondly,
service designers can use the synthesized result to avoid
over-approximations on the local response times, which may
lead the service provider to purchase a service at a higher
cost, while a service at a lower cost with a slower response
time might have been sufficient to guarantee the global time
requirement. Thirdly, the local time requirements serve as a
safe guideline when component services need to be substi-
tuted or new services need to be introduced.

Due to the highly evolving and dynamic environment
which the composite service is running in, the design time
assumptions for Web service composition, even if they are
initially accurate, may later change at runtime. For exam-
ple, the execution time of a component service could violate
the sLTC due to reasons such as network congestion. Nev-
ertheless, this does not necessarily imply that the composite
service will not satisfy the global time requirement. Indeed,
the sLTC is synthesized based on all possible execution paths
at design time, whereas only one path will be executed at
runtime. At runtime, some of the execution paths can be
eliminated. Therefore, we can use the runtime information
to refine the sLTC to make it weaker—which results in a
more relaxed constraint. We refer to the sLTC refined at run-
time as the refined local time constraint (hereafter rLTC).
The rLTC is used to decide whether the current composite
service can still satisfy the global time requirement, despite
some unplanned issues such as network congestion.

Our contributions are summarized as follows.

1. We augment the BPEL modeling language with timing
parameters, and we equip it with a formal semantics in
the form of a labeled transition system.

2. Given a composite service modeled using BPEL, we
develop a sound method for synthesizing the local time
requirement in the form of a set of constraints, which can
be applied at the design stage of service composition.

3. We introduce a refinement procedure on the sLTC of
a composite service based on the runtime information,
which results in a more relaxed rLTC. The rLTC can be
used to verify whether the composite service could still
eventually satisfy the global time requirement at runtime.

4. We implement our algorithms into a tool Selamat.
We then conduct experiments on several examples. The
results show that the rLTC can indeed help to improve
the accuracy of the sLTC. In addition, we show that the
runtime adaptation does not incurmuch overhead in prac-
tice.

1.2 About this manuscript

This manuscript is an extended version of [72]. We in fact
rewrote most of the manuscript for a better readability. The
most notable differences between this manuscript and [72]
are:

1. we replaced the formerly defined “AOLTS”with what we
believe to be a simpler and more elegant presentation of
labeled transition systems (LTS);

2. we added details on our implementation and used more
service composition examples; and,

3. most importantly, we added a refinement procedure that
attempts to meet the global time requirement at runtime
even when the constraint computed statically is violated
(Sect. 6).

1.3 Outline

The rest of this paper is structured as follows. Section 2 intro-
duces a timed BPEL running example. Section 3 provides
the necessary definitions and terminologies. Section 4 intro-
duces our formal semantics for BPEL extended with timing
parameters. Section 5 presents the synthesis algorithms for
sLTC. Section 6 introduces rLTC and its usage for runtime
adaptation of a service composition. Section 7 evaluates our
approach with four service composition examples. Section 8
reviews related works. Finally, Sect. 9 concludes the paper
and outlines future work.

2 A BPEL example with timed requirements

Let us introduce a Stock Market Indices Service (SMIS) that
will be used as a running example. SMIS is a paid service,
and its goal is to provide updated stock indices to the sub-
scribed users. It provides a service-level agreement (SLA) to
the subscribed users stating that it always responds within 3 s
upon request.

SMIS has three component Web services, i.e., a database
service (DS), a free news feed service (FS) and a paid news
feed service (PS). The strategy of the SMIS is calling the
free service FS before calling the paid service PS in order
to minimize the cost. Upon returning the result to the user,
the SMIS also stores the latest results in an external database
service provided by DS (storage of the results is omitted

123

986 É. André et al.

Fig. 2 Stock Market Indices
Service

Receive User

Sync. Invoke DS

Reply indices ASync. Invoke FS

OnMessage FS OnAlarm 1 second

Reply indices ASync. Invoke PS

OnMessage PS OnAlarm 1 second

Reply indices × Reply ‘Failure’

Indices exist Indices do not exist

here). The workflow of the SMIS is sketched in Fig. 2
in the form of a tree. When a request is received from a
subscribed customer (Receive User), it synchronously
invokes (i.e., invoke and wait for reply) the database service
(Sync. Invoke DS) to request stock indices stored in the
past minute. Upon receiving the response from DS, the pro-
cess reaches an <if> branch (denoted by). If the indices
are available (Indices exist), then they are returned
to the user (Reply indices). Otherwise, FS is invoked
asynchronously (i.e., the system moves on after the invo-
cation without waiting for the reply). A <pick> construct
(denoted by) is used here to await an incoming response
(<onMessage>) fromprevious asynchronous invocation or
timeout (<onAlarm>), whichever occurs. If the response
from FS (OnMessage FS) is received within 1 s, then
the result is returned to the user (Reply indices). Oth-
erwise, the timeout occurs (OnAlarm 1 second), then
SMIS stopswaiting for the result fromFS and calls PS instead
(ASync. Invoke PS). Similarly toFS, the result fromPS
is returned to the user, if the response from PS is received
within 1 s. Otherwise, it notifies the user regarding the failure
of getting stock indices (Reply ‘Failure’). The states
marked with a � (resp. ×) represent desired (resp. unde-
sired) end states.

The global time requirement for SMIS is that SMIS should
respond within 3 s upon request. It is of particular interest to
know the local time requirements for services PS, FS andDS,
so as to fulfill the global time requirement. This information

can also help to choose a paid service PS which is both cheap
and responds quickly enough.

In this example, an activity to avoid (whichwill be referred
to as a “bad activity” in the following) is the reply activity that
is triggered after the component service PS fails to respond
within 1 s, which is marked with × in Fig. 2.

3 A formal model for parametric composite
services

3.1 Variables, clocks, parameters and constraints

Given a finite set V of finite-domain variables, a variable
valuation for V is a function assigning to each variable a
value in its domain. We denote by Valuations(V) the set of
all variable valuations of V. Given a variable y ∈ V and a
variable valuation v ∈ Valuations(V), we denote by v(y) = ⊥
the fact that variable y is uninitialized in valuation v.

The clocks, parameters and constraints that we use in this
work are similar to the ones used in the formalisms of (para-
metric) timed automata [4,5] and (parametric) stateful timed
CSP [11,68]. Let X = {x1, . . . , xh} (for some integer h) be a
finite set of clocks, i.e., real-valued variables evolving at the
same rate. A clock valuation is a function w : X → R≥0 that
assigns a nonnegative real value to each clock.

Let Λ = {λ1, . . . , λm} (for some integer m) be a finite set
of parameters, i.e., rational-valued constants thatwill be used

123

Automated synthesis of local time requirement for service composition 987

here to represent the unknown response time of a component
service. A parameter valuation is a function π : Λ → Q≥0

assigning a nonnegative rational value to each parameter.
Henceforth, we use w (resp. π) to denote a clock (resp.

parameter) valuation.
A linear term over X ∪ Λ is an expression of the form∑
1≤i≤N αizi+d for someN ∈ N, with zi ∈ X∪Λ, αi ∈ Q≥0

for 1 ≤ i ≤ N and d ∈ Q≥0. We denote by LX∪Λ the set of
all linear terms over X and Λ. Similarly, we denote by LΛ

the set of all linear terms overΛ. An inequality over X andΛ

is of the form e �	 e′ where �	 ∈ {<,≤}, and e, e′ ∈ LX∪Λ.
A convex constraint (or constraint) is a conjunction of

inequalities. We denote by CX∪Λ the set of all convex con-
straints over X and Λ. Similarly, we denote by CΛ the set of
all convex constraints over Λ.

Let C ∈ CX∪Λ, C[π] denotes the valuation of C with
π , i.e., the constraint over X obtained by replacing each
λ ∈ Λ with π(λ) in C. Note that C[π] can be written as
C ∧ ∧

λi∈Λ λi = π(λi). We say that w satisfies C[π] if
the expression obtained by replacing each x ∈ X in C[π]
with w(x) evaluates to true.

Given C ∈ CX∪Λ, we define C↑ as the time elapsing of C,
i.e., the constraint over X andΛ obtained fromC by delaying
all clocks by an arbitrary amount of time. That is:

C↑ = {(w′, π) | w satisfies C[π] ∧ ∀ x ∈ X :
w′(x) = w(x) + d, d ∈ R≥0}.

Given C ∈ CX∪Λ and X ′ ⊆ X, we denote by pruneX ′(C) the
constraint in CX∪Λ that is obtained from C by pruning the
clocks in X ′; this can be achieved using variable elimination
techniques such as Fourier–Motzkin (see, e.g., [65]). More
generally, givenC ∈ CX∪Λ, we denote byC↓Λ the projection
of constraint C onto Λ, i.e., the constraint obtained from C
by pruning all clock variables. Again, such a projection can
be computed using Fourier–Motzkin elimination.

A non-necessarily convex constraint (or NNCC) is a con-
junction of disjunction of inequalities1; NNCCs are used to
represent the synthesized local time constraint obtained via
the methods proposed in this paper. Note that the negation of
an inequality remains an inequality; however, the negation of
a convex constraint becomes (in the general case) an NNCC.
We denote by NCΛ the set of all NNCCs over Λ.

Given C ∈ NCΛ, we say that π satisfies C, denoted by
π |� C, ifC[π] evaluates to true.C is empty if there does not
exist a parameter valuation π such that π |� C; otherwise
C is non-empty. Given two constraints C1,C2 ∈ NCΛ, we
say that C2 is weaker (or more relaxed) than C1, denoted by
C1 ⊆ C2, if ∀ π : π |� C1 ⇒ π |� C2.

1 Without loss of generality, we assume here that all NNCCs are in
conjunctive normal form (CNF).

3.2 Syntax of composite service processes

BPEL [6] is an industrial standard for implementing compo-
sition of existing Web services by specifying an executable
workflowusing predefined activities. In thiswork,we assume
the composite service is specified using the BPEL language.
Basic BPEL activities that communicate with component
Web services are <receive>, <invoke> and <reply>,
which are used to receive messages, invoke an operation
of component Web services and return values, respectively.
These activities are communication activities. The control
flow of the service is defined using structural activities such
as <flow>, <sequence>, <pick> and <if>.

A composite service CS makes use of a finite num-
ber of component services to accomplish a task. Let E =
{S1, . . . , Sn} be the set of all component services that are
used by CS. In this work, we assume that the response time
of a composite service is based on the time spent on indi-
vidual communication activities, and the time incurred by
internal operations of the composite service is negligible.2

Composite services are expressed using processes. We
define a formal syntax definition in the following.

Definition 1 Processes are defined using the following gram-

mar:

P =̂ rec(S) receive activity
| reply(S) reply activity
| sInv(S) synchronous invocation
| aInv(S) asynchronous invocation
| P ||| Q concurrent activity
| P ;Q sequential activity
| P � b � Q conditional activity

| pick(
n�

i=1
Si ⇒

Pi,
k�

j=1
alrm(aj) ⇒

Qj)

pick activity

where S is a component service, P and Q are composite ser-
vice processes, b is a Boolean expression and aj ∈ Q>0 are
positive rational numbers, for 1 ≤ j ≤ k.

Let us describe below the BPEL syntax notations intro-
duced in Definition 1:

– rec(S) and reply(S) are used to denote “receive from” and
“reply to” a service S, respectively;

– sInv(S) (resp. aInv(S)) denotes the synchronous (resp.
asynchronous) invocation of a component service S;

– P ||| Q denotes the concurrent composition of BPEL
activities P and Q;

– P ;Q denotes the sequential composition of BPEL activ-
ities P and Q;

2 We discuss the time incurred for internal operations in Sect. 6.6.

123

988 É. André et al.

– P�b�Q denotes the conditional composition, where b is
a guard condition on the process variables. If b evaluates
to true, BPEL activity P is executed, otherwise activity
Q is executed;

– pick(
n�

i=1
Si ⇒ Pi,

k�
j=1

alrm(aj) ⇒ Qj) denotes the BPEL

pick composition, which contains two types of activi-
ties, i.e., onMessage activity and onAlarm activity. An
onMessage activity Si ⇒ Pi is activated when the mes-
sage from service Si arrives and BPEL activity Pi is
subsequently executed; an onAlarm activity alrm(aj) ⇒
Qj is activated at aj time units, and BPEL activity Qj

is subsequently executed. The pick activity contains n
onMessage activities and k onAlarm activities. Exactly
one activity from these n + k activities will be executed.
If multiple activities are activated at the same time, one
of the activities will be chosen non-deterministically for
execution. Given a pick activity P, we use P.onMessage
and P.onAlarm to denote the onMessage and onAlarm
branches of P, respectively.

A structural activity is an activity that contains other activ-
ities. Concurrent, sequential, conditional and pick activities
are examples of structural activities. An activity that does not
contain other activities is called an atomic activity, which
includes receive, reply, synchronous invocation and asyn-
chronous invocation activities.

Note that the communication activities can implicitly
make use of variables for passing information. For example,
let S be a component service that calculates the stock indices
for a particular date. For synchronous invocation sInv(S), it
requires an input variable vi that specifies the date informa-
tion and an output variable vo to hold the return value from
sInv(S). To keep the notations concise, we abstract the usage
and assignment of variables for communication activities.

We make the following assumption throughout this
manuscript:

Assumption 1 All loops have a bound on the number of iter-
ations and on the execution time.

This assumption is necessary to ensure termination of our
approach.Webelieve it is reasonable in practice (see Sect. 6.6
for a discussion).

3.3 Parametric composite service models

Let us now formally define composite service models and
parametric composite service models. Let Pnp denote the set
of all possible (nonparametric) composite service processes.

Definition 2 (Composite servicemodel)A composite service
model CS is a tuple (V, v0,N0), where V is a finite set of vari-
ables, v0 ∈ Valuations(V) is an initial valuation that maps

each variable to its initial value, and N0 ∈ Pnp is a com-
posite service process (defined according to the grammar of
Definition 1) making use of the variables in V.

Each service comes with a response time, which is a
rational-valued constant, and can be seen as an upper bound
on the time that a service needs to successfully return its
answer.

Given a composite serviceCS, let ti ∈ R≥0 be the response
time of component service Si for i ∈ {1, . . . , n}, and let
Et = {t1, . . . , tn} be a set of component service response
times that fulfill the global time requirement of service CS.
Because ti, for i ∈ {1, . . . , n}, is a rational number, there are
infinitely many possible values, even in a bounded interval
(and even if one restricts these values to rational numbers).
A method to tackle this problem is to reason parametrically,
by considering these response times as unknown constants,
or parameters.

We now extend the definitions of services, composite
service processes and composite service model to the para-
metric case. First, a parametric service is a service Si, the
response time of which is now a parameter λi ∈ Λ, instead
of a rational-valued constant. Then, a parametric compos-
ite service process is a service process defined according to
the grammar of Definition 1, where services (“S” in Defini-
tion 1) are now parametric services.We denote byP the set of
all possible parametric composite service processes. Finally,
parametric composite service models are defined similarly to
composite service models, except that the composite service
processes are now parametric composite service processes.

Definition 3 (Parametric composite service model) A para-
metric composite service model CS is a tuple (V, v0,Λ,P0,

C0), where V is a finite set of variables; v0 ∈ Valuations(V)

is an initial valuation that maps each variable to its initial
value; Λ is a finite set of parameters; P0 ∈ P is a parametric
composite service process making use of the variables in V
and C0 ∈ CΛ is the initial parametric constraint.

Example 1 Let V = {y1}. Let v0 be such that v0(y1) = 0.
Let Λ = {λ1, λ2}. Let P0 = pick(S ⇒ sInv(S1), alrm(1) ⇒
sInv(S2)) � y1 > 0� Stop. Let C0 = λ1 < λ2. Let λi denote
the response time of sInv(Si), i ∈ {1, 2}.

Then CS = (V, v0,Λ,P0,C0) is a parametric composite
service model.

Process and model valuation Given a parametric compos-
ite service process P with a parameter set Λ = {λ1, . . . , λm}
and given a parameter valuation (π(λ1), . . . , π(λm)), P[π]
denotes the valuation of P with π , i.e., the process where
each occurrence of a parameter λi is replaced with its valua-
tion π(λi).

Given a parametric composite service model CS with a
parameter set Λ = {λ1, . . . , λm}, and given a parameter

123

Automated synthesis of local time requirement for service composition 989

valuation (π(λ1), . . . , π(λm)), CS[π] denotes the valuation
of CS with π , i.e., the model (V, v0,Λ,P0,C), where C is
C0 ∧ ∧m

i=1(λi = π(λi)). Note that CS[π] can be seen as a
nonparametric service model (V, v0,P0[π]).

Example 2 Consider the parametric composite servicemodel
CS defined in Example 1. Assume π such that π(λ1) = 1 and
π(λ2) = 2. Then P0[π] = pick(S ⇒ sInv(S1), alrm(1) ⇒
sInv(S2)) � y1 > 0 � Stop, where the response time of
sInv(S1) is 1, and the response time of sInv(S2) is 2.

3.4 Bad activities

Given a BPEL service CS, we define a bad activity as an
atomic activity such that its execution leads the compos-
ite service CS to violate the global time requirement. To
distinguish bad activities, we allow the user to annotate a
BPEL activity A as a bad activity. The annotation can be
achieved, for example, by using extension attributes of BPEL
activities. This work can be performed manually or using
semi-automated procedures.

Example 3 Consider again the example in Sect. 2. Then
“Reply ‘Failure’” is a bad activity, denoted in Fig. 2 by ×.

4 A formal semantics for parametric
composite services

In this section, we provide our parametric composite ser-
vice model with a formal semantics, defined in the form of
a labeled transition system (LTS). The semantics we use
is inspired by the one proposed for (parametric) stateful
timed communicating sequential processes (CSP) [11,68],
that makes use of implicit clocks.

We first recall LTSs (Sect. 4.1) and define symbolic states
(Sect. 4.2). Following that, we define implicit clocks and the
associated functions, i.e., activation and idling (Sect. 4.3).We
then introduce our formal semantics (Sect. 4.4) and apply it
to an example (Sect. 4.5). We finally prove a technical result
relating the nonparametric and the parametric servicemodels
(Sect. 4.6).

4.1 Labeled transition systems

Definition 4 (Labeled transition system) A labeled transition
system (LTS) is a tuple LTS = (S, s0,Σ, δ), where

– S is a set of states;
– s0 ∈ S is the initial state;
– Σ is a set of actions; and
– δ ⊆ S × Σ × S is a transition relation.

Given LTS = (S, s0,Σ, δ), a state s ∈ S is a terminal
state if there does not exist a state s′ ∈ S and an action
a ∈ Σ such that (s, a, s′) ∈ δ; otherwise, s is said to be a
non-terminal state. There is a run from a state s to state s′,
where s, s′ ∈ S, if there exists an alternating sequence of
states and actions 〈s1, a1, s2, . . . , an−1, sn〉, where si ∈ S for
1 ≤ i ≤ n, ai ∈ Σ for 1 ≤ i ≤ n − 1, s1 = s, sn = s′,
and ∀ i ∈ {1, . . . , n − 1}, (si, ai, si+1) ∈ δ. A complete run
is a run that starts in the initial state s0 and ends in a terminal
state. Given a state s ∈ S, we use succ(s) to denote the set of
states reachable in one step from s; formally, succ(s) = {s′ |
∃ a ∈ Σ, ∃ s′ ∈ S : (s, a, s′) ∈ δ}.

In the following, we introduce the notion of LTS starting
from a state s which is defined as the LTS containing s and
all its successor states and transitions.

Definition 5 (sub-LTS) Let LTS = (S, s0,Σ, δ) be an LTS,
and let s be a state of S. The sub-LTS of LTS starting from s
is (S′, s,Σ ′, δ′), where

1. S′ ⊆ S is the set of states reachable from s ∈ S in LTS;
2. δ′ ⊆ δ is the transition relation satisfying the following

condition: (s1, a, s2) ∈ δ′ if s1, s2 ∈ S′ and (s1, a, s2) ∈
δ; and

3. Σ ′ ⊆ Σ is the set of all actions used in δ′, i.e., {a |
∃ s1, s2 ∈ S′ : (s1, a, s2) ∈ δ′}.

4.2 Symbolic states

In the following, we equip our parametric composite service
models with a symbolic semantics, i.e., a semantics, a run
of which will capture a (possibly infinite) set of runs, for a
(possibly infinite) set of parameter valuations.

Let us first define the notion of (symbolic) state of a para-
metric composite service model.

Definition 6 (State) Given a parametric composite service
model CS = (V, v0,Λ,P0,C0), a (symbolic) state of CS is
a tuple s = (v,P,C,D), where v ∈ Valuations(V) is a val-
uation of the variables, P is a composite service process, C
is a constraint over CX∪Λ, and D ∈ LΛ is the (parametric)
elapsed time from the initial state s0 to state s, excluding the
idling time in state s.

Given a state s = (v,P,C,D), we use the notation s.v to
denote the field v of s, and similarly for s.P, s.C and s.D.
When a parametric composite service model CS has no vari-
able, we denote each state s ∈ S by (P,C,D) for the sake of
brevity.

4.3 Implicit clocks

In order to provide parametric composite servicemodelswith
a symbolic semantics, we use clocks to record the elapsing of

123

990 É. André et al.

time. Recall from Sect. 3.1 that clocks are real-valued vari-
ables initially equal to 0, and evolving all at the same rate;
some clocks may be reset to 0. Clocks are used to record the
time elapsing in several formalisms, in particular in timed
automata (TAs) [4]. In TAs, the clocks are defined as part of
the models and state space. It is known that the state space
of the system may grow exponentially with the number of
clocks and that the fewer clocks, the more efficient real-time
model checking is [17]. In (P)TAs, it is possible to dynam-
ically reduce the number of clocks [8,28]. An alternative
approach is to define a semantics that create clocks on the fly
when necessary, and prune them when they are no longer
needed. This approach was initially proposed for stateful
timed CSP [68] and shares similarities with firing times in
time Petri nets [54]. This allows a smaller state space com-
pared to the explicit clock approach. We refer to this second
approach [68] as the implicit clock approach and adopt this
implicit clock approach in our work.

4.3.1 Clock activation

Clocks are implicitly associatedwith processes. For instance,
given a communication activity sInv(S), a clock starts mea-
suring time once the activity becomes activated. To introduce
clocks on the fly, we define an activation function Act in the
following definition, in the spirit of the one defined in [11,68].

In short, this definition explains how to associate a new
clock with a process: this clock will only be associated with
the new processeswith timing constraints, while it will not be
associated with untimed processes nor to processes to which
another implicit clock is already associated.

Definition 7 Given a process, we define the activation func-
tion Act using the following set of recursive rules:

Act(A(S), x) = A(S)x A1
Act(mpick, x) = mpickx A2
Act(A(S)x′, x) = A(S)x′ A3
Act(mpickx′ , x) = mpickx′ A4
Act(P ⊕ Q, x) = Act(P, x) ⊕ Act(Q, x) A5
Act(P ;Q, x) = Act(P, x) ;Q A6

where A ∈ {rec, sInv, aInv, reply}, ⊕ ∈ {|||,�b�}, and
mpick = pick(

n�
i=1

Si ⇒ Pi,
k�

j=1
alrm(aj) ⇒ Qj)

Let us explain Definition 7. Given a process P, we denote
byPx the corresponding process that has been associatedwith
clock x. When a new state s is reached, the activation func-
tion is called to assign a new clock for each newly activated
communication activity.

– Rules A1 and A2 state that a new clock is associated with
a BPEL communication activityA ifA is newly activated.

– Rules A3 and A4 state that if a BPEL communication
activity has already been assigned a clock, it will not be
reassigned one.

– Rules A5 and A6 state that function Act is applied recur-
sively to activate the child activities for BPEL structural
activities.

– For rule A6, function Act is applied only to activity P,
but not to activity Q, since activity P is the immediate
subsequent activity. (Activity Q will be executed only
after the completion of activity P.)

Example 4 Let P = sInv(S1) ||| aInv(S2). Then, applying
rules A5 and A1, Act(P, x) = sInv(S1)x ||| aInv(S2)x . Note
that x is associated with both processes, as they are both
simultaneously activated.

Example 5 Let P = sInv(S1)x′ ; aInv(S2). Then, applying
rules A6 and A3, Act(P, x) = sInv(S1)x′ ; aInv(S2). Indeed,
the first invocation sInv(S1)x′ is already associated with
another clock x′ (rule A3) while the right-hand part of the
sequence is not yet activated (rule A6).

Given a process P, we denote by aclk(P) the set of active
clocks associated with P.

Example 6 Assume process P = sInv(S1)x0 ||| sInv(S2)x1 .
The set of active clocks associated with P is aclk(P) =
{x0, x1}.

4.3.2 Idling function

We define in Definition 8 the function idle that, given a state
s, returns a constraint that specifies how long an activity can
idle at state s. The result is a constraint over X ∪ Λ. This
idling function is similar in essence to the time elapsing on
symbolic states (zones or parametric zones) defined for TAs
or PTAs [17,41].

Definition 8 Given a process, we define the idling function
idle using the following set of recursive rules:

idle(A(S)x) = x ≤ λS I1
idle(B(S)x) = x = 0 I2
idle(P ⊕ Q) = idle(P) ∧ idle(Q) I3
idle(P ;Q) = idle(P) I4
idle(mpickx) = x ≤ λS ∧ ∧k

j=0 x ≤ aj I5
where A ∈ {rec, sInv}, B ∈ {aInv, reply}, ⊕ ∈ {|||,�b�},
mpick = pick(

n�
i=1

Si ⇒ Pi,
k�

j=1
alrm(aj) ⇒ Qj), and λS is

the parametric response time of service mpickx .

Let us explain Definition 8.

– Rule I1 considers the situation when the communication
requires waiting for the response of a component service
S, and the value of clock x must not be larger than the

123

Automated synthesis of local time requirement for service composition 991

response time parameter λS of the service: that is, one
can only remain in this state while x ≤ λS remains valid.

– Rule I2 considers the situation when no waiting is
required: therefore, the clock constraint x = 0 implies
that this state should be leftwithin 0-time, as these actions
are instantaneous.

– Rules I3 and I4 state that the function idle is applied recur-
sively to activate the child activities of a BPEL structural
activity.

– Similar to ruleA6, for rule I4, functionAct is applied only
to activity P, but not to activity Q, since only activity P
is executed next. Therefore, given a state s and activity
P ;Q, we only need to consider how long the activity P
can idle at state s.

– Rule I5 states that the activity can idle only until λS or any
of the alarms aj is reached. The conjunction comes from
the fact that, as soon as any alarm reaches its timeout,
then it will be triggered, therefore leading the system to
leave this symbolic state.

Example 7 Let P = sInv(S1) ||| aInv(S2). Assume the
response time of Si is λi for i ∈ {1, 2}. Recall from Exam-
ple 4 that Act(P, x) = sInv(S1)x ||| aInv(S2)x . Let us
apply idle to Act(P, x). Applying rules I3, I1 and I2, we get
x ≤ λ1 ∧ x = 0.

4.4 Operational semantics

The operational semantics will be defined in the form of
an LTS. The actions labeling the LTS will be sequences of
rules; these rules will be a set of rules (similar to those of
parametric stateful timed CSP [11]) defining the transitions
of the semantics and will be explained below. Let

Rules = {rSInv, rRec, rReply, rAInv, rCond1, rCond2,
rCond3, rCond4, rSeq1, rSeq2, rFlow1,

rFlow2, } ∪ (rPickM × N) ∪ (rPickA × N)

be the set of rules that will be used by the LTS. Two rules
(rPickM and rPickA) are associated with a positive integer,
so as to remember which subprocess is derived (this will be
explained later on). Let Sequences(Rules) denote the set of
sequences of rules, i.e., non-empty ordered elements of Rules
(possibly used several times). An example of a sequence of
rule is 〈rRec, rReply, rRec, (rPickM, 2)〉. Sequence concate-
nation is denoted by operator +.

We can now define the semantics of a parametric com-
posite service model in the form of an LTS. Let ClkSeq =
〈x0, x1, . . .〉 be a sequence of clocks. We will need ClkSeq to
pick a fresh clock when applying the clock activation func-
tion Act defined previously.

Definition 9 (Semantics of composite services) Let CS =
(V, v0,Λ,P0,C0) be a parametric composite service model.
The semantics of CS (hereafter denoted by LTSCS) is the LTS
(S, s0, Sequences(Rules), δ) where

S = {(v,P,C,D) ∈ Valuations(V) × P × CX∪Λ × LΛ},
s0 = (v0,P0,C0, 0)

and the transition relation δ is the smallest transition relation
satisfying the following. For all (v,P,C,D) ∈ S, if x is the
first clock in the sequence ClkSeq which is not in aclk(P),

and (v,Act(P, x),C ∧ x = 0,D)
seq
↪→ (v′,P′,C′,D′) where

C′ is satisfiable, then we have: ((v,P,C,D), seq, (v′,P′,
pruneX\aclk(P′)(C

′),D′)) ∈ δ.

The transition relation ↪→ is specified by a set of rules,
given in “Appendix A.” Let us first explain these rules, after
which we will go back to the explanation of Definition 9.
The transition relation is labeled by a sequence of rules that
allows one to remember by using which sequence of rules a
process evolves into another one.

Synchronous invocation Rule rSInv states that a state
s = (v, sInv(S)x,C,D) may evolve into the state s′ =
(v′, Stop, (x = λS) ∧C↑,D+ λS), where Stop is the activity
that does nothing, and λS is the parametric response time of
component service S. Note that, from Definition 9, the con-
dition (x = λS) ∧ C↑ is necessarily satisfied (otherwise this
evolution is not possible). Furthermore, the parametric dura-
tion from the initial state (D) is incremented by λS. Rules
rRec, rReply and rAInv are similar.

Pick activity Rule rPickM encodes the transition that takes
place due to an onMessage activity, where λi denotes the
parametric response time of Pi. Let us explain the constraint
(x = λi) ∧ idle(mpickx) ∧ C↑. First, after the transition,
the current clock x needs to be equal to the parametric
response time of service Si, i.e., x = λi. Second, the con-
straint idle(mpickx) is added to ensure that x remains smaller
or equal to the maximum duration of the mpickx activity.
Third, the constraint C↑ denotes the time elapsing of C.
Observe that the transition in ↪→ is labeled using the pair
(rPickM, i) so as to remember that the ith process (i.e., Pi)
has been selected.

Rule rPickA (for an onAlarm activity) is similar; observe
that, instead of using the parametric response time, we use
the time stipulated by the alarm (i.e., aj) of process Qj.

Conditional activity Given a conditional composition A �
b � B, the guard condition b is a Boolean; hence, its values
are in {true, false}. As a consequence, given a valuation v
of the variables, then v(b) ∈ {true, false,⊥}. We have that
v(b) = ⊥ when the evaluation of b is unknown, due to the

123

992 É. André et al.

fact that there may be uninitialized variables in b. Since b
might be evaluated to either true or false at certain stages at
runtime,we explore both activitiesA andBwhen v(b) = ⊥ so
as to reason about all possible scenarios. The case of v(b) =
⊥ is captured by rules rCond1 and rCond2, and the cases
where v(b) ∈ {true, false} are captured by rules rCond3 and
rCond4.

Sequential activity rSeq1 states that if activity A′ is not a
Stop activity (i.e., activity A′ has not finished its execution),
then a state containing activity A ;B may evolve into a state
containing activity A′ ;B. Otherwise, if A is a Stop activity
(i.e., activity A has finished its execution), then the state may
evolve into B. This is captured by rSeq2.

Concurrent activity For concurrent activity A ||| B, both
activities A and activity B are executed. This is captured by
rFlow1 and rFlow2, respectively. rFlow1 states that if state
(v,A,C,D) can evolve into (v′,A′,C′,D′), then a state con-
taining A ||| B can evolve into a state containing A′ ||| B, if
C′ ∧ idle(B) holds. That is, the clock constraints in C′ can-
not exceed the duration activity B can last for. Rule rFlow2
is dual.

Let us now explain Definition 9. Starting from the initial
state s0 = (v0,P0,C0, 0), we iteratively construct succes-
sor states as follows. Given a state (v,P,C,D), a fresh
clock x which is not currently associated with P is picked
from ClkSeq. The state (v,P,C,D) is transformed into
(v,Act(P, x),C ∧ x = 0,D), i.e., timed processes which
just become activated are associated with x and C is con-
juncted with x = 0. Then, a firing rule is applied to get a
target state (v′,P′,C′,D′). Lastly, clockswhichdonot appear
within P′ are pruned from C′. More in detail, the expres-
sion pruneX\aclk(P′)(C

′) denotes that we remove all clocks
from the obtained constraint C′ by existential quantification,
except those which are still active in the successor P′ of P
(recall that pruneX(C) was defined in Sect. 3.1).

Observe that one clock is introduced, and zero or more
clocks may be pruned during a transition. In practice, a clock
is introduced only when necessary; if the activation function
does not activate any subprocess, no new clocks are created.

Good and bad states Let us define good and bad states in
the LTS obtained from Definition 9. The execution of a bad
activity will make the execution of CS end in an undesired
terminal state, which we refer to as a bad state. A terminal
state which is not a bad state is called a good state.

4.5 Application to an example

Consider a composite service CS starting from pick(PS ⇒
reply(User), alrm(1) ⇒ [reply(User)]bad). Assume λPS is
the parametric response time of service PS. (Note that CS is a

part of the SMIS example fromSect. 2.) The states ofCS com-
puted according to Definition 9 are given in Fig. 3, including
intermediate states (detailed in the following). Since CS has
no variable, then v = ∅ in all states; therefore, we omit the
component v from all states for sake of brevity.

– At state s0, the activation function assigns clock x to
record time elapsing of pick activity mpick, with x ini-
tialized to zero. The tuple becomes the intermediate state
sx0 = (mpickx, x = 0, 0).

– From the intermediate state sx0, the process may evolve
into the intermediate state s′1 by applying the rule rPickM,
if the constraint C1 = ((x = λPS) ∧ idle(mpickx) ∧
(x = 0)↑), where idle(mpickx) = (x ≤ λPS ∧ x ≤ 1)
and (x = 0)↑ (i.e., x ≥ 0), is satisfiable. Intuitively,
C1 denotes the constraint where λPS time units elapsed
since clock x has started. In fact, C1 is satisfiable (for
example, with λPS = 0.5 and x = 0.5). Therefore, it
may evolve into the intermediate state s′1 = (rgood, (x =
λPS) ∧ idle(mpickx) ∧ (x = 0)↑, λPS) = (rgood, (x =
λPS) ∧ x ≤ 1, λPS). Since clock x is not used anymore in
s′1.P which is rgood , it is pruned. After pruning of clock
variable x and simplification of the expression, the inter-
mediate state s′1 becomes the state s1 = (rgood, λPS ≤
1, λPS).

– From the intermediate state sx0, the process may also
evolve into the intermediate state s′2, by applying the
rule rPickA, if the constraint C2 = ((x = 1) ∧
idle(mpickx) ∧ (x = 0)↑), where idle(mpickx) = (x ≤
λPS ∧ x ≤ 1) and (x = 0)↑ (i.e., x ≥ 0), is satisfiable. It
is easy to see that C2 is satisfiable; therefore, the process
may evolve into the intermediate state s′2 = (rbad, (x =
1) ∧ x ≤ λPS, 1). After clock pruning from intermediate
state s′2, it becomes state s2 = (rbad, λPS ≥ 1, 1).

– From state s1, activation function assigns clock x to the
reply activity rgood , and the process evolves into inter-
mediate state sx1. From sx1, the process may evolve into
intermediate state s′3 by applying rule rReply, if the con-
straint C3 = ((x = 0) ∧ (λPS ≤ 1)↑) is satisfiable,
where (λPS ≤ 1)↑ = λPS ≤ 1. The constraint is satis-
fiable and therefore the state evolves s′3 = (Stop, λPS ≤
1 ∧ (x = 0), λPS). After pruning of the non-active clock,
it evolves into the terminal state s3 = (Stop, λPS ≤
1, λPS). Since the terminal state is not caused by a bad
activity, s3 is considered as a good state, denoted by �
in Fig. 3.

– From state s2, the process may also evolve into the ter-
minal state s4 = (Stop, λPS ≥ 1, 1). Since the terminal
state is caused by a bad activity, it is considered as a bad
state, denoted by × in Fig. 3.

Note that all states sxi and s
′
j, where i, j ∈ N and 0 ≤ i ≤ 4,

are intermediate states. State sxi is the state si after clock

123

Automated synthesis of local time requirement for service composition 993

Fig. 3 Computing states of
service CS (including
intermediate states)

s0 : (mpick , true, 0)

sx0 : (mpickx , x = 0, 0)

s1 : (rgood , x = λPS ∧ x ≤ 1, λPS) s2 : (rbad , x = 1 ∧ x ≤ λPS, 1)

s1 : (rgood , λPS ≤ 1, λPS) s2 : (rbad , λPS ≥ 1, 1)

sx1 : ((rgood)x , λPS ≤ 1 ∧ x = 0, λPS) sx2 : ((rbad)x , λPS ≥ 1 ∧ x = 0, 1)

s3 : (Stop, λPS ≤ 1 ∧ x = 0, λPS) s4 : (Stop, λPS ≥ 1 ∧ x = 0, 1)

s3 : (Stop, λPS ≤ 1, λPS) s4 : (Stop, λPS ≥ 1, 1)×

(act)

(rPickM , 1)
(rPickA, 1)

(pruning) (pruning)

(act) (act)

rReply rReply

(pruning) (pruning)

where mpick = pick(PS ⇒ rgood , alrm(1) ⇒ rbad), rgood = reply(User), rbad =
[reply(User)]bad , and λPS is the parametric response time of service PS.

assignment operations are applied. State s′j is the state sj
before clock pruning operations are applied. These inter-
mediate states are given in Fig. 3 to illustrate in detail the
application of the semantics. The LTS of CS (without the
intermediate states) is given in Fig. 4.

4.6 A technical result: the reachability condition

We defined the operational semantics of parametric compos-
ite service models as an LTS, the states of which contain
information on clocks and parameters in the form of a con-
straint C. We now show that, for any reachable state of this
LTS along a run, a parameter valuation π satisfies C iff the
model valuated with π has an equivalent run. This is called
the reachability condition. Similar results have been proved
for parametric timed automata [41], parametric time Petri
nets [76] or parametric stateful timed CSP [11].

We first need several definitions and intermediate results.
Given a parametric service model CS and a parameter val-
uation π , let us relate runs of LTSCS and LTSCS[π]. We will
say that two runs are equivalent if they share the same dis-
crete support, i.e., follow the same application of sequences
of rules regardless of the actual timing values.

Definition 10 (Equivalent runs) Let CS be a parametric ser-
vice model, and let π be a parameter valuation.

Let ρ = 〈(v0,P0,C0,D0), seq0, (v1,P1,C1,D1), . . . ,

seqn−1, (vn,Pn,Cn,Dn)〉 be a run of LTSCS[π]. Let ρ′ =
〈(v′

0,P
′
0,C

′
0,D

′
0), seq

′
0, (v

′
1,P

′
1,C

′
1,D

′
1), . . . , seq

′
n−1, (v

′
n,

P′
n,C

′
n, D

′
n)〉 be a run of LTSCS.

The two runs ρ and ρ′ are equivalent if vi = v′
i and Pi =

P′
i[π] for 0 ≤ i ≤ n and seqi = seq′

i for 0 ≤ i ≤ n − 1.

The following lemma states that, given a run of LTSCS[π],
there exists a unique equivalent run in LTSCS.

Proposition 1 Let CS be a parametric service model, and
let π be a parameter valuation. Let ρπ be a run of LTSCS[π].

Then there exists a unique run of LTSCS equivalent to ρπ .

Proof By induction on the length of the runs. We prove in
fact a slightly stronger result: given a state (v,P,C,D) of
a run ρ in LTSCS[π], and given a state (v′,P′,C′,D′) of the
equivalent run ρ′ in LTSCS, we show that these two runs are
not only equivalent, but also that C ⊆ C′.

Base case From Definition 9, the initial state of LTSCS is
(v0,P0,C0, 0). The initial state of LTSCS[π] is (v0,P0[π],
C0[π], 0). Since C0[π] ⊆ C0, then the result trivially holds.

Induction step Assume ρπ is a run of LTSCS[π] of length m
reaching state (v1,P1,C1,D1); assume there exists a unique
run of LTSCS equivalent to ρπ and of lengthm, reaching state
(v′

1,P
′
1,C

′
1,D

′
1). From Definition 10, it holds that v1 = v′

1
and P1 = P′

1[π]. From the induction hypothesis, it holds that
C1 ⊆ C′

1.
Let (v2,P2,C2,D2) be the successor state of (v1,P1,C1,

D1) via a given sequence of rules seq in ρπ .
Assume (v2,P2,C2,D2) is obtained from (v1,P1,C1,D1)

by applying rule rSInv in “AppendixA.” SinceC1 ⊆ C′
1, then

rule rSInv can also be applied to (v′
1,P

′
1,C

′
1,D

′
1), yielding a

state (v′
2,P

′
2,C

′
2,D

′
2). Now, we have:

C1 ⊆ C′
1 �⇒ C↑

1 ⊆ C′↑
1

�⇒ (x = π(λS) ∧ C↑
1) ⊆ (x = λS ∧ C′↑

1)

�⇒ C2 ⊆ C′
2.

In particular, C2 ⊆ C′
2 implies that C′

2 is non-empty;
hence, the state (v′

2,P
′
2,C

′
2,D

′
2) is a valid state. In addi-

tion, since P1 = P′
1[π] and rule rSInv derives to Stop, then

P2 = P′
2[π]. Variables are updated in the same manner on

both sides, and hence, v2 = v′
2. The proof is similar for other

rules in “Appendix A.”
Finally, the successor state (v′

2,P
′
2,C

′
2,D

′
2) is the unique

successor state of (v′
1,P

′
1,C

′
1,D

′
1) in LTSCS via this sequence

123

994 É. André et al.

Fig. 4 LTS of service CS s0 : (mpick , true, 0)

s1 : (rgood , λPS ≤ 1, λPS) s2 : (rbad , λPS ≥ 1, 1)

s3 : (Stop, λPS ≤ 1, λPS) s4 : (Stop, λPS ≥ 1, 1)×

(rPickM , 1)
(rPickA, 1)

rReply rReply

where mpick = pick(PS ⇒ rgood , alrm(1) ⇒ rbad), rgood = reply(User), rbad =
[reply(User)]bad , and λPS is the parametric response time of service PS.

of rules. Hence, there exists a unique run of LTSCS equivalent
to ρπ and of length m + 1. ��

We now prove the dual result. Proposition 2 states that,
given a run ρ of LTSCS, there exists a unique equivalent run
in LTSCS[π], provided π satisfies the parametric constraint
associated with the last state of ρ.

Proposition 2 Let CS be a parametric service model, and
let π be a parameter valuation. Let ρ be a run of LTSCS
ending in a state (vn,Pn,Cn,Dn).

For any π |� Cn↓Λ, there exists a unique run of LTSCS[π]
equivalent to ρ.

Proof By induction on the length of the runs. We prove in
fact a slightly stronger result: given a state (v′,P′,C′,D′)
of a run ρ′ in LTSCS, and given a state (v,P,C,D) of the
equivalent run ρ in LTSCS[π], we show that these runs are not
only equivalent, but also that C = C′[π].

Base step: From Definition 9, the initial state of LTSCS
is (v0,P0,C0, 0). The initial state of LTSCS[π] is (v0,P0[π],
C0[π], 0). Since C0 = true then C0 = C0[π]. Hence, the
result trivially holds in that case.

Induction step: Assume ρ is a run of LTSCS of length m
reaching state (v′

1,P
′
1,C

′
1,D

′
1). Let (v′

2,P
′
2,C

′
2,D

′
2) be the

successor state of (v′
1,P

′
1,C

′
1,D

′
1) via a sequence of rules seq

in ρ. Let π |� C′
2↓Λ. Assume there exists a unique run

of LTSCS[π] equivalent to ρ and of length m, reaching state
(v1,P1,C1,D1). From Definition 10, it holds that v1 = v′

1
and P1 = P′

1[π]. From the induction hypothesis, it holds that
C1 = C′

1[π].
Assume (v′

2,P
′
2,C

′
2,D

′
2) is obtained from (v′

1,P
′
1,C

′
1,D

′
1)

by applying rule rSInv in “Appendix A.” Recall that C1 =
C′
1[π]; since P1 = P′

1[π] (from Definition 10), we can apply
rule rSInv to (v1,P1,C1,D1), yielding a state (v2,P2,C2,D2).
From “Appendix A,” we know that C2 = (x = λS ∧ (C↑

1))

and C′
2 = (x = λS ∧ (C′↑

1)). Now, we have:

C2 = (x = π(λS) ∧ (C↑
1))

= (x = π(λS) ∧ (C′
1[π])↑) (induction hypothesis)

= (x = π(λS) ∧ (C′
1 ∧

∧

λi∈Λ

λi = πi)
↑) (definition of valuation)

= (x = π(λS) ∧ (C′
1)

↑) ∧
∧

λi∈Λ

λi = πi (property of time elapsing)

= (x = λS ∧ (C′
1)

↑) ∧
∧

λi∈Λ

λi = πi (definition of valuation)

= C′
2 ∧

∧

λi∈Λ

λi = πi (definition of C′
2)

= C′
2[π] (definition of valuation)

Note that adding x = λS while keeping satisfiability of
the expression is only true because π |� C′

2↓Λ. This implies
that C′

2[π] is non-empty; hence, the state (v2,P2,C2,D2) is
a valid state. In addition, since P1 = P′

1[π] and rule rSInv
derives to Stop, then P2 = P′

2[π]. Similarly, variables are
updated in the same manner on both sides, and hence, v2 =
v′
2. The proof is similar for other rules in “Appendix A.”
The proof of uniqueness is identical to that of Proposi-

tion 1. ��
Propositions 1 and 2 give the following theorem.

Theorem 1 (Reachability condition) Let CS be a parametric
service model, and let π be a parameter valuation. Let ρ be
a run of LTSCS ending in a state (vn,Pn,Cn,Dn).

There exists a run of LTSCS[π] equivalent to ρ iff π |�
Cn↓Λ.

5 Synthesizing the static LTC

Given CS = (V,Λ,P0,C0), the global time requirement
for CS requires that, for every state (v,P,C,D) reachable
from the initial state (v0,P0,C0, 0) in its LTS, the constraint
D ≤ TG is satisfied, where TG ∈ R≥0 is the global time
constraint. The local time requirement requires that if the
response times of all component services of CS satisfy the
local time constraint (LTC) CL ∈ CΛ, then the service CS
satisfies the global time requirement.

In this section, given a global time constraint TG for a
service CS, we present an approach to synthesize the static
LTC (sLTC) CL . The sLTC will be given in the form of an
NNCC over Λ. We show that if the response times of all
component services of CS satisfy the local time requirement,
then the service CS will end in a good state within TG time
units.

5.1 Motivation

Let λi ∈ Q≥0 be the parametric response time of compo-
nent service Si for i ∈ {1, . . . , n}, and let Λ = {λ1, . . . , λn}
be the set of component service parametric response times.

123

Automated synthesis of local time requirement for service composition 995

Using constraints over Λ, we can represent an infinite num-
ber of possible response times symbolically. The local time
requirement of component services of CS is specified as a
constraint over Λ. An example of a local time requirement is
(λ1 ≤ 6) ∧ (λ2 ≤ 5). This local time requirement specifies
that, in order for CS to satisfy the global time requirement,
service S1 needs to respond within 6 time units, and ser-
vice S2 needs to respond within 5 time units. A local time
requirement can also be in the form of a dependency between
parametric response times, e.g., (λ2 ≤ λ1 ⇒ λ1+λ2 ≤ 6) ∧
(λ1 ≤ λ2 ⇒ λ1 ≤ 6).

In the following,wewill propose a technique to synthesize
the static LTC in the form of a convex overΛ.We first give an
intuition concerning how to handle the good states (Sect. 5.2)
and the bad states (Sect. 5.3); then, we give the full synthesis
algorithm (Sect. 5.4), apply it to an example (Sect. 5.5) and
prove its soundness (Sect. 5.6).

5.2 Addressing the good states

We assume a composite service CS and its LTS LTSCS =
(S, s0, Sequences(Rules), δ); let Sgood be the set of all good
states of LTSCS. We make two observations here. First, from
Theorem 1, a good state sg = (vg,Pg,Cg,Dg) ∈ Sgood is
reachable from the initial state s0 iffCg is satisfiable. Second,
whenever the good state sg is reached,we require that the total
delay from initial state s0 to state sg must be no larger than
the global time constraint TG, i.e., Dg ≤ TG. To sum up,
given a good state sg = (vg,Pg,Cg,Dg) where sg ∈ Sgood ,
we require the constraint (Cg↓Λ ⇒ (Dg ≤ TG)) to hold.
The constraint means that whenever sg is reachable from s0,
the total (parametric) delay from s0 to sg must be less than
the global time constraint TG. The synthesized sLTC for CS
must include the conjunction of such constraints for each
good state sg ∈ Sgood , that is:

∧

(vg,Pg,Cg,Dg)∈Sgood
(Cg↓Λ ⇒ (Dg ≤ TG)).

Example 8 Let us consider a composite service CS whose
process component is P0 = pick(S ⇒ sInv(S1), alrm(1) ⇒
sInv(S2)), where S is a component service. Assume that
sInv(Sj) is a component service with parametric response
time λj, for j ∈ {1, 2}, and S has a response time λS. Suppose
the global time requirement of the composite service CS is
to respond within 5 s. Fig. 5 shows the LTS of CS.

For composite service CS in Fig. 5, we have two good
states (states s3 and s4), and the synthesized local time
requirement for composite service CS is:

(λS ≤ 1) ⇒ (λS + λ1 ≤ 5) ∧ (λS ≥ 1) ⇒ (1 + λ2 ≤ 5)

s0 : (P0, true, 0)

s1 : (sInv(S1), λS ≤ 1, λS) s2 : (sInv(S2), λS ≥ 1, 1)

s3 : (Stop, λS 1, λS + λ1) s4 : (Stop, λS 1, 1 + λ2)

(rPickM , 1)
(rPickA, 1)

rSInv rSInv

Fig. 5 LTS of composite service CS

s0 : (P0, true, 0)

s1 : (sInv(S1), λS ≤ 1, λS) s2 : ([sInv(S2)]bad , λS ≥ 1, 1)

s3 : (Stop, λS 1, λS + λ1) s4 : (Stop, λS 1, 1 + λ2)

(rPickM , 1)
(rPickA, 1)

rSInv rSInv

Fig. 6 LTS of composite service CS′

5.3 Addressing the bad states

Another goal we want to achieve is to avoid all bad states in
LTSCS. Let Sbad be the set of all bad states of service LTSCS.
Given a bad state sb = (vb,Pb,Cb,Db) ∈ Sbad , this bad
state must not be reachable from the initial state s0. Hence,
in order to prevent Cb to be satisfiable, we require that the
parameters be taken in the negation of the projection of Cb

onto Λ, i.e., we require that ¬(Cb)↓Λ be satisfiable because
of the reachability condition (Theorem 1). In addition to the
good state constraint given in Sect. 5.2, the synthesized sLTC
for CS must also include the conjunction of such constraints
for each bad state sb ∈ Sbad , that is:

∧

(vb,Pb,Cb,Db)∈Sbad
(¬(Cb)↓Λ).

Example 9 Consider a variant CS′ of Example 8, where
sInv(S2) is now treated as a bad activity, denoted by
[sInv(S2)]bad . This service results in the LTS shown in Fig. 6,
where state s4 is a bad state. From Theorem 1, a way to avoid
the reachability of s4 is to negate its associated constraint C.
Therefore, the local time requirement for composite service
CS′ is (s3.C↓Λ ⇒ (s3.D ≤ TG)) ∧ ¬ (s4.C↓Λ): the first
term guarantees the reachability of s3 while the second term
guarantees the non-reachability of s4. Therefore, this NNCC
ensures that any complete run of the service ends in a good
state. (This will be proved in Sect. 5.6.)

5.4 Synthesis algorithms

Algorithm 1 presents the entry algorithm for synthesizing
the sLTC for a given service CS, by traversing the LTS of CS.
Algorithm 1 simply calls synthRec(s) applied to the initial
state s0; this latter algorithm synthRec is given in Algo-
rithm 2.

Given a state s = (v,P,C,D) in the LTS of service
CS, synthRec(s) returns a parameter constraint as follows.
If state s is a good state (line 1), then it returns the constraint

123

996 É. André et al.

Algorithm 1: synthSLTC(CS)
input : Composite service model CS with LTS LTSCS of initial

state s0
output: The sLTC CL ∈ NCΛ

1 return synthRec(s0);

Algorithm 2: synthRec(s)
input : State s of LTS
output: The constraint for LTS that starts at s

1 if s is a good state then
2 return (s.C↓Λ ⇒ (s.D ≤ TG));
3

4 else if s is a bad state then
5 return ¬ (s.C↓Λ);
6 else

// s is a non-terminal state
7 return

∧
s′∈succ(s) synthRec(s′) ;

s.C↓Λ ⇒ (s.D ≤ TG) (line 2), where TG is the given global
time constraint of the service CS. If state s is a bad state
(line 3), then the negation of the current constraint s.C↓Λ

is returned (line 4). Finally, if s is a non-terminal state (line
5), the algorithm returns the conjunction of the result of the
algorithm recursively applied on the successors of s (line 6).

5.5 Application to the running example

Consider again the running example SMIS introduced in
Sect. 2. Assume the parametric response times of FS, PS and
DS are λFS, λPS and λDS, respectively. Recall that TG = 3.

Figure 7 shows the LTS of SMIS. The sLTC resulting from
the application of synthSLTC is:

((λDS ≤ 3) ∧ (λFS ≤ 1) ⇒ (λDS + λFS ≤ 3)) ∧
((λFS ≥ 1 ∧ λPS ≤ 1) ⇒ (λDS + λPS ≤ 2))

∧ ¬ (λFS ≥ 1 ∧ λPS ≥ 1)

After simplification3 using Z3 [29], a state-of-the-art satisfia-
bility modulo theories (SMT) solver developed byMicrosoft
Research, we get the following sLTC:

(λFS < 1 ∧ λDS + λFS ≤ 3) ∨
(λPS < 1 ∧ λFS > 1 ∧ λDS + λPS ≤ 2) ∨
(λPS < 1 ∧ λDS + λFS ≤ 3 ∧ λDS + λPS ≤ 2)

This result provides us useful information onhow the com-
ponent services collectively satisfy the global time constraint.
That is useful when selecting component services. For the

3 For readability, we give the constraint as output in disjunctive normal
form (DNF), instead of the usual conjunctive normal form (CNF).

case of SMIS, one way to fulfill the global time requirement
of SMIS is to select component service FS with response
time that is less than 1s, and component services DS and FS
where the summation of their response times should be less
than or equal to 3 s. For example, a suitable valuation is π

such that π(λFS) = 0.5, π(λDS) = 1.5 and π(λFS) = 0.8.

5.6 Termination and soundness of synthSLTC

5.6.1 Termination

Lemma 1 Let CS be a service model. Then LTSCS is acyclic
and finite.

Proof FromAssumption 1 and from the fact that there are no
recursive activities in BPEL. ��
Proposition 3 LetCSbea servicemodel. Then synthSLTC(CS)
terminates.

Proof From Lemma 1, LTSCS is acyclic. Algorithm 1 is obvi-
ously non-recursive. Now, Algorithm 2 is recursive (line 6).
However, due to the acyclic nature of LTSCS and the fact that
Algorithm 2 is called recursively on the successors of the
current state, then no state is explored more than once. This
ensures termination. ��
Remark 1 (Complexity of Algorithm 2) First, note that all
states of LTSCS are explored by Algorithm 2: indeed, the
algorithm is recursively called on non-terminal states and
stops only on terminal states—that have no successors any-
way. So, the algorithm time is constant in the number of states
of LTSCS. In addition, the number of conjuncts in the result
of Algorithm 2 is at most the number of states of LTSCS, and
less if not all states are terminal states.

5.6.2 Soundness

Let us prove that for any parameter valuation satisfying the
output of synthSLTC, any complete run ends in a good state,
and all reachable good states are reachable within the global
delay TG.

In the following, given a run ρπ of LTSCS[π], from Propo-
sition 1 we can safely refer to the run of LTSCS equivalent
to ρπ .

The following lemmas will be used to prove the subse-
quent Theorem 2.

Lemma 2 LetCSbea servicemodel. Letπ |� synthSLTC(CS).
Then no bad state is reachable in LTSCS[π].

Proof LetK = synthSLTC(CS).K is a conjunction of “good”
parameter constraints (accumulated from line 2 in Algo-
rithm 2) and “bad” parameter constraints (accumulated from
line 4 in Algorithm 2). Hence,K contains at least the negated

123

Automated synthesis of local time requirement for service composition 997

Fig. 7 LTS of the SMIS s0 : (S , true, 0)

s1 : (rgood b A1, true, λDS)

s2 : (A1, true, λDS) s3 : (rgood , true, λDS)

s4 : (P1, true, λDS)

s5 : (Stop, true, λDS)

s6 : (A2, λFS ≥ 1, λDS + 1) s7 : (rgood , λFS ≤ 1, λDS + λFS)

s8 : (P2, λFS ≥ 1, λDS + 1)

s9 : (Stop, λFS ≤ 1, λDS + λFS)

s10 : (rbad , λPS ≥ 1 ∧ λFS ≥ 1, λDS + 2) s11 : (rgood , λPS ≤ 1 ∧ λFS ≥ 1, λDS + 1 + λPS)

s12 : (Stop, λPS ≥ 1 ∧ λFS ≥ 1, λDS + 2) s13 : (Stop, λPS ≤ 1 ∧ λFS ≥ 1, λDS + 1 + λPS)

rSInv , rSeq2 rCond1

rCond1

rAInv , rSeq2

rReply

(rPickA, 1)

(rPickM , 1)

rAInv , rSeq2

rReply

(rPickA, 1)

(rPickM , 1)

rReply rReply

×
S = (sInv(DS) ; rgood b A1)
A1 = (aInv(FS) ;P1)
P1 = (pick(FS ⇒ rgood , alrm(1) ⇒ A2))
A2 = (aInv(PS) ;P2)
P2 = (pick(PS ⇒ rgood , alrm(1) ⇒ rbad))
rgood = (reply(User))
rbad = ([reply(User)]bad)

constraints of all bad states. Hence, from Theorem 1, the bad
states are unreachable for any π |� K . ��
Lemma 3 LetCSbea servicemodel. Letπ |� synthSLTC(CS).

Then any complete run of LTSCS[π] ends in a good state.

Proof First, note that the initial state s0 is reachable in
LTSCS[π] (since s0.C = true).

If the initial state is the only state, then from Lemma 2,
it is also not a bad state; hence, it is a good state. Now, if it
is not the only state, from the fact that all runs of LTSCS end
either in a good state or in a bad state, from the absence of
bad states (Lemma 2), and from Theorem 1, then any run of
LTSCS[π] ends in a good state. ��
Lemma 4 LetCSbea servicemodel. Letπ |� synthSLTC(CS).
Then for all good state (v,Pg,C, d) of LTSCS[π], d ≤ TG.

Proof Let sg = (v,Pg,C,D) be a reachable state in LTSCS
such that sg is a good state. FromDefinition 9,C is satisfiable
(and hence C↓Λ too). Since sg is a good state, Algorithm
synthRec added a constraint C↓Λ ⇒ D ≤ TG to the result.
Hence, synthSLTC(CS) ⊆ (C↓Λ ⇒ D ≤ TG). Now, for any
π |� synthSLTC(CS), we have that π |� (C↓Λ ⇒ D ≤ TG),
and hence, all reachable states in LTSCS[π] are such that d ≤
TG. ��

We can now formally state the soundness of synthSLTC.

Theorem 2 Let CS be a service model. Let π |�
synthSLTC(CS). Then:

1. Any complete run of LTSCS[π] ends in a good state.
2. For all good state (v,Pg,C, d) of LTSCS[π], d ≤ TG.

Proof From Lemmas 3 and 4. ��

Given a composite service CS, and assume Sg = {s1, . . . ,
sn} be the set of all good states in LTSCS. In the following
proposition, we show that any π |� synthSLTC(CS) neces-
sarily satisfies (at least) one of the good states’ constraints,
i.e., π |� si.C↓Λ for some si ∈ Sg.

Indeed, recall synthSLTC(CS) is a conjunction of good and
bad constraints. In the following proposition, we show that
the good constraints of the form (C1 ⇒ r1 ∧ · · · ∧ Cn ⇒
rn) will not hold trivially by just having Ci = false, for all
i ∈ {1, . . . , n}.

Proposition 4 Let CS be a service model, and Sgood be the
set of all good states in LTSCS. Let π |� synthSLTC(CS).

Then ∃ s ∈ Sgood : π |� s.C↓Λ.

Proof From Algorithm 2, synthSLTC(CS) is a conjunc-
tion of “good” constraints (accumulated at line 2) and
“bad” constraints (accumulated at line 4). That is, assume
synthSLTC(CS) = (Cg ∧ Cb), where Cg = ∧

si∈Sgood
(si.C↓Λ ⇒ (si.D ≤ TG)), and TG be the global time
constraint, and Cb = ∧

sj∈Sbad ¬(s.Cj↓Λ). Hence, since
π |� synthSLTC(CS) then π |� Cg and hence ∃ s ∈ Sgood :
π |� s.C↓Λ. ��

123

998 É. André et al.

5.7 Incompleteness of synthSLTC

A limitation of synthSLTC is that it is incomplete, i.e., it does
not include all parameter valuations that could give a solu-
tion to the problem of the local time requirement. Given an
expression A�a = 1�B, since amay be unknown at design
time, we explore both branches (activities A and B) for syn-
thesizing the sLTC. Nevertheless, only exactly one of these
activities will be executed at runtime. Including constraints
from activities A and Bwill make the constraints stricter than
necessary; therefore, some of the feasible parameter valua-
tions are excluded—this makes the synthesis by synthSLTC
incomplete. This can be seen as a trade-off to make the syn-
thesized local time requirement more general, i.e., to hold in
any composite service instance. In Sect. 6, we will introduce
a method that leverages on runtime information to mitigate
this problem.

6 Runtime refinement of local time
requirement

In order to improve the local time requirement computed stat-
ically using the algorithms presented in Sect. 5, we introduce
in this section a refined local time requirement, together with
its usage for runtime adaptation of a service composition.

6.1 Motivation

Let us consider a composite service CS. Assume that we have
selected a set of component services such that their stipulated
response times fulfill the sLTC of CS. Since the composite
service is executed under a highly evolving dynamic envi-
ronment, the design time assumptionsmay evolve at runtime.
For instance, the response times of component services could
be affected by network congestion. This might result in the
non-conformance of stipulated response times for some com-
ponent services.However, the non-conformance of stipulated
response times of component services does not necessary
imply that the composite service will not satisfy its global
time requirement. This is because the sLTC is synthesized at
the design time to hold in any execution trace of CS; whereas
at runtime, the runtime information can be used to synthesize
a more relaxed constraint for CS.

More specifically, given a composite service CS, we have
two pieces of runtime information that may help to synthe-
size a more relaxed constraint: the execution path that has
been taken by CS, and the elapsed time of CS. First, the exe-
cution path taken by CS can be used for LTS simplification.
This is because in the midst of execution, some of the exe-
cution traces can be disregarded and therefore a weaker LTC
that includes more parameter valuations may be synthesized.
Second, the time elapsed ofCS can be used to instantiate some

s0

s1

s2

s3

s5

s4

s6 s7

· · · · · ·
(a) Before simplification

s2

s4

s6 s7

· · · · · ·
(b) After simplification

Fig. 8 LTS simplification of SMIS

of the response time parameters with real-valued constants;
this makes the synthesized LTC contain less uncertainty and
be more precise.

Example 10 For example, consider the SMIS composite ser-
vice, the LTS of which is depicted in Fig. 7. Assume a
valuation π satisfying the sLTC. At runtime, after invoca-
tion of the component service DS, SMIS will be at state s2.
Assume that DS does not conform to its stipulated response
time. Therefore, it is desirable to check whether invoking
FS can still satisfy the global time requirement of CS. One
can make use of sLTC for this purpose. Nevertheless, a more
precise LTC may be synthesized at state s2.

The first observation is that, from state s2, we can safely
ignore the constraints from the good state s5, since it is not
reachable from s2. The second observation is that the delay
from state s0 to state s2 (say r time units, with r ∈ R≥0) is
known. For this reason, we can substitute the delay compo-
nent of state s2, which is the response time π(λDS), with the
actual time delay r. This motivates the use of runtime infor-
mation of the composite service to refine the LTC. We refer
to the runtime refined LTC as the runtime LTC (denoted by
rLTC). In addition to this refinement, we can also simplify
the LTS by pruning the states corresponding to past states
(e.g., s0, s1 in Fig. 7), as well as the successors of these past
states that were not met in practice (e.g., s3 and s5 in Fig. 7),
because another branch was taken at runtime. We show the
LTS of SMIS before and after simplification in Fig. 8a, b,
respectively.

By incorporating the runtime information, the resulting
rLTC at state s2 is:

((λFS ≤ 1) ⇒ (r + λFS ≤ 3)) ∧
((λFS ≥ 1 ∧ λPS ≤ 1) ⇒ (r + λPS ≤ 2)) ∧
¬ (λFS ≥ 1 ∧ λPS ≥ 1)

123

Automated synthesis of local time requirement for service composition 999

Executed
Actions

Check
Satisfiability

Runtime Engine Module (RE)

<BPEL>
…
<invoke…/>
....
</BPEL>

Service Monitoring Module (SM)

Fig. 9 Service adaptation framework

6.2 Runtime adaptation of a BPEL process

Wenow introduce a service adaptation framework to improve
the conformance of global time requirement for a compos-
ite service. The architecture of the framework is shown in
Fig. 9. There are two modules in the framework—the run-
time engine module (RE) and the service monitoring module
(SM). RE provides an environment for the execution of a
BPEL service; here, we use Apache ODE [35], an open-
source BPEL engine. We instrument the runtime component
of Apache ODE to communicate with the service monitoring
module.

SM is used to monitor the execution of a BPEL service.
During the deployment of a serviceCS, SMgenerates the LTS
of CS and stores it in the cache of SM so that it is available
when CS is executing.

During the execution of the composite service CS, the
sequences of rules from RE are used to update the active
state sa ∈ S of LTS stored in SM. The sequence of rules is
also stored as part of the current execution run. SM also keeps
track of the total execution time for this execution run, aswell
as the response time for each component service invocation.

Prior to the invocation of a component service S, RE will
consult SM to check the satisfiability of rLTC. If the rLTC of
sa is satisfiable, thenSMwill instructRE to continue invoking
S as usual. Otherwise, some kind of mitigation procedure
may be triggered. One of the possible mitigation procedures
is to invoke a backup service of S, Sbak , which has a faster
stipulated response time than S (that may come with a cost).

Example 11 Consider again the running example SMIS in
Sect. 2. An example of S and Sbak , are services FS and PS,
respectively.

In the following, we introduce the details on the synthesis
of rLTC (Sect. 6.3) and satisfiability checking (Sect. 6.4).

6.3 Algorithm for runtime refinement

A way to calculate the rLTC could be to run synthSLTC
(Algorithm 2) from a state s in the LTS. However, this
requires traversing the state space repeatedly for every cal-
culation of the rLTC. To make it more efficient, we extend
synthSLTC by calculating the rLTC for each state s during
the synthesis of the LTC at the design time. Therefore, at
runtime, we only need to retrieve the synthesized rLTC of
the corresponding state for direct usage.

synthRLTC (given in Algorithm 3) synthesizes the rLTC
for each state in the LTS. Before explaining the algorithm, let
us introduce a few notations used in Algorithm 3. First, we
assume that states in the LTS of CS are augmented with an
additional “field” to store the computed rLTC.We use s.rLTC
to denote the rLTC associated with state s. Additionally,
we use the following shorthand to perform a conjunc-
tion of pairs of parametric constraints (consi.g, consi.b)
such that the resulting pair is such that its left-hand (resp.
right-hand) side is the conjunctionof all left-hand (resp. right-
hand) sides:

�
((cons1.g, cons1.b), . . . , (consn.g, consn.b))

denotes ((consn.g ∧ · · · ∧ consn.g), (consn.b ∧ · · · ∧
consn.b)).

Given a composite service CS together with its associated
LTS, and a state inLTSCS, synthRLTC returns a constraint pair
Cs = (g, b), where g, b ∈ CΛ. In this pair, g (resp. b) denotes
the constraint associated with a good (resp. bad) state. Given
a constraint pair Cs, we use Cs.g (resp. Cs.b) to refer to the
first (resp. second) component of Cs. Variables df and rf
are free variables, which are variables to be substituted at
runtime. In particular, given a state s, free variables df and
rf in s.rLTC are to be substituted by the delay component
s.D ∈ LΛ and the actual delay r ∈ R≥0 from the initial state
to the state s, respectively.

Let us now explain synthRLTC in detail. Given a good
state s (line 2), s.rLTC is assignedwith value cons.g, with free
variable df substitutedwith s.D (line 4); note that substitution
is here achieved using conjunction of the constraint with the
equality df = s.D. As an illustration, consider the good state
s13 in the SMIS example (the LTS ofwhich is given in Fig. 7).
At runtime, assume the active state is at state s13, and assume
that it takes r ∈ R≥0 timeunits to execute from the initial state
s0 to state s13. Therefore, the previously unknown parametric
response time in the delay component of state s13, i.e., tDS +
1 + tPS, can be substituted with the real value r. To achieve
this, at line 3, we subtract away the free variable df , which is
to be substitutedwith the response timeparameter of state s13,
and add back the free variable rf , which is to be substituted
with the real value r. We substitute the free variable df at
line 4. For free variable rf , it is only substituted inAlgorithm4

123

1000 É. André et al.

Algorithm 3: synthRLTC(CS,LTSCS, s)
input : Composite service CS
input : LTS LTSCS of CS
input : State s in LTS of CS
output: Constraint pair for sub-LTS of CS starting with s

1 cons ← ∅;
2 if s is a good state then
3 cons ← (s.C↓Λ ⇒ (s.D − df + rf ≤ TG), true);
4 s.rLTC ← cons.g ∧ (df = s.D);
5

6 else if s is a bad state then
7 cons ← (true,¬ (s.C↓Λ));
8 s.rLTC ← cons.b;
9

10 else
// s is a non-terminal state

11 cons ← �
s′∈succ(s) synthRLTC(s′);

12 s.rLTC ← cons.g ∧ cons.b ∧ (df = s.D);

13 return cons;

at runtime when the delay is known. In the case of the SMIS
example, the rLTC of state s13 after substituting free variable
rf with value r (i.e., s13.rLTC ∧ (rf = r)) is ((tPS ≤ 1 ∧
tFS ≥ 2) ⇒ (r ≤ 3)).

When s is a bad state (line 5 to 7), we simply compute the
negation of the associated constraint so as to keep the system
reaching this bad state (just as in Algorithm 2).

When s is a non-terminal state (line 8), s.rLTC is assigned
with the conjunction of all good and bad constraints com-
puted by recursively calling synthRLTC on the successor
states of s, where free variable df is substituted with s.D
(line 9).

6.4 Satisfiability checking

We now introduce a satisfiability checking algorithm. This
satisfiability checking is done before the invocation of a
component service. Suppose that, before the invocation of
a component service Si, CS is at the active state sa. The satis-
fiability of the rLTCat sa will be checked before Si is invoked.
If it is satisfiable, then it will invoke Si as usual. Otherwise,
some mitigation procedures will be triggered. A mitigation
procedure could consist of invoking a faster backup service S′

i
instead of Si.

Algorithm 4: checkSat(LTSCS, sa, r,Λ, π)
input : LTS of the parametric composite service CS, Active state

sa ∈ S, Elapsed time r ∈ R≥0, Set of parametric response
times Λ, Parameter valuation π

output: True if the local time constraint at sa is satisfiable, false
otherwise

1 return Is Sat((
∧

1≤i≤n λi ≤ π(λi)) ⇒ (sa.rLTC ∧ (rf = r)));

We give in Algorithm 4 the algorithm checking the sat-
isfiability of rLTC at state sa ∈ Q. With the assumption
that all component services will reply within their stipu-
lated response times (

∧
1≤i≤n λi ≤ π(λi)), checkSat checks

whether the rLTC at state sa can be satisfied with free vari-
ables rf substituted with the actual elapsed time r ∈ R≥0.
The function Is Sat returns true iff the input constraint is
satisfiable.

6.5 Termination and soundness of synthRLTC

6.5.1 Termination

Proposition 5 Let CS be a service model, s be a state in
LTSCS.

Then synthRLTC(CS,LTSCS, s) terminates.

Proof Observe thatAlgorithm3 is recursive (on line 9).How-
ever, due to the acyclic nature of LTSCS (from Lemma 1) and
the fact that Algorithm 3 is called recursively on the succes-
sors of the current state, then no state is explored more than
once. This ensures termination. ��

6.5.2 Soundness

Theorem 3 formally states the correctness of our runtime
refinement algorithm.

Theorem 3 Let CS be a service model. Let LTSCS be the LTS
of CS. Let s be the current state in LTSCS and r be the current
elapsed time.

Fix π |� synthRLTC(CS,LTSCS, s). Then:

1. there exists a run in LTSCS[π] ending in some state sπ
such that this run is equivalent to a run of LTSCS ending
in s;

2. any complete run of the sub-LTS of LTSCS[π] starting from
sπ ends in a good state;

3. for all good states (v,Pg,C, d) in the sub-LTSof LTSCS[π]
starting from sπ , then d ≤ TG.

Proof 1. From Proposition 2.
2. FromDefinition 5, the sub-LTS of LTSCS[π] starting from

sπ contains the successors of sπ in LTSCS[π], and hence,
any complete run of the sub-LTS of LTSCS[π] starting
from sπ corresponds to the end of some complete run of
LTSCS[π]. From Lemma 3, any complete run of LTSCS[π]
ends in a good state, which gives the result.

3. Any good state of the sub-LTS of LTSCS[π] starting from
sπ is also a good state of LTSCS[π]. FromLemma 4, for all
good state of LTSCS[π], d ≤ TG, which gives the result.

��

123

Automated synthesis of local time requirement for service composition 1001

Remark 2 (Complexity of Algorithm 3) First, note that all
states ofLTSCS are explored byAlgorithm3: indeed, the algo-
rithm is recursively called on non-terminal states and stops
only on terminal states—that have no successors anyway. So,
the algorithm time is constant in the number of states of the
sub-LTS of LTSCS[π] starting from sπ .

Let us now investigate theworst-case number of conjuncts
in the result of Algorithm 3. The algorithm returns the good
conjuncts (cons.g), the bad conjuncts (cons.b) and a last term
(“df = s.D”) (line 10 in Algorithm 3). Any good termi-
nal state or bad terminal state adds exactly one conjunct to
either cons.g or cons.b. Therefore, the number of conjuncts
is exactly the number of terminal states, plus one due to the
last term.

6.6 Discussion

Termination From Proposition 5, our method terminates
due to the fact that BPEL composite services do not support
recursion, and Assumption 1 on the loop activities ensuring
that the upper bound on the number of iterations and the time
of execution are known. We briefly discuss how to enforce
this assumption in the presence of loops in the composite
service. The upper boundon the number of iterations could be
either inferred by using loop bound analysis tool (e.g., [31]),
or could be provided by the user otherwise. In the worst case,
an alternative option is to set up a bound arbitrary but “large
enough.” Concerning the maximum time of loop executions,
it could be enforced by using proper timeout mechanism in
BPEL.

Time for internal operations For simplicity, we do not
account for the time taken for the internal operations of the
system. In reality, the time taken by the internal operations
may become significant, especially when the process is large.
We can provide a more accurate synthesis of the constraints
by including an additional constraint toverhead ≤ b, where
toverhead ∈ R≥0 is a time overhead for an internal opera-
tion, and b ∈ R≥0 is a machine dependent upper bound for
toverhead . The method to obtain an estimation of b is beyond
the scope of this work; interested readers may refer to, e.g.,
[58].

7 Evaluation

As a proof of concept, we applied our method to several
examples. After briefly presenting our implementation, we
describe the examples we use (Sect. 7.1). We then evaluate
our methods for the synthesis of local time requirement at
the design time (Sect. 7.2) and for the runtime refinement
(Sect. 7.3).

Implementation We implemented our algorithms for syn-
thesizing the sLTC and rLTC in Selamat, a tool developed
in C
. We use an ad-hoc input syntax very close to that of
Definition 1. Our prototype implementation uses basic state
space reduction techniques, notably zone inclusion (see, e.g.,
[40,59] for recent such techniques in the (parametric) timed
setting), to prune whole branches of the state space. The
front-end GUI relies on the PAT model checker [69].

The simplification of the final results of sLTC and rLTC is
achievedusingMicrosoftZ3 [29]. For the runtimeadaptation,
we use Apache ODE 1.3.6 as runtime engine module (RE).
The service monitoring module (SM) is developed in C
,
which uses Microsoft Z3 for the satisfiability checking. The
tool and examples can be downloaded at [71].

7.1 Examples

7.1.1 Stock Market Indices Service (SMIS)

This is the running example introduced in Sect. 2.

7.1.2 Computer purchasing services (CPS)

The goal of a CPS is to allow a user to purchase a computer
system online using credit cards. Our CPS makes use of five
component services, namely shipping service (SS), logis-
tic service (LS), inventory service (IS), manufacture service
(MS) and billing service (BS). The global time requirement
of the CPS is to respond within 3 s. The CPS workflow is
shown in Fig. 10. The CPS starts upon receiving the purchase
request from the client with credit card information, and
the CPS spawns three workflows (viz. shipping workflow,
billing workflow and manufacture workflow) concurrently.
In the shipping workflow, the shipping service provider is
invoked synchronously for the shipping service on computer
systems. Upon receiving the reply, LS (which is a service
provided by the internal logistic department) is invoked syn-
chronously to record the shipping schedule. In the billing
workflow, the billing service (which is offered by a third party
merchant) is invoked synchronously for billing the customer
with credit card information. In the manufacture workflow,
IS is invoked synchronously to check for the availability
of the goods. Subsequently, MS is invoked asynchronously
to update the manufacture department regarding the current
inventory stock. Upon receiving the reply message from LS
andBS, the result of the computer purchasingwill be returned
to the user.

7.1.3 Travel booking service (TBS)

The goal of a travel booking service (TBS) is to provide
a combined flight and hotel booking service by integrating

123

1002 É. André et al.

Fig. 10 Computer purchasing
service (CPS)

Sync. Invoke
SS

Sync. Invoke
LS

Shipping
workflow

Sync. Invoke
IS

ASync. Invoke
MS

Manufacture
workflow

Sync. Invoke
BS

Billing
workflow

Receive user

Reply user

two independent existing services. TBS provides an SLA
for its subscribed users, saying that it must respond within
5 s upon request. The travel booking system has four com-
ponent services, namely flight service (FS), backup flight
service (FSbak), hotel service (HS) and backup hotel service
(HSbak). The TBSworkflow is given in Fig. 11. Upon receiv-
ing the request from users, the variable res is assigned to true.
After that, TBS spawns two workflows (viz. a flight request
workflow, and a hotel request workflow) concurrently. In the
flight request workflow, it starts by invoking FS, which is
a service provided by a flight service booking agent. If ser-
vice FS does not respond within 2 s, then FS is abandoned,
and another backup flight service FSbak is invoked. If FSbak
returnswithin 1 s, then theworkflow is completed; otherwise,
the variable res is assigned to false. The hotel request work-
flow shares the same process as the flight request workflow,
by replacing FS with HS and FSbak with HSbak . The booking
result will be replied to the user if res is true; otherwise, the
user will be informed of the booking failure.

7.1.4 Rescue team service (RS)

The goal of a rescue team service (RS) is to identify the
place, weather, and nearest rescue team, by the longitude
and latitude on Earth. RS makes use of three component
services, namely terra service (TS), weather service (WS)
and distance service (DS). The global requirement of the RS
is to respond within 5 s. The RS workflow is given in Fig. 12.
RS starts upon receiving longitude and latitude coordinates

from the user.After that, it invokes terra service (TS),weather
service (WS) and distance service (DS) concurrently. Service
TS (resp. WS) will return the name of the place (resp. the
weather information) that corresponds to the longitude and
latitude. DS is used to calculate the distance between each
rescue team and the event location. In particular, DScom and
DSsea are used to calculate the distance between commander
team and sergeant team to the event location. If the distance
to the event of the commander team (dcom) is not larger than
the distance to the event of the sergeant team (dsea), then
the commander team will be chosen. Otherwise, the sergeant
team will be chosen. Subsequently, the place, weather and
rescue team information is returned to the user.

7.2 Synthesis of local time requirement

7.2.1 Environment of the experiments

We run our algorithms to synthesize the sLTC and rLTC for
the four examples on a computer with Intel Core I5 2410M
CPU with 4GB RAM.

7.2.2 Evaluation results

The details of the synthesis are shown in Table 1. The #states
and #transitions columns provide the information of number
of states and transitions of the LTS, respectively.We repeated
all experiments 30 times; we report here the average time
for each experiment. The sLTC and rLTC columns provide

123

Automated synthesis of local time requirement for service composition 1003

Fig. 11 Travel booking service
(TBS)

ASync. Invoke
FS

OnMessage
FS

OnAlarm
2 seconds

ASync. Invoke
FSbak

OnMessage FSbak

OnAlarm 1 second

× res=’false’

Flight request workflow

ASync. Invoke
HS

OnMessage
HS

OnAlarm
2 seconds

ASync. Invoke
HSbak

OnMessage HSbak

OnAlarm 1 second

× res=’false’

Hotel request workflow

Reply result

res=’true’

Receive user

the average time (in seconds) spent for synthesizing sLTC
(for the entire LTS), and rLTC (for each state in the LTS),
respectively. TBS takes a longer time than SMIS, CPS and
RS for synthesizing sLTC and rLTC, as it contains a larger
number of states and transitions compared to SMIS, CPS and
RS. Nevertheless, since both sLTC and rLTC are synthesized
offline, the time for synthesizing the constraints (less than
2s) for TBS is considered to be reasonable.

The synthesized sLTC for SMIS is given in Sect. 5.5,while
the synthesized sLTC for CPS, TBS and RS is shown in
Fig. 13. Note that λMS does not appear in the sLTC of CPS.
The reason is that MS is invoked asynchronously without
expecting a response; therefore, its response time is irrelevant
to the global time requirement of CPS.

The synthesized rLTC is used for runtime adaptation at
runtime. We will evaluate the runtime adaptation of a com-
posite service with rLTC in the following section.

7.3 Runtime adaptation

We now conduct experiments to answer the following two
questions:

Q1 What is the overhead of the runtime adaptation?
Q2 What is the improvement provided by the runtime adap-

tation?

7.3.1 Environment of the experiments

The evaluation was conducted using two different physical
machines, connected by a 100Mbit LAN. One machine is
running Apache ODE [35] to host the RE module to execute
the BPEL program, configured with Intel Core I5 2410M
CPUwith 4GBRAM. The other machine hosts the SMmod-
ule, configured with Intel I7 3520M CPU with 8GB RAM.

123

1004 É. André et al.

Fig. 12 Rescue team service
(RS)

Receive user

Sync. Invoke
TS

Sync. Invoke
WS

Sync. Invoke
DScom

Sync. Invoke
DSsea

team=
’Commander’

team=
’Sergeant’

Reply result

dcom ≤ dsea dcom > dsea

Table 1 Synthesis of sLTC and rLTC

Example #states #transitions sLTC (s) rLTC (s)

SMIS 14 13 0.0076 0.0078

TBS 683 3677 1.8501 1.9000

CPS 120 119 0.0529 0.0559

RS 85 134 0.0701 0.0733

To test the composite service under controlled situation,
we introduce the notion of execution configuration. An exe-
cution configuration defines a particular execution scenario
for the composite service. Formally, an execution configu-
ration E is a tuple (M,R), where M decides which path to

choose for an <if> activity and R is a function that maps a
component service Si to a real value r ∈ R≥0, which repre-
sents the response time of Si. We discuss how an execution
configuration E = (M,R) is generated. M is generated by
choosing one of the branches of an <if> activity uniformly
among all possible branches.

Let CS be a composite service model, where a component
service Si of CS has a stipulated response time π(λi) ∈ Q≥0.
Then R(Si) will be assigned with a response time within
the stipulated response time π(λi) with a probability of
pc ∈ Q≥0 ∩ [0, 1]. pc is the response time conformance
threshold. More specifically, R(Si) will be assigned with a
value in [0, π(λi)] uniformly with a probability of pc and
assigned to a value in (π(λi), π(λi) + te] uniformly with a

123

Automated synthesis of local time requirement for service composition 1005

Fig. 13 Synthesized sLTC (λSS + λLS + λIS + λBS) ≤ 3

(a) sLTC for CPS

(λTS + λWS + 2 · λDS) ≤ 5

(b) sLTC for RS

((2 · λHSbak < λFSbak) ∧ (2 · λFSbak < λHSbak) ∧ (λHSbak < 1) ∧ (λFSbak < 1))
∨ ((λHSbak < 1) ∧ (λFSbak < 1) ∧ (λFSbak + λHSbak ≤ 1))
∨ ((λHSbak < 1) ∧ (λFS < 2)) ∨ ((λHS < 2) ∧ (λFSbak < 1)) ∨ ((λHS < 2) ∧ (λFS < 2))

(c) sLTC for TBS

Table 2 Satisfiability checking

Example Avg. #SAT Avg. SAT runtime (s)

SMIS 1.74 13

TBS 2.25 17

CPS 4.00 27

RS 4.00 19

probability of 1 − pc. te ∈ R≥0 is the exceeding threshold;
and assume after π(λi) + te seconds, the component service
Si will be automatically timeout by RE to prevent an infinite
delay.

Given a composite service CS and an execution configu-
ration E, a run is denoted by ρ(CS,AM,E), where the first
argument is the composite service CS that is running, the
second argument AM ∈ {rr, ∅} is the adaptive mechanism
where rr denotes the runtime adaptation, and ∅ denotes no
runtime adaptation.

7.3.2 Evaluation results

We conducted two experiments Exp1 and Exp2, to answer
the questions Q1 and Q2, respectively. Each experiment goes
through 10,000 rounds of simulations, and an execution con-
figuration E is generated for each round of simulation. Given
a composite service CS, we assume that for each component
service Si with a stipulated response time π(λi), there exists
a backup service S′

i, with a stipulated response time π(λi)/2
and a conformance threshold of 1. Suppose that before the
invocation of a component service Si, CS is at active state sa.
The satisfiability of the rLTC at sa will be checked (using
Algorithm 4) before Si is invoked. If it is satisfiable, then it
will invokeSi as usual.Otherwise, the faster backup serviceS′

i
will be invoked instead, as a mitigation procedure.

Experiment Exp1 Given a composite service CS, in order to
measure the overhead, we use an execution configuration
E = (M,Q) for an adaptive run ρ(CS, rr,E) and non-
adaptive run ρ(CS, ∅,E). We have modified the runtime
adaptation mechanism for rr so that, if the rLTC of the active
state is checked to be unsatisfiable, component service Si will
still be used (instead of S′

i). The purpose for this modification

is to make ρ(CS, rr,E) and ρ(CS, ∅,E) invoke the same set
of component services, so that we can effectively compare
the overhead of ρ(CS, rr,E).

Results Suppose at round k, the times spent for ρ(CS, rr,E)

and ρ(CS, ∅,E) are rkrr ∈ R≥0 time units and rk
∅

∈ R≥0

time units, respectively. The overhead Ok at round k is the
time difference between rkrr and r

k
∅
, i.e., Ok = rkrr − rk

∅
. The

average overhead at round k is calculated using Eq. (1).

Avg. overhead =
(

k∑

i=1

Oi

)

/k (1)

Themain source of overhead for runtime adaptation comes
from the satisfiability checking with Algorithm 4. We make
use of Z3 [29] for this purpose. Other sources of overhead
include update of active state in SM, and communications
between SM and RE.

The average overheads of SMIS, CPS, TBS and RS after
10,000 rounds are 15ms, 21ms, 30ms and 23ms, respec-
tively. The results convey to us that the additional operations
involved in the runtime adaptation, including the satisfiability
checking, can be done efficiently.

We further evaluate the overhead on satisfiability check-
ing. Table 2 shows the results of satisfiability checking. The
average number of satisfiability checking for each round
(Avg. #SAT) is calculated using Eq. (2) where Ni is the total
number of satisfiability checking for ith round and r is the
total number of running rounds. The average time (given in
milliseconds) spent on satisfiability checking for each round
(Avg. SAT runtime) is calculated using Eq. (3), where Ti is
the time spent on satisfiability checking for ith round. Table 2
shows that the satisfiability checking has contributed most of
the overhead of runtime adaptation.

Avg. #SAT =
(

r∑

i=1

Ni

)

/r (2)

Avg. SAT runtime =
(

r∑

i=1

Ti

)

/r (3)

Experiment Exp2 In this second experiment, wemeasure the
improvement for the conformance of global constraints due

123

1006 É. André et al.

Table 3 Improvement of
runtime conformance

pc Nse Ne Improvement (%) Avg. backup service

SMIS 0.9 9441 8976 5.18 0.127

0.8 9211 8374 10.00 0.352

0.7 8109 6965 16.42 0.577

0.6 7593 6348 19.61 0.702

TBS 0.9 10, 000 9743 2.64 0.384

0.8 10, 000 9364 6.79 0.779

0.7 10, 000 8460 18.20 0.948

0.6 10, 000 7700 29.87 1.05

CPS 0.9 9523 8809 8.11 1.259

0.8 9241 7156 29.14 1.509

0.7 8504 6108 39.23 2.014

0.6 8430 5650 49.20 2.578

RS 0.9 8181 7271 12.52 1.787

0.8 7201 7011 2.71 1.589

0.7 6590 5227 26.08 1.659

0.6 5609 4146 35.29 1.54

to rr. Given a composite service CS, an execution configura-
tion E, two runs ρ(CS, rr,E) and ρ(CS, ∅,E) are conducted
for each round of simulation.Nse is the number of executions
that satisfy global constraints for composite service with rr,
and Ne is the number of executions that satisfy global con-
straints for composite service without rr, the improvement
is calculated by Eq. (4).

Improvement = (Nse − Ne) ∗ 100

Ne
(4)

Results The experiment results can be found in Table 3.
The Improvement (%) column provides the information of
improvement (in percentage) that is calculated using Eq. (4).
TheAvg. backup service columnprovides the averagenumber
of backup service used (calculated by summing up the num-
ber of backup services used for 10,000 rounds and divided
by 10,000).

The decrement of pc represents the undesired situation
where component services have a higher chance for not
conforming to their stipulated response time. This may be
due to situations such as poor network conditions. For each
example, the improvement provided by the runtime adap-
tation increases when pc decreases. This shows that runtime
adaptation improves the conformance of global time require-
ment. In addition, the average number of backup service used
increases when pc decreases. This shows the adaptive nature
of runtime adaptation with respect to different pc—more cor-
rective actions are likely to perform when the chances that
component services do not satisfy their stipulated response
time increase.

The results in Exp1 and Exp2 have shown that the runtime
adaptation has a low overhead and improves the runtime con-
formance, especially when the response time conformance
threshold of the component services is low.

7.4 Threats to validity

Our experiments show a good efficiency of our technique
for the examples we considered; these are arguably on the
smaller side, but we claim that they are non-trivial enough
to not be analyzable by hand, and therefore, our technique
proposes what we believe to be a valuable contribution.

8 Related work

Model-based analysis of Web services using LTSs Our
method is related to using LTSs for model-based analysis
of Web services. In [18], the authors propose an approach to
obtain behavioral interfaces in the form of LTSs of external
services by decomposing the global interface specification.
It also has been used in model checking the safety and
liveness properties of BPEL services. For example, Foster
et al. [33,34] transform BPEL process into FSP [51], sub-
sequently using a tool named “WS-Engineer” for checking
safety and liveness properties. Simmonds et al. [66] propose
a user-guided recovery framework forWeb services based on
LTSs. Ourwork uses LTSs in synthesizing local time require-
ment.

Constraint synthesis for scheduling problems Our work
shares common techniqueswithwork for constraint synthesis

123

Automated synthesis of local time requirement for service composition 1007

for scheduling problems. The use of models such as paramet-
ric timed automata (PTAs) [5] and parametric time Petri nets
(PTPNs) [76] for solving such problems has received recent
attention. In particular, in [26,36,46], parametric constraints
are inferred, guaranteeing the feasibility of a schedule using
PTAs extended with stopwatches (see, e.g., [1]). In [11], we
proposed a parametric, timed extension of CSP, to which we
extended the “inverse method,” a parameter synthesis algo-
rithms preserving the discrete behavior of the system (see,
e.g., [12]). Although PTAs or PTPNs might have been used
to encode (part of) the BPEL language, our work is specif-
ically adapted and optimized for synthesizing local timing
constraint in the area of service composition.

Finding suitable quality of service Our method is related
to the finding of a suitable quality of service (QoS) for the
system [77]. The authors of [77] propose two models for
the QoS-based service composition problem: a combina-
torial model and a graph model. The combinatorial model
defines the problem as a multidimension multichoice 0–1
knapsack problem. The graph model defines the problem as
a multiconstraint optimal path problem. A heuristic algo-
rithm is proposed for each model: the WS-HEU algorithm
for the combinatorial model and the MCSP-K algorithm
for the graph model. The authors of [14] model the ser-
vice composition problem as a mixed integer linear problem
where constraints of global and local component service can
be specified. The difference with our work is that, in their
work, the local constraint is specified, whereas in ours, the
local constraint is synthesized. An approach of decompos-
ing the global QoS to local QoS has been proposed in [3].
It uses the mixed integer programming (MIP) to find opti-
mal decomposition ofQoSconstraint.However, the approach
only concerns simple sequential composition ofWeb services
method calls, without considering complex control flows and
timing requirements.

Response time estimation Our approach is also related to
response time estimation. In [44], the authors propose to use
linear regression method and a maximum likelihood tech-
nique for estimating the service demands of requests based
on their response times. [53] has also discussed the impact of
slow services on the overall response time on a transaction
that use several services concurrently. Ourwork is focused on
decomposing the global requirement into local requirement,
which is orthogonal to these works. Our work [48] comple-
ments with this work by proposing a method on building
LTCs that under-approximate the sLTC of a composite ser-
vice. The under-approximated LTCs consist of independent
constraints over components, which can be used to improve
the design, monitoring and repair of component-based sys-
tems under time requirements.

Service monitoring Our method is related to service moni-
toring. Moser et al. [58] present VieDAME, a non-intrusive
approach to monitoring. VieDAME allows monitoring of
BPEL composite service on quality of service attributes, and
existing component services are replaced based on different
replacement strategies. Theymake use of the aspect-oriented
approach (AOP); therefore, the VieDAME engine adapter
could be interwoven into the BPEL runtime engine at run-
time. Baresi et al. [16] propose an idea of self-supervising
BPEL processes by supporting both service monitoring and
recovery for BPEL processes. They propose using Web ser-
vice constraint language (WSCoL) to specify the monitoring
directives to indicate properties that need to hold during the
runtime of composite service. They also make use of the
AOP approach to integrate their monitoring adapters with
the BPEL runtime engine. Our work is orthogonal to the
aforementioned works, as we do not assume any particular
service monitoring framework for monitoring the composite
service, and those methods can be used to aid our monitoring
approach, as discussed in Sect. 6.2. Our previous work [73]
proposes an automated approach based on a genetic algo-
rithm to calculate the recovery plan that can guarantee the
satisfaction of functional properties of the composite service
after recovery.

Service selection In [78,79], the authors present an approach
that makes use of global planning to search dynamically for
the best services component for service composition. Their
approach involves the use of mixed integer programming
(MIP) techniques to find the optimal selection of compo-
nent services. Ardagna et al. [13] extend the MIP methods
to include local constraints. Cardellini et al. [20] propose a
methodology to integrate different adaptation mechanisms
for combining concrete services to an abstract service, in
order to achieve a greater flexibility in facing different operat-
ing environments. Our work is orthogonal to aforementioned
works, as it does not assume particular formulation of the
MIP problems.

Although the method in aforementioned works efficiently
for small case studies, it suffers from scalability problems
when the size of the case studies becomes larger, since the
time required grows exponentially with the size of problem.
To address this problem, Yu et al. [77] propose a heuristic
algorithm that could be used to find a near-optimal solu-
tion. The authors proposed two QoS compositional models,
a combinatorialmodel and a graphmodel. The time complex-
ity for the combinatorial model is polynomial, while the time
complexity for the graph model is exponential. However, the
algorithm does not scale with the increasing number of Web
services. To address this problem, Alrifai et al. present an
approach that pruned the search space using skyline meth-
ods, and they make use of a hierarchical k-means clustering
method [49] for representative selection. The work of Alrifai

123

1008 É. André et al.

et al. is the closest to ours. Despite its reasonable perfor-
mance, a limitation for theMIP approach is that it cannot deal
with nonlinear objective functions or aggregated constraints.
To address this problem, Canfora et al. [19] have formu-
lated the problem as a genetic algorithm problem. Genetic
algorithms (GA) are algorithms based on stochastic search
methods that support nonlinear objective functions. Two dif-
ferent GAs encodings are proposed in [19,80]. In [80], the
authors propose to encode the chromosome using binary
strings, and every gene is a chromosome representing a ser-
vice candidate with value 0 (respectively, 1) that represents
the unselected (respectively, selected) service. Therefore, the
length of the genome can be very long, given a large number
of service candidates. In [19], the authors propose to encode
the chromosome using an integer value which represents the
index of the concrete services stored in an array. This coding
scheme results in shorter chromosomes, and the length of a
chromosome is independent of the number of service can-
didates. In [37], Gao et al. propose a tree coding scheme to
represent the service composition. They reported a 40% per-
formance improvement with respect to the single-dimension
coding scheme used in [19]. This is because the tree coding
scheme does not need to recalculate the entire fitness value
each time compare to the single-dimension encoding. Our
work does not assume any particular encoding scheme and
it can be used with any existing coding techniques. In [2],
Ai et al. proposed an approach extending the GA methods
for handling interservice dependencies and conflicts using a
penalty-based genetic algorithm. Our work does not assume
a particular fitness function. In [50], Ma et al. proposed an
enhanced initial population policy and an evolution policy
based on population diversity and a relation matrix coding
scheme. They considered all concrete services for each ser-
vice class starting from the initial population. Different from
their approach, we only consider a subset of services with
high local utility value from the start, and we progressively
add more services later on. In [70] the problem of function-
ally equivalent service composition is considered.

Verification of services Concerning verification of services,
Filieri et al. [32] focus on checking the reliability of com-
ponent (service)-based systems. They make use of discrete
time Markov chain (DTMC) to check the reliability of mod-
els at runtime. Our previous works [23,24] develop a tool to
verify combined functional and non-functional requirements
of Web service composition. In contrast, the current work
focuses on response time: given the global response time
of the composite service, we synthesize the response time
requirement for component services at design time and refine
it at runtime. Schmieders et al. [64] proposed the SPADE
approach. SPADE invokes the BOGOR model checker to
model check the SLAs at design time and at runtime. Our
work is different from theirs in two aspects. First, we focus on

the synthesis of the local time requirement, which is a formal
requirement on the response time requirement of component
services. Second, at runtime, [64] performs model checking
on a given state to check whether an adaptation is needed.
In contrast, we have precomputed the constraints for every
state at design time. Therefore, we only require evaluation of
constraints by substituting the free variables at runtime, and
this allows a more efficient runtime analysis.

BPEL In [38] a template-based system is used to reconfigure
service composition, using BPEL. In [61], service compo-
sition using RESTful (Representational State Transfer) is
performed using the BPEL extension “BPEL for REST.”
In [30], a tool based on Services Creation Environments and
BPEL is proposed that also allows translation to Java.

The work [75] automates the formalization and veri-
fication process of BPEL. It extends the existing spring
framework to represent BPEL activities with Java bean,
which is subsequently transformed into XML-based formal
model (like colored Petri nets) for verification. Thework [55]
also transformsBPELservices into probabilistic labeled tran-
sition systems, which are then used to conduct probabilistic
model checking to verify reliability properties on the BPEL
models. Their word did not consider timing requirements.

Surveys Finally, composition of Web services has been
recently surveyed. In [60] the larger domain of composition
of convergent services is surveyed; however, BPEL is still
surveyed in this work. In [47], a taxonomy of Web service
composition is provided with different directions surveyed
such as language, knowledge reuse, automation, tool sup-
port, execution platform or target user.

9 Conclusion and future work

9.1 Conclusion

We have presented a model-based approach for synthesizing
local time constraints for component services of a compos-
ite service CS, knowing its global time requirement. Our
approach makes use of parameterized timed techniques.

We first proposed a design time synthesis algorithm, that
utilizes the parametric constraints from theLTS, to synthesize
static local time constraint (sLTC) for component services.
The sLTC is then used to select a set of component services
that could collectively satisfy the global time requirement in
design time.

Then,we use the runtime information toweaken the sLTC,
which becomes the refined local time constraint (rLTC).
In particular, two pieces of runtime information have been
leveraged—the execution path that has been taken by the
composite service and the elapsed time of the composite ser-

123

Automated synthesis of local time requirement for service composition 1009

vice. The rLTC is then used to validatewhether the composite
service can still satisfy the global time requirement at run-
time.

As a proof of concept, we have implemented our approach
into a tool Selamat and applied it to four service com-
position examples. Our experiments show that the runtime
refinement leads to an improvement of the global time
requirement, with limited overhead.

9.2 Future work

We plan to further improve and develop the technique pre-
sented in this paper.

General and dedicated optimizations First, the goal of
our work is to propose a full framework for analyzing
composition ofWeb services using parametric timings; there-
fore, integrating existing state space reduction techniques
is perhaps a more practical work, orthogonal to the origi-
nal goal of our approach. Nevertheless, in order to address
huge sets of services, one could use efficient state-of-the-
art techniques developed for timed systems or parametric
timed systems such as (parametric) data difference bound
matrices [41,62], efficient L/U-zone abstractions [40,59],
convex state merging [9], integer-hull abstractions [10,43]
or abstraction-refinement algorithms [63].

Soft deadlines Second, we will investigate the usage of soft
deadlines that allow to run a service with a delay, possibly
with an acceptable penalty.

Constraints satisfiability Regarding our implementation,
the bottleneck seems to be the satisfiability test using Z3;
from our experience, switching to a polyhedra library (such
as the Parma Polyhedra Library [15]) may give better results
and could help render our work scalable.

Uncertain response times Our work so far deals with exact
response times. A different approach would be to consider
that the response time should be fulfilled with some prob-
ability. In that setting, the goal would be to synthesize the
values for the timing parameters such that the response time
is indeed below the threshold with a given probability. To
achieve this, we could reuse recent works involving proba-
bilities and timing parameters (e.g., [22,42]). An even more
challenging problem would be to combine both kinds of
parameters (timing parameters and probabilistic parameters),
so as to infer the probability under which the response time
can be fulfilled.

Statistical model checking Finally, when concurrent sys-
tems with or without timing constraints are too huge to be
analyzed in an exact manner, a recent trend is to propose

non-exact techniques, and notably statistical model check-
ing. This technique could be used for compositions of Web
services arguably too large to be analyzed in an exact man-
ner. Recent techniques developed in the timed setting (e.g.,
[27,45,52]) could be applied to our formalism.

A Operational semantics

Set of rules for the transition relation ↪→
Let mpick = pick(

n�
i=1

Si ⇒ Pi,
k�

j=1
alrm(aj) ⇒ Qj)

[rSInv]
(v, sInv(S)x,C,D)

〈rSInv〉
↪→ (v′, Stop, (x = λS) ∧ C↑,D + λS)

[rRec]
(v, rec(S)x,C,D)

〈rRec〉
↪→ (v′, Stop, (x = λS) ∧ C↑,D + λS)

[rReply]
(v, reply(S)x,C,D)

〈rReply〉
↪→ (v′, Stop, (x = 0) ∧ C↑,D)

[rAInv]
(v, aInv(S)x,C,D)

〈rAInv〉
↪→ (v′, Stop, (x = 0) ∧ C↑,D)

[rPickM]
(v,mpickx ,C,D)

〈(rPickM,i)〉
↪→ (v′,Pi, (x = λi) ∧ idle(mpickx) ∧ C↑,D + λi)

[rPickA]
(v,mpickx ,C,D)

〈(rPickA,j)〉
↪→ (v′,Qj , (x = aj) ∧ idle(mpickx) ∧ C↑,D + aj)

v(b) = ⊥
[rCond1]

(v,A � b � B,C,D)
〈rCond1〉

↪→ (v′,A,C,D)

v(b) = ⊥
[rCond2]

(v,A � b � B,C,D)
〈rCond2〉

↪→ (v′,B,C,D)

123

1010 É. André et al.

v(b) = true
[rCond3]

(v,A � b � B,C,D)
〈rCond3〉

↪→ (v′,A,C,D)

v(b) = false
[rCond4]

(v,A � b � B,C,D)
〈rCond4〉

↪→ (v′,B,C,D)

(v,A,C,D)
seq
↪→ (v′,A′,C′,D′),A′ �= Stop

[rSeq1]
(v,A ;B,C,D)

seq+〈rSeq1〉
↪→ (v′,A′ ;B,C′,D′)

(v,A,C,D)
seq
↪→ (v′, Stop,C′,D′)

[rSeq2]
(v,A ;B,C,D)

seq+〈rSeq2〉
↪→ (v′,B,C′,D′)

(v,A,C,D)
seq
↪→ (v′,A′,C′,D′)

[rFlow1]
(v,A ||| B,C,D)

seq+〈rFlow1〉
↪→ (v′,A′ ||| B,C′ ∧ idle(B),D′)

(v,B,C,D)
seq
↪→ (v′,B′,C′,D′)

[rFlow2]
(v,A ||| B,C,D)

seq+〈rFlow2〉
↪→ (v′,A ||| B′,C′ ∧ idle(A),D′)

References

1. Adbeddaïm, Y., Maler, O.: Preemptive job-shop scheduling using
stopwatch automata. In: Katoen, J.P., Stevens, P. (eds.) TACAS,
Lecture Notes in Computer Science, vol. 2280, pp. 113–126.
Springer, Berlin (2002). https://doi.org/10.1007/3-540-46002-0_9

2. Ai, L., Tang, M.: A Penalty-Based Genetic Algorithm for QoS-
Aware Web Service Composition with Inter-service Dependencies
and Conflicts, pp. 738–743. IEEE Computer Society, Washington
(2008). https://doi.org/10.1109/CIMCA.2008.104

3. Alrifai, M., Risse, T.: Combining global optimization with local
selection for efficient QoS-aware service composition. In: Que-
mada, J., León, G., Maarek, Y.S., Nejdl, W. (eds.) WWW, pp. 881–
890. ACM, New york (2009). https://doi.org/10.1145/1526709.
1526828

4. Alur, R., Dill, D.L.: A theory of timed automata. TC 126(2), 183–
235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

5. Alur,R.,Henzinger, T.A.,Vardi,M.Y.: Parametric real-time reason-
ing. In: Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) STOC,
pp. 592–601. ACM, New York (1993). https://doi.org/10.1145/
167088.167242

6. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera,
F., Ford, M., Goland, Y., Guízar, A., Kartha, N., Liu, C.K., Khalaf,
R., König, D., Marin, M., IBM, Mehta, V., Thatte, S., van der Rijn,
D., Yendluri, P., Yiu, A.:Web Services Business Process Execution
Language Version, version 2.0 (2007)

7. Amazon: Amazon elastic compute cloud (amazon EC2) (2018).
https://aws.amazon.com/ec2/. Accessed 2020

8. André, É.: Dynamic clock elimination in parametric timed
automata. In: Choppy, C., Sun, J. (eds.) FSFMA, OpenAc-
cess Series in Informatics (OASIcs), Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, vol. 31, pp. 18–31. Dagstuhl Publishing,
Wadern (2013). https://doi.org/10.4230/OASIcs.FSFMA.2013.18

9. André, É., Fribourg, L., Soulat, R.: Merge and conquer: state merg-
ing in parametric timed automata. In: Hung, D.V., Ogawa,M. (eds.)
ATVA, Lecture Notes in Computer Science, vol. 8172, pp. 381–
396. Springer, Berlin (2013). https://doi.org/10.1007/978-3-319-
02444-8_27

10. André, É., Lime, D., Roux, O.H.: Integer-complete synthesis for
bounded parametric timed automata. In: Bojańczyk, M., Lasota,
S., Potapov, I. (eds.) RP, Lecture Notes in Computer Science, vol.
9328, pp. 7–19. Springer, Berlin (2015). https://doi.org/10.1007/
978-3-319-24537-9_2

11. André, É., Liu, Y., Sun, J., Dong, J.S.: Parameter synthesis for
hierarchical concurrent real-time systems. Real-Time Syst. 50(5–
6), 620–679 (2014). https://doi.org/10.1007/s11241-014-9208-6

12. André, É., Soulat, R.: The InverseMethod. FOCUS Series in Com-
puter Engineering and Information Technology. ISTE Ltd. and
Wiley, New York (2013)

13. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.:
PAWS: a framework for executing adaptive web-service processes.
IEEE Softw. 24(6), 39–46 (2007). https://doi.org/10.1109/MS.
2007.174

14. Ardagna, D., Pernici, B.: Global and local QoS guarantee in web
service selection. In: Bussler, C., Haller, A. (eds.) Business Process
Management Workshops, vol. 3812, pp. 32–46. IEEE, New York
(2005). https://doi.org/10.1007/11678564_4

15. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra
Library: toward a complete set of numerical abstractions for the
analysis and verification of hardware and software systems. Sci-
ence of Computer Programming 72(1–2), 3–21 (2008). https://doi.
org/10.1016/j.scico.2007.08.001

16. Baresi, L., Guinea, S.: Self-supervising BPEL processes. IEEE
Trans. Softw. Eng. 37(2), 247–263 (2011). https://doi.org/10.1109/
TSE.2010.37

17. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and
tools. Lectures on Concurrency and Petri Nets, Advances in Petri
Nets, Lecture Notes in Computer Science, vol. 3098, pp. 87–
124. Springer, Berlin (2003). https://doi.org/10.1007/978-3-540-
27755-2_3

18. Bianculli, D., Giannakopoulou, D., Pasareanu, C.S.: Interface
decomposition for service compositions. In: ICSE, pp. 501–510
(2011). https://doi.org/10.1145/1985793.1985862

19. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach
for QoS-aware service composition based on genetic algorithms.
In: Beyer, H., O’Reilly, U. (eds.) GECCO, pp. 1069–1075. ACM,
New York (2005). https://doi.org/10.1145/1068009.1068189

20. Cardellini, V., Casalicchio, E., Grassi, V., Presti, F.L., Mirandola,
R.: QoS-driven runtime adaptation of service oriented architec-
tures. In: van Vliet, H., Issarny, V. (eds.) FSE, pp. 131–140. ACM,
New York (2009). https://doi.org/10.1145/1595696.1595718

123

https://doi.org/10.1007/3-540-46002-0_9
https://doi.org/10.1109/CIMCA.2008.104
https://doi.org/10.1145/1526709.1526828
https://doi.org/10.1145/1526709.1526828
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/167088.167242
https://doi.org/10.1145/167088.167242
https://aws.amazon.com/ec2/
https://doi.org/10.4230/OASIcs.FSFMA.2013.18
https://doi.org/10.1007/978-3-319-02444-8_27
https://doi.org/10.1007/978-3-319-02444-8_27
https://doi.org/10.1007/978-3-319-24537-9_2
https://doi.org/10.1007/978-3-319-24537-9_2
https://doi.org/10.1007/s11241-014-9208-6
https://doi.org/10.1109/MS.2007.174
https://doi.org/10.1109/MS.2007.174
https://doi.org/10.1007/11678564_4
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1109/TSE.2010.37
https://doi.org/10.1109/TSE.2010.37
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1145/1985793.1985862
https://doi.org/10.1145/1068009.1068189
https://doi.org/10.1145/1595696.1595718

Automated synthesis of local time requirement for service composition 1011

21. Cerný, T., Donahoo, M.J., Pechanec, J.: Disambiguation and
comparison of SOA, microservices and self-contained systems.
In: RACS, pp. 228–235. ACM (2017). https://doi.org/10.1145/
3129676.3129682

22. Ceska, M., Dannenberg, F., Kwiatkowska, M.Z., Paoletti, N.: Pre-
cise parameter synthesis for stochastic biochemical systems. In:
Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB, Lecture Notes
inComputer Science, vol. 8859, pp. 86–98. Springer,Berlin (2014).
https://doi.org/10.1007/978-3-319-12982-2_7

23. Chen, M., Tan, T.H., Sun, J., Liu, Y., Dong, J.S.: VeriWS: a tool
for verification of combined functional and non-functional require-
ments of web service composition. In: ICSE, pp. 564–567 (2014).
https://doi.org/10.1145/2591062.2591070

24. Chen, M., Tan, T.H., Sun, J., Liu, Y., Pang, J., Li, X.: Verification
of functional and non-functional requirements of web service com-
position. In: ICFEM, pp. 313–328 (2013). https://doi.org/10.1007/
978-3-642-41202-8_21

25. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web
services description language (WSDL) version 2.0. W3C Rec-
ommendation (2007). http://www.w3.org/TR/wsdl20/. Accessed
2020

26. Cimatti, A., Palopoli, L., Ramadian, Y.: Symbolic computation
of schedulability regions using parametric timed automata. In:
RTSS, pp. 80–89. IEEE Computer Society (2008). https://doi.org/
10.1109/RTSS.2008.36

27. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.:
Time for statistical model checking of real-time systems. In:
CAV, Lecture Notes in Computer Science, vol. 6806, pp. 349–
355. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-
22110-1_27

28. Daws, C., Yovine, S.: Reducing the number of clock variables of
timed automata. In: RTSS, pp. 73–81. IEEE Computer Society
(1996). https://doi.org/10.1109/REAL.1996.563702

29. De Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS, Lecture Notes
in Computer Science, vol. 4963, pp. 337–340. Springer, Berlin
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

30. Eichelmann, T., Fuhrmann, W.F., Trick, U., Ghita, B.V.: Enhanced
concept of the TeamCom SCE for automated generated services
basedon JSLEE. In:Bleimann,U.,Dowland, P., Furnell, S., Schnei-
der, O. (eds.) INC, pp. 75–84. University of Plymouth, Plymouth
(2010)

31. Ermedahl, A., Sandberg, C., Gustafsson, J., Bygde, S., Lisper, B.:
Loop bound analysis based on a combination of program slic-
ing, abstract interpretation, and invariant analysis. In: Rochange,
C. (ed.) WCET, OASICS, vol. 6. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Wadern (2007)

32. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient proba-
bilistic model checking. In: ICSE, pp. 341–350 (2011). https://doi.
org/10.1145/1985793.1985840

33. Foster, H.: A Rigorous Approach To Engineering Web Service
Compositions. Ph.D. thesis, Imperial College of London (2006)

34. Foster, H., Uchitel, S., Magee, J., Kramer, J.: LTSA-WS: a tool for
model-based verification of web service compositions and chore-
ography. In: ICSE, pp. 771–774 (2006). https://doi.org/10.1145/
1134408

35. Foundation, A.S.: Apache ODE (2007). http://ode.apache.org/.
Accessed 2020

36. Fribourg, L., Lesens, D., Moro, P., Soulat, R.: Robustness analysis
for scheduling problems using the inverse method. In: Reynolds,
M., Terenziani, P., Moszkowski, B. (eds.) TIME, pp. 73–80. IEEE
Computer Society Press, Silver Spring (2012). https://doi.org/10.
1109/TIME.2012.10

37. Gao, C., Cai, M., Chen, H.: QoS-aware service composition
based on tree-coded genetic algorithm. In: COMPSAC, pp. 361–

367. IEEE Computer Society (2007). https://doi.org/10.1109/
COMPSAC.2007.174

38. Geebelen, K., Michiels, S., Joosen, W.: Dynamic reconfigura-
tion using template based Web service composition. In: Göschka,
K.M., Dustdar, S., Leymann, F., Tosic, V. (eds.) MW4SOC, pp.
49–54. ACM, New York (2008). https://doi.org/10.1145/1462802.
1462811

39. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen,
H.F., Karmarkar, A., Lafon, Y.: Simple object access protocol
(SOAP) version 1.2. W3C Recommendation (2007). http://www.
w3.org/TR/soap12/. Accessed 2020

40. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions
for timed automata. Inf. Comput. 251, 67–90 (2016). https://doi.
org/10.1016/j.ic.2016.07.004

41. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear
parametric model checking of timed automata. J. Log. Algebr.
Program. 52–53, 183–220 (2002). https://doi.org/10.1016/S1567-
8326(02)00037-1

42. Jovanović, A., Kwiatkowska, M.Z.: Parameter synthesis for prob-
abilistic timed automata using stochastic game abstractions. In:
Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP, Lecture Notes
in Computer Science, vol. 8762, pp. 176–189. Springer, Berlin
(2014). https://doi.org/10.1007/978-3-319-11439-2_14

43. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis
for real-time systems. IEEE Trans. Softw. Eng. 41(5), 445–461
(2015). https://doi.org/10.1109/TSE.2014.2357445

44. Kraft, S., Pacheco-Sanchez, S., Casale, G., Dawson, S.: Estimating
service resource consumption from response time measurements.
In: VALUETOOLS, p. 48 (2009). https://doi.org/10.4108/ICST.
VALUETOOLS2009.7526

45. Larsen, K.G., Legay, A.: Statistical model checking: past, present,
and future. In:Margaria, T., Steffen, B. (eds.) ISoLA, Part I, Lecture
Notes in Computer Science, vol. 9952, pp. 3–15 (2016). https://doi.
org/10.1007/978-3-319-47166-2_1

46. Le, T.T.H., Palopoli, L., Passerone, R., Ramadian, Y., Cimatti, A.:
Parametric analysis of distributed firm real-time systems: a case
study. In: ETFA, pp. 1–8. IEEE (2010). https://doi.org/10.1109/
ETFA.2010.5641315

47. Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition:
a survey of techniques and tools. ACMComput. Surv. 48(3), 33:1–
33:41 (2016). https://doi.org/10.1145/2831270

48. Li, Y., Tan, T.H., Chechik, M.: Management of time requirements
in component-based systems. In: FM, pp. 399–415 (2014). https://
doi.org/10.1007/978-3-319-06410-9_28

49. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf.
Theory 28(2), 129–136 (1982). https://doi.org/10.1109/TIT.1982.
1056489

50. Ma, Y., Zhang, C.: Quick convergence of genetic algorithm for
QoS-driven web service selection. Comput. Netw. 52(5), 1093–
1104 (2008). https://doi.org/10.1016/j.comnet.2007.12.003

51. Magee, J., Kramer, J.: Concurrency-State Models and Java pro-
grams, 2nd edn. Wiley, New York (2006)

52. Mediouni, B.L., Nouri, A., Bozga, M., Dellabani, M., Legay, A.,
Bensalem, S.: SBIP 2.0: statistical model checking stochastic real-
time systems. In: Lahiri, S.K., Wang, C. (eds.) ATVA, Lecture
Notes in Computer Science, vol. 11138, pp. 536–542. Springer,
Berlin (2018). https://doi.org/10.1007/978-3-030-01090-4_33

53. Menascé, D.A.: Response-time analysis of composite web ser-
vices. IEEE Internet Comput. 8(1), 90–92 (2004). https://doi.org/
10.1109/MIC.2004.1260710

54. Merlin, P.M.: A study of the recoverability of computing systems.
Ph.D. thesis, University of California, Irvine, CA, USA (1974)

55. Mi, C., Miao, H., Kai, J., Gao, H.: Reliability modeling and verifi-
cation of BPEL-based Web services composition by probabilistic
model checking. In: Song,Y. (ed.) SERA, pp. 149–154. IEEECom-

123

https://doi.org/10.1145/3129676.3129682
https://doi.org/10.1145/3129676.3129682
https://doi.org/10.1007/978-3-319-12982-2_7
https://doi.org/10.1145/2591062.2591070
https://doi.org/10.1007/978-3-642-41202-8_21
https://doi.org/10.1007/978-3-642-41202-8_21
http://www.w3.org/TR/wsdl20/
https://doi.org/10.1109/RTSS.2008.36
https://doi.org/10.1109/RTSS.2008.36
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1109/REAL.1996.563702
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1985793.1985840
https://doi.org/10.1145/1985793.1985840
https://doi.org/10.1145/1134408
https://doi.org/10.1145/1134408
http://ode.apache.org/
https://doi.org/10.1109/TIME.2012.10
https://doi.org/10.1109/TIME.2012.10
https://doi.org/10.1109/COMPSAC.2007.174
https://doi.org/10.1109/COMPSAC.2007.174
https://doi.org/10.1145/1462802.1462811
https://doi.org/10.1145/1462802.1462811
http://www.w3.org/TR/soap12/
http://www.w3.org/TR/soap12/
https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1007/978-3-319-11439-2_14
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.4108/ICST.VALUETOOLS2009.7526
https://doi.org/10.4108/ICST.VALUETOOLS2009.7526
https://doi.org/10.1007/978-3-319-47166-2_1
https://doi.org/10.1007/978-3-319-47166-2_1
https://doi.org/10.1109/ETFA.2010.5641315
https://doi.org/10.1109/ETFA.2010.5641315
https://doi.org/10.1145/2831270
https://doi.org/10.1007/978-3-319-06410-9_28
https://doi.org/10.1007/978-3-319-06410-9_28
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/j.comnet.2007.12.003
https://doi.org/10.1007/978-3-030-01090-4_33
https://doi.org/10.1109/MIC.2004.1260710
https://doi.org/10.1109/MIC.2004.1260710

1012 É. André et al.

puter Society, Silver Spring (2016). https://doi.org/10.1109/SERA.
2016.7516140

56. Middleware: the state of microservices survey 2017—eight
trends you need to know (2017). https://middlewareblog.redhat.
com/2017/12/05/the-state-of-microservices-survey-2017-eight-
trends-you-need-to-know/. Accessed 2020

57. Microservices (2018). http://microservices.io/patterns/
microservices.html. Accessed 2020

58. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring
and service adaptation for WS-BPEL. In: WWW, pp. 815–824
(2008). https://doi.org/10.1145/1367497.1367607

59. Nguyen, H.G., Petrucci, L., Van de Pol, J.: Layered and collecting
NDFS with subsumption for parametric timed automata. In: Lin,
A.W., Sun, J. (eds.) ICECCS, pp. 1–9. IEEE Computer Society,
Silver Spring (2018). https://doi.org/10.1109/ICECCS2018.2018.
00009

60. Ordóñez, A., Alcázar, V., Rendon, O.M.C., Falcarin, P., Corrales,
J.C., Granville, L.Z.: Towards automated composition of conver-
gent services: a survey.Comput. Commun. 69, 1–21 (2015). https://
doi.org/10.1016/j.comcom.2015.07.025

61. Pautasso, C.: Restful Web service composition with BPEL for
REST. Data Knowl. Eng. 68(9), 851–866 (2009). https://doi.org/
10.1016/j.datak.2009.02.016

62. Quaas,K., Shirmohammadi,M.,Worrell, J.: Revisiting reachability
in timed automata. In: LICS, pp. 1–12. IEEE Computer Society
(2017). https://doi.org/10.1109/LICS.2017.8005098

63. Roussanaly, V., Sankur, O., Markey, N.: Abstraction refinement
algorithms for timed automata. In: Dillig, I., Tasiran, S. (eds.) CAV,
Part I. Lecture Notes in Computer Science, vol. 11561, pp. 22–
40. Springer, Berlin (2019). https://doi.org/10.1007/978-3-030-
25540-4_2

64. Schmieders, E., Metzger, A.: Preventing performance violations
of service compositions using assumption-based run-time verifi-
cation. In: ServiceWave, pp. 194–205 (2011). https://doi.org/10.
1007/978-3-642-24755-2_19

65. Schrijver, A.: Theory of Linear and Integer Programming. Wiley,
New York (1986)

66. Simmonds, J., Ben-David, S., Chechik, M.: Guided recovery for
web service applications. In: Roman,A., van derHoek, G.-C. (eds.)
SIGSOFT FSE, pp. 247–256. ACM, New York (2010). https://doi.
org/10.1145/1882291.1882328

67. Song, Z., Tilevich, E.: Equivalence-enhanced microservice work-
flow orchestration to efficiently increase reliability. In: Bertino, E.,
Chang, C.K., Chen, P., Damiani, E., Goul, M., Oyama, K. (eds.)
ICWS, pp. 426–433. IEEE, New York (2019). https://doi.org/10.
1109/ICWS.2019.00076

68. Sun, J., Liu, Y., Dong, J.S., Liu, Y., Shi, L., André, É.: Modeling
and verifying hierarchical real-time systems using stateful timed
CSP. ACM Trans. Softw. Eng. Methodol. 22(1), 3.1–3.29 (2013).
https://doi.org/10.1145/2430536.2430537

69. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verifica-
tion under fairness. In: Bouajjani, A.,Maler, O. (eds.) CAV, Lecture
Notes in Computer Science, vol. 5643, pp. 709–714. Springer,
Berlin (2009). https://doi.org/10.1007/978-3-642-02658-4_59

70. Swain, S., Niyogi, R.: FESC: functionally equivalent service com-
position. Internet Things 9, 100151 (2020). https://doi.org/10.
1016/j.iot.2019.100151

71. Tan, T.H.,André, É., Chen,M., Sun, J., Liu,Y.,Dong, J.S.: Selamat:
binary and experiment data (2019). https://sites.google.com/site/
automatedsynthesis/home/. Accessed 2020

72. Tan, T.H., André, É., Sun, J., Liu, Y., Dong, J.S., Chen, M.:
Dynamic synthesis of local time requirement for service compo-
sition. In: Cheng, B.H., Pohl, K. (eds.) ICSE, pp. 542–551. IEEE,
New York (2013). https://doi.org/10.1109/ICSE.2013.6606600

73. Tan, T.H., Chen, M., André, É., Sun, J., Liu, Y., Dong, J.S.:
Automated runtime recovery for QoS-based service composition.

In: WWW, pp. 563–574 (2014). https://doi.org/10.1145/2566486.
2568048

74. Tan, T.H., Chen,M., Sun, J., Liu, Y., André, É., Dong, J.S., Xue, Y.:
Optimizing selection of competing services with probabilistic hier-
archical refinement. In: Visser, W., Williams, L. (eds.) ICSE, pp.
85–95. ACM, New York (2016). https://doi.org/10.1145/2884781.
2884861

75. Tari, Z., Bertok, P., Mukherjee, A.: Framework for Modeling, Sim-
ulation and Verification of a BPEL Specification, pp. 205–244.
Wiley, NewYork (2013). https://doi.org/10.1002/9781118720103.
ch8

76. Traonouez, L.M., Lime, D., Roux, O.H.: Parametric model-
checking of stopwatch Petri nets. J. Univ. Comput. Sci. 15(17),
3273–3304 (2009). https://doi.org/10.3217/jucs-015-17-3273

77. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services
selection with end-to-end QoS constraints. ACM Trans. Web 1(1),
6 (2007). https://doi.org/10.1145/1232722.1232728

78. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng,
Q.Z.: Quality driven web services composition. In: Hencsey, G.,
White, B., Chen, Y.R., Kovács, L., Lawrence, S. (eds.) WWW,
pp. 411–421. ACM, New York (2003). https://doi.org/10.1145/
775152.775211

79. Zeng, L., Benatallah, B.,Ngu,A.H.H.,Dumas,M.,Kalagnanam, J.,
Chang, H.: QoS-aware middleware for web services composition.
IEEE Trans. Softw. Eng. 30(5), 311–327 (2004). https://doi.org/
10.1109/TSE.2004.11

80. Zhang, L., Li, B., Chao, T., Chang, H.: On demand web services-
based business process composition. In: ICSMC, vol. 4, pp. 4057–
4064. IEEE (2003)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Étienne André received his mas-
ters degree in computer science
from Université Rennes 1 (France)
in 2007 and his PhD degree in
computer science from École Nor-
male Supérieure de Cachan (France)
in 2010. He was a research fellow
in 2010–2011 in Prof. Jin-Song
Dong’s group in the National Uni-
versity of Singapore. From 2011
to 2019, he was an associate pro-
fessor with Université Paris 13
(France). He has been a full pro-
fessor with Université de Lorraine
(France) since 2019. He is con-

cerned with the formal specification and verification of systems mix-
ing both concurrency and hard real-time constraints. He is particularly
interested in parametric timed systems, where timing constants are
uncertain or unknown.

123

https://doi.org/10.1109/SERA.2016.7516140
https://doi.org/10.1109/SERA.2016.7516140
https://middlewareblog.redhat.com/2017/12/05/the-state-of-microservices-survey-2017-eight-trends-you-need-to-know/
https://middlewareblog.redhat.com/2017/12/05/the-state-of-microservices-survey-2017-eight-trends-you-need-to-know/
https://middlewareblog.redhat.com/2017/12/05/the-state-of-microservices-survey-2017-eight-trends-you-need-to-know/
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
https://doi.org/10.1145/1367497.1367607
https://doi.org/10.1109/ICECCS2018.2018.00009
https://doi.org/10.1109/ICECCS2018.2018.00009
https://doi.org/10.1016/j.comcom.2015.07.025
https://doi.org/10.1016/j.comcom.2015.07.025
https://doi.org/10.1016/j.datak.2009.02.016
https://doi.org/10.1016/j.datak.2009.02.016
https://doi.org/10.1109/LICS.2017.8005098
https://doi.org/10.1007/978-3-030-25540-4_2
https://doi.org/10.1007/978-3-030-25540-4_2
https://doi.org/10.1007/978-3-642-24755-2_19
https://doi.org/10.1007/978-3-642-24755-2_19
https://doi.org/10.1145/1882291.1882328
https://doi.org/10.1145/1882291.1882328
https://doi.org/10.1109/ICWS.2019.00076
https://doi.org/10.1109/ICWS.2019.00076
https://doi.org/10.1145/2430536.2430537
https://doi.org/10.1007/978-3-642-02658-4_59
https://doi.org/10.1016/j.iot.2019.100151
https://doi.org/10.1016/j.iot.2019.100151
https://sites.google.com/site/automatedsynthesis/home/
https://sites.google.com/site/automatedsynthesis/home/
https://doi.org/10.1109/ICSE.2013.6606600
https://doi.org/10.1145/2566486.2568048
https://doi.org/10.1145/2566486.2568048
https://doi.org/10.1145/2884781.2884861
https://doi.org/10.1145/2884781.2884861
https://doi.org/10.1002/9781118720103.ch8
https://doi.org/10.1002/9781118720103.ch8
https://doi.org/10.3217/jucs-015-17-3273
https://doi.org/10.1145/1232722.1232728
https://doi.org/10.1145/775152.775211
https://doi.org/10.1145/775152.775211
https://doi.org/10.1109/TSE.2004.11
https://doi.org/10.1109/TSE.2004.11

Automated synthesis of local time requirement for service composition 1013

Tian Huat Tan is currently a
lead data scientist in Data Sci-
ence and AI Elite team of IBM
where he provides consultation to
various large enterprises to help
them succeed and lead in data sci-
ence, machine learning and arti-
ficial intelligence. Tian Huat is
very passionate and dedicated to
bringing current state-of-the-art
methodologies in data science and
artificial intelligence to enterprises,
with the purposes of addressing
challenging business problems and
creating great business value. He

has worked in the domain of optimization and machine/deep learning,
software engineering and model checking in the past seven years, in
both his industry and academic career. He enjoys both the practical
and theoretical aspects of these subjects. He has previously obtained
his computer science PhD from National University of Singapore, with
many of his research results published in highly reputable conferences
(e.g., WWW, ICSE, ISSTA, etc.) and journals (e.g., TIFS).

Manman Chen is currently a
data scientist in Autodesk where
she provides strategies to sales
and marketing by leveraging in
machine learning and artificial intel-
ligence. She previously obtained
her PhD in computer science from
National University of Singapore,
with many of her research results
published in highly reputable con-
ferences (e.g., WWW, ICSE,
ISSTA).

Shuang Liu is currently an asso-
ciate professor at School of Intel-
ligence and Computing, Tianjin
University, China. She received
bachelors degree in Renmin Uni-
versity of China in 2010 and PhD
degree from National University
of Singapore in 2015. She worked
as a research fellow in SUTD
and lecturer in SiT before join-
ing TJU as a faculty member in
2018. Shuang’s research interests
include software engineering, for-
mal methods and privacy protec-
tion.

Jun Sun is currently an asso-
ciate professor at Singapore Man-
agement University (SMU). He
received bachelors and PhD degrees
in computing science from National
University of Singapore (NUS) in
2002 and 2006. In 2007, he received
the prestigious LEE KUAN YEW
postdoctoral fellowship. He has
been a faculty member since 2010
and was a visiting scholar at MIT
from 2011 to 2012. Jun’s research
interests include software engineer-
ing, cyber-security and formal meth-
ods. He is the co-founder of the

PAT model checker. He has published more than 200 articles and con-
ference papers including top conferences in multiple areas.

Yang Liu graduated in 2005 with
a Bachelor of Computing (Hon-
ours) in the National University
of Singapore (NUS). In 2010, he
obtained his PhD and started his
postdoctoral work in NUS, MIT
and SUTD. In 2011, Dr. Liu is
awarded the Temasek Research
Fellowship at NUS to be the prin-
cipal investigator in the area of
cyber-security. In 2012 fall, he
joined Nanyang Technological Uni-
versity (NTU) as a Nanyang Assis-
tant Professor. He is currently a
full professor and the Director of

the Cybersecurity Lab in NTU. He specializes in software verifica-
tion, security and software engineering. His research has bridged the
gap between the theory and practical usage of formal methods and
program analysis to evaluate the design and implementation of soft-
ware for high assurance and security. His work led to the development
of a state-of-the-art model checker, Process Analysis Toolkit (PAT).
By now, he has more than 300 publications and 6 best paper awards
in top-tier conferences and journals. With more than 20 million Sin-
gapore dollar funding support, he is leading a large research team
working on the state-of-the-art software engineering and cybersecurity
problems.

Jin Song Dong completed his PhD
degree in computing from Univer-
sity of Queensland in 1995. From
1995 to 1998, he was a research
scientist and then senior research
scientist at CSIRO in Australia.
Since 1998, he has been in the
School of Computing at the
National University of Singapore
(NUS) where he received full pro-
fessorship in 2016. Currently, he
has divided his time between NUS
and Griffith University as a pro-
fessor. His research is in the areas
of formal methods, safety and secu-

rity systems, probabilistic reasoning and trusted machine learning. Jin
Song is on the editorial board of ACM Transaction on Software Engi-
neering and Methodology and Formal Aspects of Computing.

123

	Automated synthesis of local time requirement for service composition
	Citation
	Author

	Automated synthesis of local time requirement for service composition
	Abstract
	1 Introduction and motivation
	1.1 Contribution
	1.2 About this manuscript
	1.3 Outline

	2 A BPEL example with timed requirements
	3 A formal model for parametric composite services
	3.1 Variables, clocks, parameters and constraints
	3.2 Syntax of composite service processes
	3.3 Parametric composite service models
	3.4 Bad activities

	4 A formal semantics for parametric composite services
	4.1 Labeled transition systems
	4.2 Symbolic states
	4.3 Implicit clocks
	4.3.1 Clock activation
	4.3.2 Idling function

	4.4 Operational semantics
	4.5 Application to an example
	4.6 A technical result: the reachability condition

	5 Synthesizing the static LTC
	5.1 Motivation
	5.2 Addressing the good states
	5.3 Addressing the bad states
	5.4 Synthesis algorithms
	5.5 Application to the running example
	5.6 Termination and soundness of synthSLTC
	5.6.1 Termination
	5.6.2 Soundness

	5.7 Incompleteness of synthSLTC

	6 Runtime refinement of local time requirement
	6.1 Motivation
	6.2 Runtime adaptation of a BPEL process
	6.3 Algorithm for runtime refinement
	6.4 Satisfiability checking
	6.5 Termination and soundness of synthRLTC
	6.5.1 Termination
	6.5.2 Soundness

	6.6 Discussion

	7 Evaluation
	7.1 Examples
	7.1.1 Stock Market Indices Service (SMIS)
	7.1.2 Computer purchasing services (CPS)
	7.1.3 Travel booking service (TBS)
	7.1.4 Rescue team service (RS)

	7.2 Synthesis of local time requirement
	7.2.1 Environment of the experiments
	7.2.2 Evaluation results

	7.3 Runtime adaptation
	7.3.1 Environment of the experiments
	7.3.2 Evaluation results

	7.4 Threats to validity

	8 Related work
	9 Conclusion and future work
	9.1 Conclusion
	9.2 Future work

	A Operational semantics
	References

