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Transferring Time-Series Discrete
Choice to Link-Based Route Choice in
Space: Estimating Vehicle Type
Preference using Recursive Logit Model

Fabian Bastin1, Yan Liu2, Cinzia Cirillo2, and Tien Mai1

Abstract
This paper considers a sequential discrete choice problem in a time domain, formulated and solved as a route choice problem
in a space domain. Starting from a dynamic specification of time-series discrete choices, we show how it is transferrable to
link-based route choices that can be formulated by a finite path choice multinomial logit model. This study establishes that
modeling sequential choices over time and in space are equivalent as long as the utility of the choice sequence is additive over
the decision steps, the link-specific attributes are deterministic, and the decision process is Markovian. We employ the recur-
sive logit model proposed in the context of route choice in a network, and apply it to estimate time-series vehicle type
choice based on Maryland Vehicle Stated Preference Survey data. The model has been efficiently estimated by a dynamic pro-
gramming approach; the values of estimated coefficients provide important patterns on vehicle type preferences. Compared
with a naive model based on sequential multinomial logit choices which are independent over time and a dynamic discrete
choice model which considers agent’s future expectations, the smaller root mean square error of recursive logit model indi-
cates that it has a better performance in estimating sequential choices over time. We also compare the predictive powers
and find that the proposed model outperforms the basic approach and the dynamic approach.

Discrete choice theory, introduced by McFadden (1), has
proven to be an efficient framework to predict and
explain individual choices. When individuals express a
sequence of choices instead of a single one, the derivation
and estimation of behavioral models become challenging.
Despite an individual’s sequence of choices being possible
in a space domain or a time domain, in the literature of
discrete choice analysis, most behavioral models capture
time-series choices instead of link-based choices in space.
Modeling the two types of decisions in sequence is in fact
transferable as long as (a) the alternative-specific (link-
specific) attributes are deterministic, (b) the perceived
total utility is additive over the sequence of choices, and
(c) the decision process is Markovian (2).

To estimate individuals’ time-series choices, dynamic
discrete choice models of consumer behaviors were first
used in economics and social science (3). The earliest
generation of studies includes Wolpin (4) on fertility and
child mortality, Miller (5) on job matching and occupa-
tional choice, Pakes (6) on patent renewal, and Rust (7)
on engine replacement. Rust (7) was the first to propose
a dynamic logit model and to formulate the time-series

discrete choices of bus engine replacement as an optimal
stopping problem. His model is conceived for a single
agent, a homogeneous product, and infinite time hori-
zon. The utilities of the dynamic model are nonlinear,
composed of information on current alternatives, expec-
tations about future alternatives, and independent and
identically Gumbel-distributed random components.
Melnikov (8) extended Rust’s formulation to consider
binary decisions, whether to buy or postpone the pur-
chase of a printer, based on the expected evolution of
printer quality and price. His dynamic model considers
heterogeneous products and homogeneous consumers,
and assumes a consumer can only make one purchase
over the time horizon. Lorincz (9) further extended the
dynamic structure by considering the so-called persistent
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effect, which allows consumers who already had a prod-
uct to upgrade it instead of replacing it.

Dynamic discrete choice models for car ownership
estimation have been developed in recent decades,
including models accounting for inertia effect with
lagged variables (10, 11) and models capturing forward-
looking behaviors with Bellman equations (12–14). Ben-
Akiva and Abou-Zeid (10) proposed a dynamic formula-
tion with the integration of Hidden Markov Chain to
model sequence of discrete choices and evolution of
latent variables, which was applied for driving behavior
analysis. Realizing the importance of a consumer’s future
expectation in dynamic problems, Schiraldi (12) first
introduced a dynamic structural approach with optimal
stopping formulation to study car replacement decisions
in a second-hand vehicle market. His model accounts for
consumer’s heterogeneity, future expectation, and price
endogeneity in an infinite time horizon. However, it
ignores the market evolution. To overcome the limita-
tion, Cirillo et al. (13) further proposed a regenerative
optimal stopping formulation with a stochastic diffusion
process in order to capture not only the optimal car pur-
chase time but also consumer’s decisions on vehicle type
in a dynamically changing vehicle market in a finite hori-
zon. Taking advantage of approximate dynamic pro-
gramming, the model has been estimated by the
maximum likelihood technique. In the literature, a signif-
icant number of interesting applications aim at solving
the empirical issues in economics, such as unobserved
heterogeneity, initial conditions, state dependency, mea-
surement error, endogeneity, and identification (15).
However, the computational complexity of model esti-
mation is considered to impede the development of these
dynamic structures.

On the other hand, the idea of using a sequential link
choice model to describe path choice becomes popular in
the context of traffic assignment (16–18). More recently,
Fosgerau et al. (2) developed the recursive logit (RL)
model and applied it to the route choice problem by for-
mulating each path choice as a sequence of link choices.
At each node, individuals are assumed to choose the out-
going link with the maximum utility including an instan-
taneous cost and an expected downstream utility (i.e.,
value function) identified by the Bellman equation. This
study builds a bridge between the sequential link-based
route choice model and the finite path choice multino-
mial logit (MNL) model; it provides an interpretation of
the route choice problem in a dynamic discrete choice
formulation.

Based on the RL model, this paper proposes the trans-
ferability between the dynamic discrete choice problem
and the route choice problem with an application on
vehicle type preferences. To the best of our knowledge,
this study is the first to establish that sequential choices

in a time domain can be formulated as a route choice
problem and solved as an individual-specific shortest
path problem. Furthermore, the model estimation bene-
fits from the computational advantages of the RL model.
In particular, the value function can be quickly com-
puted by solving systems of linear equations, and the
overall path likelihood function has a closed form and
can be efficiently maximized by a nonlinear optimization
algorithm.

The remainder of this paper is organized as follows.
First, the methodology is described and the dynamic dis-
crete choice problem formulated as a route choice prob-
lem. Then, Maryland Vehicle Stated Preference Survey
Data is introduced for model estimation; while the next
section demonstrates an application on vehicle type
choice using the RL model and performs an out-of-
sample validation. The final section offers concluding
remarks and avenues for future research.

Methodology

We consider the situation where an individual i, within a
set I= 1, :::, If g, has to make choices at time stages
t = 1, :::, Ti, where Ti is the time horizon for the individ-
ual i, within finite choice sets At that can vary over time.
At each stage, each alternative j presents some utility Uij

for individual i, and the total utility gained by an individ-
ual is supposed to be additive over the sequence of
choices:

Ui =
XTi�1

t = 1

Uijt , ð1Þ

where jt is the alternative chosen at stage t. We assume
that the individual aims to maximize his/her total utility,
or in other words, to select the alternatives jt such that
Ui is maximized. Moreover, at each stage t, we assume
that the individual situation can be represented by a state
xit and that the set of possible states Xit at each stage is
finite. The state evolution over time is governed by a
transition function, such that:

xi, t + 1 = f xit, jtð Þ ð2Þ

The perceived utility is a function of the state, and
therefore, the choice sequence is a solution to the
problem:

maxjt , t = 1, :::, Ti�1

XT�1

t = 1

Uijt xitð Þ ð3Þ

or equivalently:

minjt , t= 1, :::, Ti�1 �
XT�1

t = 1

Uijt xitð Þ ð4Þ
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We can represent the problem with a graph where
each node represents a possible state and each link corre-
sponds to the transition from a state xit to another state
xi, t + 1 after the choice of some alternative jt and has the
weight Uijt xitð Þ. The graph can be rooted at xi, t+ 1 and
we add an artificial terminal node corresponding to an
arbitrary state xi, T + 1 and artificial links connecting each
possible state xi, T to xi, T + 1 with weight UijT xiTð Þ : = 0.
The network in Figure 1 shows a detailed illustration for
the graph, with the dash line representing artificial node
and links (individual index i is omitted in Figure 1 for
simplification purpose).

The choice problem can be treated as a deterministic
dynamic program, or equivalently as the computation of
the shortest path from xi, 1 to xi, T + 1 where in addition
the nodes can be numbered in topological order (19).

Unfortunately, the alternative utilities cannot be
observed exactly, and as in classical discrete choice the-
ory, we assume that the utility Uijt xitð Þ can be decom-
posed as the sum of an observable utility Vijt xitð Þ and a
random term eijt xitð Þ. The problem can then be viewed as
a route choice problem with known origin and destina-
tion, and we will assume that the random terms are inde-
pendent and identically distributed (i.i.d.) and Gumbel
distributed. The sequence of choices can be viewed as the
choice of a path in an oriented graph, where the origin is
the individual state at the beginning of the choice pro-
cess, and the destination is the artificial terminal node.
In this way, a dynamic choice problem can be transferred
to a route choice problem.

The estimation of route choices is usually viewed as a
difficult problem, as the set of possible paths exponen-
tially increases with the size of the network, so that this
equivalence could seem useless in practice. However,
recent developments in route choice theory have made
this problem tractable. Especially, we can use the estima-
tion techniques proposed by Fosgereau et al. (2) to esti-
mate the model, e.g., the expected downstream utilities
as well as their gradients can be computed by solving sys-
tems of linear equations, and the choice probability for
each path is computed by the choice probabilities of the
links on that path. We note that such model can be

consistently estimated and quickly used for prediction
without sampling of choice sets. We here rely on the
MATLAB implementation from Mai (20) to perform the
RL model estimation on time-series vehicle type choices.

Description of Maryland Vehicle Stated
Preference Survey

The data used for the empirical analysis was collected
from a stated preference survey, which was designed to
analyze household vehicle preferences in a dynamic envi-
ronment (we refer the reader to reference 21 for details in
survey design). The survey was conducted under a self-
interview, web-based format. Table 1 describes the sur-
vey methodology employed.

The stated choice experiment places respondents in a
hypothetical nine-year future period starting from 2014.
Each year includes two scenarios with a total of 18 sce-
narios possible. In each scenario, respondents are shown
current prices of gasoline and electricity as well as char-
acteristics of four vehicles—the current vehicle and three
new vehicles: a gasoline, a hybrid electric, and a battery
electric car. Respondents then choose whether to keep
their current vehicle or to purchase a new one. If the
respondents keep their current vehicle, they then go to
the next scenario with a new set of vehicles. Otherwise,
their chosen vehicle becomes their current primary vehi-
cle and the respondents are accelerated three years into
the future. After this acceleration, the respondents are
returned to the scenario progression with the first sce-
nario for the third year after purchase. Figure 2 shows
the progression of vehicle type choice.

The stated preference panel data contains 3598 obser-
vations of vehicle type choices from 456 Maryland resi-
dents (households) over the hypothetical 18 scenarios.
For each observation, the choice set contains four alter-
natives including residents’ current vehicle and three new
vehicles. New vehicle characteristics such as purchasing
price, fuel economy, size, and recharging range are
changing over time in the dynamic marketplace. The
data is quite representative for Maryland residents,
regarding the distributions of households’/respondents’

 

Figure 1. An example network with arbitrary root and artificial destination.
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characteristics and their current vehicle characteristics
(reference 21 provides summary tables of descriptive
data statistics).

Besides, the sequence of households’ vehicle purchas-
ing decisions over time provides essential evidence to
capture households’ preference on switching to greener
vehicle types. According to the survey design, at each
scenario households can be either in the market or out-
of-market. If a household is in the market, he/she has an
opportunity to decide either to retain his/her current car
or to purchase a new car. Figure 3 shows the shares of
households in the market, retaining current vehicle, buy-
ing a new gasoline vehicle (GV), a new hybrid electric
vehicle (HEV), and a new battery electric vehicle (BEV)
over the 18 scenarios.

Application on Vehicle Type Choice

In this section, we construct a link-based network to
describe households’ vehicle type choices over time and

employ an RL model to predict future vehicle prefer-
ences on the time-series data in Maryland.

Link-Based Network to Represent Vehicle Type Choice

To transfer this dynamic vehicle type choice problem to
a route choice problem, we focus on the sequence of
households’ vehicle type choices and vehicle characteris-
tics over time. In particular, a link-based network is con-
structed to represent the decision progression of vehicle
type choices over the 18 scenarios, with link attributes
representing vehicle characteristics. Therefore, the
sequence of choices made by a household over time is
represented by a path in the network; with a total of 456
path observations available. The entire network contains
74 nodes and 129 links with 2971 possible paths from
origin to destination. Figure 4 provides a partial network
of vehicle type choices over four years (eight scenarios).
If respondents retain their current vehicle at scenario (j-
1), there will be four outgoing links from the black node

Figure 2. Decision progression of vehicle type choice.

Table 1. Survey Design

Characteristic Details

Time frame May–June 2014
Target population Maryland households
Sampling frame Households with Internet access in the state of Maryland
Sample design Recruitment panel
Use of interviewer Self-administered
Mode of administration Self-administered via Internet
Computer assistance Computer-assisted, web-based self-interview
Reporting unit One person aged 18 or older per household reports for the entire household
Time dimension Cross-sectional survey with hypothetical longitudinal stated-choice experiment
Frequency One 2-week phase of collecting responses
Levels of observations Household, vehicle, person
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at scenario (j-1): the four links represent keeping current
vehicle (black arrow), buying a new GV (red arrow),
buying a new HEV (blue arrow), and buying a new BEV
(yellow arrow) at the next scenario j. Otherwise, respon-
dents will jump directly to the first scenario in the third
year from purchase (purple dashed arrow). This progres-
sion continues until respondents reach the artificial desti-
nation node. We assume all paths will eventually go to
the unique destination. The main difference between the

network considered in this paper with a typical transport
network is that our network has only one origin and one
destination.

Estimation Results of RL Model

We estimate the RL model on the path observations
(sequence of vehicle type choices) of 456 Maryland resi-
dents. In the model specification, four outgoing links

Figure 4. An example network representing vehicle type choices over eight scenarios.

Figure 3. Shares of vehicle type choices for households in the market over time.
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(alternatives) are considered at each scenario, and the
link attributes include household social demographics
and car characteristics such as number of workers within
a household, respondents’ age, education level and
gender-related indicators, purchase price, fuel economy
(i.e., miles per gallon), vehicle size, and recharging range.
The instantaneous utility function (v) for each link is
defined as:

v gjkð Þ=ASCg +bVP, gVPg +bFK, gFKg

+bFU, gFUg +bVS, gVSg +bGPGP+ eg

ð5Þ

v hjkð Þ=ASCh +bEF, hEFh +bYH, hYHh +bVP, hVPh

+bFK, hFKh +bFU, hFUh +bVS, hVSh + eh

v ejkð Þ=ASCe +bEM, eEMe +bYH , eYHe

+bVP, eVPe +bFK, eFKe

+bFU, eFUe +bVS, eVSe +bVR, eVRe

+bEPEP+ ee

v cjkð Þ=bVP, cVPc +bNW, cNWc + ec

where

� k is the status retaining current vehicle
� g, g, h, and c are the outgoing links from status k

that represent buying a new GV, HEV, BEV, and
retaining current vehicle, respectively

� ASCi is the alternative specific constant of link i,
where i 2 g, h, e, cf g

� EFi, YGi, EMi, NWi represent indicator of edu-
cated female (EF), indicator of young household
head (YH), indicator of educated male (EM), and
number of workers (NW)

� VPi, FKi, FUi, VSi, and VRi represent vehicle
price (VP), fuel economy for the group who
knows the fuel economy of current car (FK), fuel
economy for the group who does not know the
fuel economy of current car (FU), vehicle size
(VS), and vehicle recharging range (VR) of link i,
respectively

� GP and EP are gas price (GP) and electricity price
(EP)

� All b are alternative-specific coefficients to be
estimated

� ei is the error component of link i following a
Gumbel distribution

Table 2 compares the estimation results between an
MNL model, an RL model, and a dynamic discrete
choice model proposed by Liu and Cirillo (22). It should
be noted that all attributes considered are observation
specific.

In order to approve the capability of estimating vehi-
cle type choice using the RL model, we compare the

estimation results of the RL model not only with the sta-
tic MNL model, but also with the dynamic discrete
choice model.

In the specification of MNL model, choices made by
the same household are treated as independent observa-
tions and panel effects are omitted. Their choices are
assumed to be myopic and no forward-looking behavior
is considered. We can observe that many estimation coef-
ficients from the MNL model are not significant, such as
fuel economy of GV, size of gasoline and hybrid vehicles,
recharging range of electric vehicle, and fuel prices.

On the other hand, the RL model and the dynamic
model account for the dependences in sequence of

choices made by the same household. Further, they

assume that households have expectations about future

market. There are two main differences between the RL

model and the dynamic model. First, the RL model

assumes that households have perfect information of

future market, while the dynamic model allows house-

holds to have limited forward-looking time. Second, the

four alternatives in the vehicle type choice problem are

treated equally by the RL model, while keeping the cur-

rent vehicle and making a purchase are treated differently

by the dynamic model. We refer readers to reference (22)

for details in the formulation of the dynamic discrete

choice model.
Most estimation coefficients of the RL model and the

dynamic model are significant and have reasonable signs
except gasoline price and electricity price. The values of
‘‘Rho-square’’ and ‘‘Run time’’ suggest that the RL
model has even better performance in estimation than
the dynamic model. The capability of estimating vehicle
type choices using the RL model indicates that the esti-
mation of dynamic discrete choice in a time domain can
be efficiently solved by a route choice model in a space
domain.

Some important patterns can be observed from the
values of estimated coefficients in the RL model. The
negative value of number of workers suggests that if there
are more workers in a household, they tend to buy a new
car. The indicators of young people are positive, which
indicates households with a young household head have
higher preference on hybrid and electric cars. The abso-
lute values of vehicle price coefficients for GV (0.364),
HEV (0.476), and BEV (0.817) increase, which indicates
that households are more sensitive to the sale price of
hybrid and electric cars, possibly because these vehicles
have newer technology not fully known and they are
more expensive. The coefficients for vehicle size of both
gasoline-powered and electricity-powered vehicle have
positive sign as households prefer larger cars. In addition,
households care more about the size of BEV (0.884) than
GV (0.459) and HEV (0.408), possibly because of the
smaller size of electric cars currently in the market. The
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coefficients for recharging range of BEV are positive as
expected since a larger range allows for longer trips.

To conclude, the RL model and the dynamic model
give very reasonable estimation values which are consis-
tent with general expectations. On the other hand, lower
estimated values are obtained from the MNL model, sug-
gesting that the MNL models more conservatively pre-
dict how households value fuel economy, vehicle size,
and recharging range.

Out-of-Sample Model Validation

In order to validate the prediction performance of the RL
model, the sample is randomly divided into two parts: a
training dataset containing 80% of the sample, and a test-
ing dataset containing the remaining 20% of the sample.
We re-estimate the MNL, the RL, and the dynamic mod-
els on the training dataset and apply the estimated coeffi-
cients to the testing dataset for predicting the market share
of different vehicle types. Figure 5 compares the observed
and predicted market shares of the four alternatives along
the 18 scenarios over the nine-year period.

From Figure 5, we observe that the MNL model pre-
dicts a more stable market share and it is incapable of
capturinge fluctuations and peaks. Specifically, it predicts
well only the upper bounds of the market share of retain-
ing the current vehicle and the lower bounds of buying a

new GV, HEV, and BEV. On the other hand, the RL
model is able to recover the fluctuations and sudden
changes in consumer demands. It has better performance
in predicting the peaks and valleys of market share. The
trend of market shares predicted by the dynamic model is
in between that of the MNL and RL models. It is able to
capture the fluctuations, peaks, and valleys of the actual
market shares. However, the model can only predict mar-
ket shares for 15 time periods, sacrificing the last three
time periods to capture household forward-looking
behavior.

To further measure the aggregate magnitude of errors
in prediction over time, we compare the root mean
square errors (RMSE) of market share for the MNL, the
RL, and the dynamic models in Figure 6. It should be
noted that the reported RMSE are the average values of
five validation results. The values suggest that the MNL
model has larger prediction errors, especially in reprodu-
cing the market share of the current vehicle; while in
comparison the other two models perform well.
Considering the average over four alternatives, the RL
model produces the smallest error.

Concluding Remarks

This paper employed an RL model in the context of
route choice in a network to capture sequential vehicle

Figure 5. Comparison between observed and predicted market shares on testing dataset over time.
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type choices over time and to forecast time-dependent
vehicle type preferences. Starting from a dynamic specifi-
cation of time-series discrete choices, we showed how it
is equivalent to link-based route choices that can be for-
mulated by a finite path choice MNL model. This study
established that sequential choices over time and in space
are transferrable for modeling, as long as the utility of
sequential choices is additive, the link-specific attributes
are deterministic, and the decision process is Markovian.

Based on the MATLAB implementation from Mai
(20), we applied the RL model to estimate time-series
vehicle type choices using Maryland Vehicle Stated
Preference Survey data. The vehicle purchase decision
progression of 456 Maryland residents over a nine-year
period has been constructed as a link-based network;
each node represents a possible state and each link corre-
sponds to the transition between states after a decision is
made. The model has been efficiently estimated by a
dynamic programming approach; the values of estimated
coefficients provide important patterns on vehicle type
preferences. Compared with the MNL model and the
dynamic model, the smaller RMSE of RL model indi-
cates that it has a better performance in estimating
sequential choices over time. The capability of estimating
vehicle type choices using the RL model suggests that
the estimation of dynamic discrete choice in a time
domain can be efficiently solved by a link-based route
choice model in a space domain.

There is a large literature on the estimation of time-
series discrete choices in economics, social science, and
engineering, i.e., patent renewal, welfare gains from
industry innovation, machine replacement, car owner-
ship and type choice. However, many dynamic applica-
tions of discrete choice models have mainly considered
individuals’ previous actions (i.e., inertia effect) and do
not care much about future expectations. In addition,

the computational complexity of model estimation is
considered to impede the development of the dynamic
structures. The methodology presented in this paper
offers a novel and efficient way to model these time-
series discrete choices econometrically.

The employed model however retains the well-known
independence of irrelevant alternatives (IIA) property
which is undesirable in a route choice setting (23), but
also in the more general setting of sequence of decisions,
as two sequences can share common states and decision.
To relax the IIA property and to improve the prediction
power, Mai, Forsgerau and Frejinger (24) extended the
RL formulation to a nested RL model that allows path
utilities to be correlated in a fashion similar to nested
logit (25, 26) and where links can have different scale
parameters. Mai, Bastin and Frejinger (27) later applied
the RL approach to estimate more complex route choice
formulations, as mixed logit models, introducing a
decomposition technique to alleviate the numerical costs.
Such extensions should be investigated in future research.
Another undesirable feature of the proposed approach is
that individuals make choices with perfect information of
the future. While this is necessary to develop the equiva-
lence with a route choice model, this is clearly unrealistic.
We could however combine the proposed approach to
stochastic programming techniques (13) in a context of
approximate dynamic programming (28) in future
research.
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