
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

1-1998 

Search for evidence of compositeness at LEP I Search for evidence of compositeness at LEP I 

R. BARATE 

M. THULASIDAS 
Singapore Management University, manojt@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons 

Citation Citation 
1 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5856&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5856&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


EUROPEAN LABORATORY FOR PARTICLE PHYSICS

CERN-EP/98-022

5 February 1998

Search for evidence of compositeness at LEP I

The ALEPH Collaboration1

Abstract

Extensive searches for evidence of compositeness of quarks and leptons have

been made using the full set of ALEPH data from LEP running at the Z peak. They

include searches for radiative and weak decays of excited leptons, and radiative and

gluonic decays of excited quarks, produced either singly or in pairs. Searches have

also been made for a scalar partner of the Z boson in all decay modes. No evidence

for such states has been found and coupling and branching ratio limits are presented.

Limits are also given for the branching ratios for Z! gg and Z! .
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1 Introduction

One approach to the problem of the origin of the masses of the fundamental particles is

to postulate the existence of a further layer of structure in nature such that the quarks

and leptons, and possibly the gauge bosons, are composite. The fundamental particles

at this next level are normally referred to as preons, but at present no preon model has

been developed which satisfactorily explains the observed spectrum of quarks, leptons

and gauge bosons. The most striking evidence of compositeness would be the discovery

of excited states of quarks and leptons, or partners of the gauge bosons. Other possible

e�ects are anomalous rates for the decay of the Z boson to three bosons, such as Z! .

This paper reports an extensive search for such phenomena using data taken with the

ALEPH detector during the �rst phase of LEP running from 1989 to 1995. It is based

on approximately 120 pb�1 of data taken at the peak of the Z resonance and 40 pb�1

o�-peak, corresponding to about 4.1 million observed hadronic Z decays. The ALEPH

detector and event reconstruction are described in Sections 2 and 3. The largest part of

the paper describes direct searches for radiative and weak decays of excited leptons and

for excited quarks in Sections 4, 5 and 6 respectively. Section 7 describes searches for a

scalar partner of the Z boson and Section 8 describes searches for the \anomalous" decays

of the Z boson to gg and . The rest of this introduction discusses the phenomenology

of excited fermion production.

All limits given here are at 95% con�dence level (c.l.). Systematic uncertainties have

been taken into account by adjusting the statistical limit by 1� of the systematic error.

Where appropriate any observed events and the predicted background have been taken

into account using the Bayesian approach described in Ref. [1].

Excited fermions could be produced at LEP either singly or in pairs, as shown in Fig. 1.

Sequential type particles are commonly assumed when searching for pair production. At

LEP 1, pair production is dominated by s-channel Z exchange (Fig. 1(a)), with (b) and (c)

suppressed by the magnetic couplings at the Ze�e, e�e and W��e e vertices (see below).

The total cross-section and the angular distribution are then given by the Standard

Model provided the anomalous magnetic moments of the excited fermions are zero. In

this particular case there is no dependence on the compositeness energy scale, and lack

of observation of a signal allows a limit to be set on the f� mass. If the cross-section is

suppressed by e�ective form factors then limits can be set on these as a function of f�

mass.

Single production and decay occurs through a magnetic type coupling to gauge bosons

(Fig. 1(a) { (c)). At LEP 1, s-channel Z exchange and t-channel photon exchange should

dominate. A convenient general parametrization for the contribution to the Lagrangian

from s-channel Z exchange is [1]

L =
�Z e

2mf�

�f����
�
�L
1 � 5

2
+ �R

1 + 5

2

�
fZ�� + h.c. (1)

Similar terms exist for W and  exchange.

A U(1)� SU(2) invariant model for the single production and decay of excited

leptons, `�, containing both left- and right-handed particles (homodoublet model) has

been developed by several authors [2{4] with the general form of Lagrangian

L =
1

2�
�L����

�
gf

�

2
W�� + g0f 0Y B��

�
1� 5

2
L+ h.c. (2)

1
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Figure 1: (a) { (c) Single and double production processes for excited fermions. (a)

s-channel Z and  exchange, (b) t-channel Z and  exchange, (c) t-channel W exchange.

(d) t-channel e� exchange producing two photons. The symbol f(�) implies a fermion or

its excited partner as appropriate.

where L is the lepton doublet, g and g0 are the Standard Model gauge couplings, f and f 0

are the corresponding couplings for the magnetic transition, � are the Pauli spin matrices

and Y is the weak hypercharge; � is the compositeness energy scale. When more than

one process can contribute to `� production, for example s-channel  and Z exchange at

LEP 2, it is normal to assume some relationship between f and f 0 and to give limits in

terms of �=m`� , de�ned as f=
p
2�. However when one exchange process dominates, as

at LEP 1, an alternative form of the Lagrangian is convenient [3]

L =
e

2�
�L���� (cZ`�` � dZ`�`5)LZ�� + h.c. (3)

where cZ`�` and dZ`�` are linear combinations of f and f 0, and also depend on the weak

mixing angle �W ; assuming CP conservation then cZ`�` = dZ`�`. Now no assumptions

are needed about f and f 0 and equations (1) and (3) are related by �Z=m`� = 2cZ`�`=�.

Similar expressions hold for couplings to the other gauge bosons. In the literature limits

have been presented in terms of both of these parameters; in this paper they are given

for Z`�` and e�e couplings in terms of c=�.

Limits for excited quark production are normally given in terms of �=mq� and that

convention is followed in section 6.

2 The ALEPH detector

The construction of the ALEPH detector [5] and its performance [6] have been described

previously; only a brief summary is given here.

Charged particles are bent in the 1.5T axial magnetic �eld produced by a

superconducting solenoid and are tracked in the silicon vertex detector (VDET), the

inner tracking chamber (ITC) and the time projection chamber (TPC). The momentum

2



resolution for a track reaching the outer radius of the TPC is �p=p = 0:0006pt � 0:005

for transverse momentum, pt, in GeV=c. The track �nding e�ciency is good down to

an angle of about 15� from the beam direction and track cuts are normally made at

j cos �j < 0:95 (18�). Track momentum is well-measured down to about 200MeV=c and,

in the searches described here, a momentum cut of 500MeV=c has been applied.

The electromagnetic calorimeter (ECAL) consists of 45 layers of lead and proportional

wire chamber planes with 22 radiation lengths of material. It is subdivided into a barrel

and two endcaps each containing twelve modules. The longitudinal structure is the

same in all modules. The total signal from each anode plane of each module is read out,

providing a detailed pro�le in depth of the energy deposition. The cathode planes of each

layer are subdivided into pads approximately 30�30mm2 which are connected internally

to form projective towers. Each tower is read out in three sections in depth (\storeys")

containing 4, 9 and 9 radiation lengths respectively. The storeys form the basis of the

identi�cation of showers in the calorimeter through the de�nition of a \cluster", which

is the collection of all storeys with an energy above a threshold of 30MeV which have at

least a corner in common. The highly granular structure of ECAL (about 0:9� � 0:9�)

provides excellent identi�cation of electrons, photons and neutral pions, even in dense

hadronic jets. The energy and angular resolutions are respectively

�E

E
=

0:18q
E(GeV)

+ 0:009 and ��;� =
2:5q

E(GeV)
+ 0:25mrad:

The endcap sensitive region extends down to 13� from the beam axis. Much of the

remaining solid angle (between 11� and 2:6�) is covered by the luminosity calorimeter

(LCAL), with similar structure to ECAL. From September 1992 a silicon calorimeter

(SiCAL) was added to provide a more precise luminosity measurement and covers the

region down to 1:4�. The ability to detect electromagnetic energy deposits in regions

close to the beam axis is important in many searches.

The hadron calorimeter consists of 23 layers of plastic streamer tubes separated by

50mm iron slabs (7.2 interaction lengths in total). There are twelve modules in the

barrel section and six in each endcap. HCAL and ECAL are rotated relative to each

other by about 2� to avoid alignment of cracks. Thus an electron passing through a

crack in ECAL is detected in HCAL, albeit with a worse energy resolution. The sensitive

region in the endcap of HCAL extends down to 8� from the beam direction so that the

small gap between ECAL and LCAL is also covered. Signals are induced on electrodes

on both sides of the streamer tubes. The open side of the cells faces copper cathode pads

which, as in ECAL, are constructed to form projective towers. The granularity is such

that one tower in HCAL matches approximately 4� 4 towers in ECAL. The signals from

all pads in a tower are summed. On the other side of the tubes aluminium strips run

along the length of each tube to give a signal whenever that particular tube �res. The

readout of this digital (binary) signal provides a two-dimensional picture of showers in

the calorimeter which plays a crucial role in particle identi�cation. The relative energy

resolution of HCAL is approximately 80%=
p
E. Two double layers of the same streamer

tubes (\muon chambers") surround the detector and improve muon identi�cation. These

chambers have orthogonal readout strips thus providing a space point in each one.
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3 General analysis procedures

Unless otherwise stated the analyses described in this paper have used standard ALEPH

algorithms for particle identi�cation [7] which are now briey described.

Identi�cation of electron and photon showers is based on two estimators which are

constructed to have zero mean and unit variance for electrons. The �rst, RT , measures the

ratio E4=p, where E4 is the energy deposited in the four towers closest to an extrapolated

track and p is the track momentum. The second, RL, is based on the mean position of the

longitudinal energy deposit of the shower and measures the degree to which the observed

longitudinal pro�le matches that expected for an electron. An additional estimator, RI ,

is based on the track ionization measurement, dE/dx, made in the TPC. It provides an

independent identi�cation procedure that is particularly e�ective at low momentum and

is hence complementary to RT and RL. Photon conversions in the tracking detectors are

recognised by the opening angle and reconstructed invariant mass of the two tracks.

Muons are identi�ed by extrapolating tracks through HCAL and to the muon

chambers. Identi�cation criteria are based on the mean number of hits per plane and the

total number of planes �red in HCAL, and on muon chambers hits.

The total energy ow [6] in an event or part of an event is an important feature of many

searches. The high granularity of the ALEPH calorimeters greatly aids the calculation of

this quantity via the matching of tracks and calorimeter energy deposits. It is calculated

from as complete a list as possible of all particles in the event, made as follows. The

measured momenta of all charged tracks are used to identify their associated energy

deposits in the calorimeters, which are then discounted in calculating the neutral energy.

Photons are identi�ed in the electromagnetic calorimeter and �0s found from these.

Remaining calorimeter deposits are identi�ed as neutral hadrons with an appropriate

correction for the di�erent response of ECAL to electrons and pions. Clusters found in

LCAL are included. The energy ow is then calculated from the energy of all particles

found. It has a resolution for hadronic events of 6:2GeV.

Jet �nding has been carried out using the JADE algorithm [8, 9]. The value of the

parameter ycut used in the algorithm has been tuned separately for the di�erent searches.

In the analysis of events, parameters such as mass resolution can be greatly improved

by applying energy and momentum conservation. Because of ALEPH's excellent angular

resolution for both charged tracks and photons this is most readily achieved by rescaling

energy measurements without changing measured angles. This procedure has been

applied to events in many of the channels described in this paper.

Veto ine�ciencies due to beam-related backgrounds have been monitored using

randomly triggered events. They are small in all cases|typically less than 0.5%.

4 Search for radiative decays of excited leptons

In this section searches for excited charged leptons and neutrinos followed by radiative

decay are described. The signal for charged leptons is a peak in the ` invariant mass

plot, on top of the background from radiative lepton pair production. Searches for excited

neutrinos have been made by counting events within the kinematically allowed photon

energy range for a given mass. A search for virtual e� e�ects on the angular distribution

for the reaction e+e� !  (Fig. 1(d)) has also been made.
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4.1 Excited charged leptons

4.1.1 The process e+e� ! (e�)e�

A search has been made for resonant e� production in the process e+e� ! (e�)e�� !
(e�)e�, in which a photon emitted by one beam particle scatters from one of opposite

charge in the other beam. Such events have an energetic charged track and photon in

the detector, coplanar with the beam, the other particle remaining in the beampipe. The

sum of the energies of the two observed particles is larger than the beam energy and the

event is boosted in the direction of the beam of the same sign as the charged track.

An irreducible background to e� production arises from radiative Bhabha scattering,

with one of the particles escaping down the beampipe, known as the quasi-real Compton

process [10] (background (i)). Other backgrounds are (ii) large angle Bhabha scattering

when one of the �nal state electrons transfers almost all of its energy to a photon through

bremsstrahlung in the detector material before the TPC, and (iii)  �nal states where

one of the photons converts into an e+e� pair and one member of the pair escapes

detection. These three backgrounds were simulated using the Monte Carlo generators

TEEGG7 [11], BHWIDE [12] and GGG [13].

Two initial cuts were applied in the search: the charged track and photon energies

were each required to be greater than 10GeV, and the photon was required to be coplanar

within �1� with the observed electron and the beam. Then, assuming a three-particle

�nal state and using only the measured angles of the charged track and the photon, the

energy, Emiss, of the missing beam particle was determined. Events with further missing

energy due to additional photons at low polar angle were then rejected by requiring that

the sum of Emiss and the measured energies of the observed particles had to be greater

than 0:9
p
s. At this stage 26432 events remained while 24337 are expected. However there

is a large number of events arising from backgrounds (ii) and (iii) in which the photon

and the charged track have an opening angle larger than 175�. Since each charged track

normally produces 8 hits in the ITC, background (ii) was removed by requiring fewer

than 12 ITC hits in total in such events, and background (iii) was removed by requiring

at least 4 ITC hits. Following this cut 7789 events survive while 7305 are expected.

In the e� centre of mass frame, the decay photon is preferentially scattered forward [3],

whereas the quasi-real Compton process favours backscattered photons [10]. This e�ect

was exploited to enhance signal sensitivity by imposing a cut on �, the photon scattering

angle in the laboratory frame, which varies linearly with e� mass, with � required

to be less than 160� at 18GeV=c2 and less than 120� at 90GeV=c2. To further reject

events arising mainly from background (ii), � was also required to be greater than 30�,

independent of mass.

Finally the charged particle was required to pass the standard ALEPH electron

identi�cation criteria, and the sign of its charge had to be that of the beam particle

interacting with the quasi-real photon. The �nal sample contains 4045 events, in good

agreement with the 3960 predicted, comprising 3809, 142 and 9 events from backgrounds

(i) to (iii) respectively.

The e invariant mass is most precisely determined using the measured angles of the

charged particle and the photon and the centre of mass energy. It is shown in Fig. 2(a)

for the �nal sample of events. The mass resolution is 0:075GeV=c2, almost independent

of mass. There is no evidence for a peak due to e� production and the shape of the

distribution agrees well with the Monte Carlo prediction (not shown).
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4.1.2 The processes e+e� ! `+`� and e+e� ! `+`�

The search for `� in these channels was made using events with two, four or six charged

tracks and one or more photons. In events with more than two tracks, searches were

�rst made for tau decays, de�ned as three tracks with an invariant mass less than m�

and a total charge of �1, with neutral clusters added if the resultant invariant mass was

less than 2GeV=c2. Events were then selected if they contained one or two photons with

energy above 10GeV and isolated by at least 25� from a charged particle (or reconstructed

tau). For the two-prong topology the acollinearity of the two tracks was required to be

between 5� and 175�.

The selection of the e+e�(n) �nal state was made by requiring the ECAL energy

due to the charged tracks to be greater than 0:7(
p
s � E), where E is the sum of the

energies of isolated photons. At least one track was required to pass the standard ALEPH

electron identi�cation criteria, removing 80 events which are principally tau pairs. The

�nal sample consists of 4234 e+e� events compared to 4333 predicted by BHWIDE plus

19 remaining tau pairs. Eighteen e+e� events, potential e��e� candidates, were found.

To select �+��(n) events the ECAL energy deposited by the two charged tracks was

required to be less than 0:1(
p
s � E). This cut removed all the Bhabha events and a

large fraction of the �+�� events. Requiring the sum of the charged particle momenta and

photon energy to be greater than 0:8
p
s removed further � background. Finally at least

one track was required to satisfy the standard ALEPH muon identi�cation requirements,

removing 80 events. The �nal �+�� sample consists of 2738 events, compared to 2788

predicted for this channel by KORALZ [14] and 44 from �+��. Twenty �+�� events,

potential ����� candidates, were found.

The �+��(n) selection was made on two-, four- and six-prong events after

reconstruction of � s as described above. In the two-prong topology the missing mass

squared was required to be greater than 600 (GeV=c2)2 and in the four- and six-prong

topologies it was required to be greater than 300 (GeV=c2)2. Background from �+��

was removed by requiring the sum of the charged particle momenta to be less than

0:9(
p
s�E). The �nal �

+�� sample consists of 2216 events compared to 2134 predicted

by KORALZ, together with 64 e+e� and 2 �+�� events. Twenty-four �+�� events,

potential � ��� � candidates, were found.

The number of pair production candidates in each channel is not correctly predicted

by the background Monte Carlo generators, which have missing higher orders. However

they agree well with the second order matrix element calculation of Ref. [15].

The invariant `� candidate masses for the �nal states e+e� and �+�� were

calculated by rescaling the particle energies to conserve energy and momentum (including

the e�ect of an initial state photon in the beampipe) using the measured angles.

The resulting invariant mass resolution is about 0:075GeV=c2 and is approximately

independent of mass. In the � channel there are unobserved neutrinos. However, the �

momenta can be calculated by assuming that the original � directions are the same as

those of the visible decay products and rescaling their momenta by imposing energy and

momentum conservation. The resulting invariant mass resolution is around 1:5GeV=c2

independent of � � mass. No initial state photon was included in the calculation in this

case since it degrades the mass resolution. The invariant mass distributions are shown in

Fig. 2(b){(d). The shapes are well described by Monte Carlo.
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Figure 2: ` invariant mass distributions for the �nal states (a) e, (b) e+e�, (c) �+��

and (d) �+��. There are two entries per event except in (a). In (d) the Standard Model

background prediction is shown by the solid histogram and the data by crosses. The bin

widths have been choosen to be about twice the resolution.

4.1.3 Form factor limits from the `� �̀� channels

The detection e�ciency for `� �̀� production and the `� invariant mass resolutions were

determined using a modi�ed version of the KORALZ generator. There are two `�

combinations per event and the one with the smaller `� invariant mass di�erence was

selected. The resolution on the mass di�erence is 0:35GeV=c2 for e��e� and �����, and

2:5GeV=c2 for � ��� �. After requiring the mass di�erence to be less than 2� of the resolution

one �+�� event and three �+�� events survived. Over most of the mass range the

e�ciencies are approximately 50% for the e��e� and ����� channels, and 30% for � ��� �.

Assuming Standard Model couplings and the calculated detection e�ciency, the

expected number of events is predicted as a function of mass. Mass limits of 46GeV=c2

have already been set by ALEPH at LEP 1 [16] and these have recently been superseded

by higher energy data [17]. The present search is used to set a limit on the factor by

which the coupling must be multiplied (e�ectively a form factor for compositeness) as a

function of `� mass (Fig. 3). For masses between 10 and 40GeV=c2 this limit is of the

order of 1%. Below about 5GeV=c2, where the e�ciency for the direct search is very

small, limits derived from Z partial width limits (Appendix A) are better.

4.1.4 Coupling limits from the `�` channels

The cross-section for single production has been calculated using the formalism of Ref. [3],

with f = f 0 in equation (2). The detection e�ciency was determined using the generator

of Ref. [18] for the e�e and quasi-real Compton scattering channels, and that of Ref. [19] for

��� and � �� . Events were generated at discrete `� masses over the full range and passed
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Figure 3: Form factor times branching ratio limits at 95% c.l. for fermion pair production

followed by radiative decay. The solid, dashed, dotted and dot-dashed curves are for e��e�,

����� � ��� � and a single avour ����� respectively. Below about 5GeV=c2 the limits have

been derived from Z partial width limits. Values above the curves are excluded.

through the ALEPH simulation and reconstruction program chain. The e�ciency for e�

in the quasi-real Compton scattering channel increases linearly from zero at 14GeV=c2 to

about 70% at 91GeV=c2. For e� s-channel production and ��, the e�ciencies are around

60% and 65% respectively, independent of mass; for � � it is about 52%.

The branching ratio for photonic decay has been calculated according to Ref. [4]; it

is expected to be close to 100% for m`� < mW, but to decrease to 85% at 90GeV=c2.

Coupling limits have been calculated as a function of mass in bins of width 4�, where

� is the appropriate mass resolution and are shown in Fig. 4. The s-channel process

dominates the `+`� �nal state and the limit derived is on the coupling cZ`�`. The limit

for the t-channel process e+e� ! (e�)e�� ! (e�)e�, dominated by photon exchange, is

on the coupling ce�e.

4.1.5 An e� limit from e+e� ! 

Electron-positron annihilation into two photons occurs by t-channel electron exchange,

and so is described by Quantum Electrodynamics with negligible electroweak corrections.

The exchange of a virtual e� can also contribute and the modi�ed cross-section then

depends on both the excited electron mass,me�, and the ratio of the e
�e to ee couplings.

Events containing two or more photons and no additional particles were selected.

After being transformed into the centre-of-mass frame of the two most energetic photons

(to remove the e�ects of initial state radiation), the number of events as a function of the

cms scattering angle was compared with that predicted by QED. A log-likelihood �t was

performed on the observed angular distribution to determine the 95% c.l. upper limit on

ce�e=� as a function of me� (Fig. 5). Also shown on the �gure is the value of 1=(2me�),

showing that the 95% c.l. lower limit on the mass of the excited electron is 160GeV=c2 if

the e�e coupling is the same as that for ee, i.e. �e�e = 1.
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Figure 4: Coupling limits for single excited lepton production derived from the search

for radiative decays and assuming decay branching ratios as described in the text. (a) s-

channel: solid, dashed, dotted and dot-dashed curves denote e�, ��, � � and �� respectively;

(b) t-channel e�. In (a) the limits below 5GeV=c2 have been derived from Z width limits.

Values above the curves are excluded at 95% c.l.

4.2 Excited neutrinos

The excited neutrino, ��, is expected to be the lightest excited particle [4] and it may

have either radiative or weak decays. If in equation (2) f = f 0, then the decay �� ! �

is forbidden. However there is no particular reason for this assumption and it is therefore

also important to search for this decay mode.

Pair-production of �� should have a cross-section given by the Standard Model,

possibly modi�ed by form factors. The experimental signature is two acoplanar photons.

Monte Carlo signal events were again produced using the modi�ed KORALZ generator.

The backgrounds considered were second order initial state radiation (isr) accompanying

neutrino pair production (���), also simulated with KORALZ, and the  �nal state,

including �rst order isr, simulated by GGG. The potential background from Bhabha

events with two radiated photons was eliminated by a cut of 8� on the predicted angle

of the deected beam particle, with negligible e�ect on the signal e�ciency. The

e�ectiveness of this cut was con�rmed using BHABMC [20]. Events were selected

with two photonic clusters above 3GeV in the electromagnetic calorimeter, with a veto

on charged tracks, additional electromagnetic clusters above 0:5GeV, hadronic clusters

above 2GeV, or more than 0:5GeV of energy below a polar angle of 12�. There are 3425

data events remaining at this stage, with 3483 predicted by the GGG Monte Carlo and

1.5 by the radiative neutrino Monte Carlo.

Multiphoton QED events are coplanar, and a cut was made at 160� on the angle

between the two clusters projected onto the plane perpendicular to the beam. Low mass
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Figure 5: 95% c.l. upper limit on ce�e=� (solid curve) as a function of me�. Also plotted

(dotted curve) is 1=2me�; the intersection of the two curves gives the lower limit for the

mass of the e� if the e�e coupling is the same as ee. This �gure extends the limit shown

on Fig. 4(b) to higher mass.

�� signal events fail this cut due to the relativistic collimation of the decay products.

Therefore events were also accepted if one of the two photons had less than 70% of beam

energy and the event could not be reconstructed as a three photon event with one photon

in the beampipe. The predicted background is 1.8 events from () and 1.5 from ���,

and 2 events are seen in data. Signal e�ciencies rise uniformly from 29% for a �� mass

of 2GeV=c2 to 57% at 45GeV=c2. Fig. 3 shows the 95% c.l. form factor limit for �����

production assuming 100% radiative decay.

For the single production channel, the signature is one photon in an otherwise

empty event. The photon energy spectrum is uniformly distributed in the interval from

m2
��=2

p
s to

p
s=2. The backgrounds studied were radiative Bhabha events, where the

beam particles remain in the beampipe, radiative neutrino pair production and QED

multiphoton �nal states. The same test on the predicted angle of the deected beam

particle as above eliminated all Monte Carlo Bhabha events (using ten times more events

than in the data). A large fraction of the radiative neutrino background is also removed

by this cut. The remaining background events are at low polar angle or have low total

energy.

Requiring the photon energy to be above 18GeV, there are 33 events in data, with

21.5 predicted by GGG and 14.4 by the neutrino pair Monte Carlo. Using only the

calorimeter barrel region (45� < � < 135�) optimizes the sensitivity of the search. In

this region there are 7 events in the data compared with 7.6 events predicted by the

radiative neutrino Monte Carlo and 0.3 by GGG. No mass determination is possible

and the limit at each mass value was determined from the number of data and Monte

Carlo events with a photon in the kinematically allowed energy range. Coupling limits

calculated for f = 1, f 0 = 0 in equation (2), with the photonic branching ratio calculated

as in Ref. [4], are shown in Fig. 4. The branching ratio is close to 100% for m�� < mW,

but decreases to 85% at 90GeV=c2.
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4.3 Summary

No evidence has been found for single or double excited lepton production in radiative

events. For double production, form factor times branching ratio limits have been set

which are of order 0.01 for masses between 10 and 40GeV=c2. Limits on the couplings c=�

for single production are below 0:1TeV�1 for masses up to about 80GeV=c2. Virtual e�

exchange with Standard Model coupling has been excluded for masses up to 160GeV=c2

in the reaction e+e� ! . These searches, using the whole LEP I data sample, update

those previously published by ALEPH [16].

Limits on these channels have also been published by the other LEP collaborations at

LEP 1 [21{25] and from higher energy running [17,26{32]. Experiments at HERA [33,34]

have set e� coupling limits which are somewhat worse than those reported here for

me� � 50GeV=c2 but which extend up to 250GeV=c2.

5 Search for weak decays of excited leptons

If in equation (2) f = f 0 radiative decays of excited charged leptons dominate for

m`� < mW. However, for other assumptions weak decays of both `� and �� are expected

to contribute signi�cantly [35]. Thus, with no assumptions about f and f 0, a systematic

search of the ALEPH data has been carried out for single and pair production of excited

leptons followed by their decay via virtual W or Z. Both leptonic and hadronic �nal

states can be produced and the searches for these are described separately in Sections 5.1

and 5.2 before the limits derived are combined.

For double `� production, the mass range is limited to
p
s=2 and the total cross-section

and angular distribution are given by the Standard Model. There is no dependence on

the compositeness scale �, although a form factor can be applied. For single production

the formalism of Ref. [3], described in Section 1, has been used.

The weak decay of an excited lepton is a three-body decay process involving the

emission of virtual W or Z bosons which in turn decay into a fermion-antifermion pair

(Fig. 6). The dynamics of this decay has been fully described in Ref. [4]. In this analysis

the excited lepton mass has been limited to below mW in charged current (CC) decays

and to below mZ in neutral current (NC) decays. In calculating the branching ratios of

the virtual W and Z bosons, the e�ect of the b quark mass has been taken into account.
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Figure 6: Weak decays of excited leptons.
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Hadronization of the q�q pair is carried out in the LUND framework [36] with parton

showers followed by string fragmentation. Quark masses and avours, and the q�q

invariant mass,
p
Q2, are taken into account. The value of Q2 constrains the proportions

of qi�qj pairs through the hadronic widths of the o�-shell W and Z bosons (whose analytic

forms are given in Ref. [37]).

5.1 Search for leptonic �nal states

The event topology arising from weak decay of excited leptons depends on the production

and decay chain as summarized in Table 1. Di�erent searches were therefore carried out

for two-, four- and six-prong events.

Table 1: Possible leptonic �nal states in weak decays of excited leptons.

Channel Weak Final state Charged Missing

decay topology multiplicity energy?

`�` ``Z `+`�`+`� 4 No

`�` ``Z `+`��� 2 Yes

`�` `�W `+`��� 2 Yes

��� ��Z `+`��� 2 Yes

��� `�W `+`��� 2 Yes

`� �̀� ``ZZ `+`�`+`�`+`� 6 No

`� �̀� ``ZZ `+`�`+`��� 4 Yes

`� �̀� ``ZZ `+`����� 2 Yes

`� �̀� `�ZW `+`�`+`��� 4 Yes

`� �̀� `�ZW `+`����� 2 Yes

`� �̀� ��WW `+`����� 2 Yes

����� ��ZZ `+`�`+`��� 4 Yes

����� ��ZZ `+`����� 2 Yes

����� `�ZW `+`�`+`��� 4 Yes

����� `�ZW `+`����� 2 Yes

����� ``WW `+`�`+`��� 4 Yes

5.1.1 Events with two acollinear charged tracks

The main backgrounds come from the processes e+e� ! `+`�(), e+e� ! e+e�`+`�()

and e+e� ! e+e� + hadrons. A large number of these background events were rejected

by simple kinematic requirements, namely exactly two well-reconstructed tracks with

opposite charges and momenta larger than 1GeV=c, missing transverse momentum

greater than 8GeV=c, and scalar sum of track momenta between 6 and 82GeV=c. The

lower cut and the missing transverse momentum cut act against two-photon events while

the upper one rejects e+e� annihilations into leptons. Events with isolated neutral

clusters above 100MeV were also removed.

No single set of cuts removes the remaining background (dominated by �+��())

while maintaining a high signal e�ciency for all channels because of the kinematic and
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topological di�erences between them. Thus for e� and �� single production, two kinematic

con�gurations have been de�ned according to the `� mass | low (� 30GeV=c2) and high

(> 30GeV=c2). At low mass these channels are distinguished by an energetic lepton, thus

at least one track with a momentum greater than 36GeV=c was required. To reject the

remaining background (e+e� and �+��) the acollinearity angle was required to be less

than 165�. For the high mass con�guration, the distribution of the signal acollinearity

angle allows a more severe cut to be made at 155�. For the reactions ���, � �� , `� �̀� and

�����, the acollinearity and acoplanarity angles were required to be smaller than 165� and

170� respectively.

After these cuts there is good agreement between the number of observed events and

expected backgrounds (Table 2). The main source of background is still �+�� events.

Table 2: Number of observed and expected events in the two-prong search.

Reaction Set of cuts Candidates Expected

e+e� ! `�` low masses 1 2.2

e+e� ! `�` high masses 8 6.9

e+e� ! ���, `� �̀�, ����� all masses 9 12.2

The e�ciency depends on the `� avour and mass and its decay mode (CC or NC).

The e�ciency varies from 40% to 70% for ��� and from 20% to 55% for e�e. For ��

pair production, it is between 40% and 50% over the whole mass range, while for `� pair

production it increases with mass from 20% to 50%.

In the case of � �� , the analysis described above has a very low e�ciency (close to 5%),

due mainly to the veto on neutral clusters. However a multi-variable analysis based on a

multi-layer neural network has been performed in this channel which has a much higher

e�ciency [38]. It consists of an input layer of nine neurons corresponding to the principal

kinematic variables of the signal, and two intermediate layers with �ve and three neurons

respectively. The learning phase required a sample of 800 � �� signal events and another

of 800 background events. The �nal response is insensitive to the � � mass and in the

mass range 10 GeV/c2 to 80 GeV/c2 the signal e�ciency is 25%. No data events remain

after the neural network analysis while the expected background is compatible with zero.

5.1.2 Search for four-prong �nal states

Events with four well-reconstructed tracks and zero total charge were selected, rejecting

those with photon conversions or energy deposition in LCAL. Two-photon events were

rejected by requiring a scalar sum of track momenta greater than 16GeV=c. To remove

� pairs, events with three tracks inside an 11� opening angle around the thrust axis were

rejected. The main background after this selection is from four-fermion processes.

For the channel with no missing energy at least two tracks with the same charge were

required to be identi�ed as electrons or muons in order to reject e+e��+�� events and 

processes to �+���+�� and �+��. Because of leptonic number conservation, the avour

of all the tracks can be deduced if the two tracks with the same charge are identi�ed as

two electrons or two muons. In the e+�+ and e��� cases, a third identi�ed track was

required, otherwise the event was rejected.
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Then for each event, the invariant masses of combinations of two tracks with

opposite electric charge were reconstructed. The smallest invariant mass, m``, and

the largest one, M``, only were considered and events with m`` less than 1:8GeV=c2

or M`` greater than 80GeV=c2 were rejected. For each event, the visible energy, Evis, and

the missing momentum, pmiss, were reconstructed and the following conditions applied:

0:92
p
s < Evis + pmiss < 1:08

p
s, Evis > 0:6

p
s and pmiss < 0:4

p
s. For each event

surviving these cuts all four combinations of three-track invariant masses were computed.

This reconstruction, constrained by energy and momentum conservation, leads to a mass

resolution of 300MeV=c2 for signal events, independent of mass. The avour of the

excited lepton is determined by the lepton recoiling against the three tracks used to

reconstruct the invariant mass. In the search for single production of excited electrons

a cut j cos �j < 0:8 was �nally applied on the recoiling electron to minimize t-channel

e�ects.

The numbers of e�e and ��� candidates are 14 and 23 respectively, while 19.6 and 26.8

are expected from four-fermion channels with other backgrounds negligible. Fig. 7 shows

the reconstructed mass distribution for data and background; there is good agreement

between the two.
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Figure 7: Distribution of the reconstructed excited lepton mass in the four-prong �nal

state: (a) excited electron; (b) excited muon. The histograms show the background

distribution and the points the candidate event contributions.

In the search for four-prong events with missing energy, at least two of the four tracks

were required to be identi�ed as leptons, independent of their charge. Cuts on invariant

masses reconstructed from pair combinations were again applied, with the cut kept at

1:8GeV=c2 for m`` and decreased to 56GeV=c2 for M``. Events with a total energy

outside the range 20 to 88GeV were rejected. These criteria selected 17 candidates with

16.0 background events predicted. For processes where the lepton in the �nal state is a

direct decay product of the excited lepton candidate, lepton identi�cation was performed.
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Requiring at least one electron, two electrons, one muon, and two muons, the number of

candidates reduced to 12, 6, 12 and 7 respectively, while 12.7, 7.5, 10.1 and 4.9 background

events were predicted.

The e�ciency for the channels with no missing energy varies from 30% to 45% for

��� while it is lower for e�e, mainly due to the cos � cut. For � �� the e�ciency was

deduced from the four track analysis with missing energy, but the � � mass can no longer

be reconstructed. The e�ciency is of the order of 20% | smaller than for the muon

since both taus have to decay into one prong and lepton identi�cation is imposed. The

e�ciencies for pair production increase with mass. For e�, ��, ��e , and ���, they are

between 30% and 50%, while for � � and ��� they are in the range 20% { 40%.

5.1.3 Search for six-prong �nal states

This analysis searches for pair production of e� and ��, followed by NC decays into charged

leptons to produce six charged tracks with zero total charge and no neutral clusters. Two

kinematic cuts were applied: (i) the thrust was required to be less than 0.98 to reject

residual background from Z decays into two jets and � pairs and (ii) the scalar sum of

the momenta was required to be larger than 0:75
p
s to reject residual � pairs in which

the �nal state includes at least two neutrinos and large missing energy.

These two cuts lead to a signal e�ciency for e��e� varying from 30% to 40%, while for

����� it ranges from 40% to 50%. After applying the cuts to the whole data sample and

to background simulations no candidate remained in either case.

5.2 Search for hadronic �nal states

Searches for single production, followed by hadronic decays, have been made in the e�e,

��� and ��� channels. Depending on the charge of the excited lepton and its decay

mode (CC or NC), three con�gurations of �nal states can be produced: hadrons only

plus missing energy; an `+`� pair plus hadrons; one charged lepton, hadrons and missing

energy (Table 3). Separate searches have been carried out for these three con�gurations.

Channel Weak Final state Missing

decay topology energy?

��� ��Z q�q��� Yes

��� `�W q�q0`� Yes

`�` ``Z q�q`+`� No

`�` `�W q�q0`� Yes

Table 3: Possible hadronic states in weak decays of excited leptons.

Three processes contribute signi�cant backgrounds, the degree of contamination

depending strongly on the excited lepton mass m�: (i) e+e� ! q�q, which contaminates

the high mass candidates; (ii) e+e� ! �+��, which mainly contaminates the low mass

candidates; (iii) four-fermion �nal states e+e� ! `�̀q�q or ���q�q.
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5.2.1 Common kinematic properties of hadronic �nal states

Since signal events produce an energetic charged lepton or neutrino, hadronic

backgrounds with leptonic decays of heavy quarks have been greatly reduced with an

energy cut of 5GeV on the charged lepton energy. The same cut has been applied to the

energetic neutrino, de�ned by the missing momentum.

For a given `� mass, the hadronic mass spectra from CC or NC decays are very similar.

The following cuts were therefore applied to the hadronic system after excluding the

energetic charged lepton(s): track multiplicity greater than two; charged energy between

5 and 50GeV; total energy less than 70GeV and transverse momentum greater than

10GeV.

At low `� mass the lepton recoiling against the `� is usually located in one hemisphere

and the charged tracks from the `� decay are in the other (the hemispheres being de�ned

by a plane perpendicular to the thrust axis). At high `� mass the charged tracks are

distributed more uniformly. Thus, after excluding the energetic lepton(s), two event

con�gurations were de�ned: (i) a low mass con�guration (< 30GeV=c2) with Nch � 3,

Ech � 5GeV and all tracks in one hemisphere, the fraction of the visible energy in a

small angle around the beam axis (j cos �j � 0:75) not exceeding 65%; (ii) a high mass

con�guration (> 30GeV=c2) with Nch � 5, Ech � 10GeV and charged tracks distributed

in both hemispheres. These two sets of cuts are exclusive and the global e�ciency for an

`� signal is the sum of the two separate e�ciencies.

5.2.2 Final states with hadrons, missing energy and no leptons

In the low mass con�guration the main background arises from �+�� events with an

unreconstructed charged track in one hemisphere. This background was reduced by two

further cuts: the maximum angle between two charged tracks was required to be greater

than 10�, and the neutral energy in the empty hemisphere less than 3GeV. After these

cuts, 11 events remain in the data while 9.9 � pair events are expected.

In the high mass con�guration, the main background comes from hadronic Z decays.

A signal event is characterized by the emission of two neutrinos, i.e. by missing energy

and missing transverse momentum, so two-jet or three-jet events were selected using the

JADE algorithm with ycut = 0:03 in order to discriminate �� jets from background jets.

The jets in a two-jet signal event are acollinear and acoplanar. The acollinearity angle

was therefore required to be smaller than 150�, the acoplanarity angle less than 160� and

the thrust value less than 0.93. A last cut, on the minimum angle, �min, between the

missing momentum and the nearest jet, was applied at 60�. For three jets coming from

��, the emission of neutrinos makes the sum, �, of the angles between each pair of jets

smaller than 360�, while the similar sum for background events is peaked at 360�. The

following requirements were applied: � � 350�, the maximum angle between two jets

less than 160� and �min larger than 60�. Combining the two-jet and three-jet analyses,

12 candidates remain, the expected background being 8.3.

By adding the results of low mass and high mass analyses, the �nal e�ciency for the

�� signal is around 70% in the mass range 10 to 80GeV=c2.
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5.2.3 Final states with two charged leptons and hadrons

The analysis for this channel is identical for both e�e and ��� NC decays. The main

backgrounds are �+�� and q�q events, and the four-fermion processes e+e� ! `�̀q�q with

two energetic charged leptons.

In the low mass con�guration, e�e and ��� signal events have one lepton in one

hemisphere and the second lepton with all other charged tracks in the second hemisphere.

The following kinematic cuts were applied: the total energy of the two leptons was

required to be greater than 35GeV, the invariant mass of all objects included in the

second hemisphere to be larger than 5GeV=c2. In addition geometric cuts were applied

so that the maximum angle between a charged track and the thrust axis had to be larger

than 12� and the angle between the two leptons to be larger than 20�. After these cuts,

11 e�e candidates remained while 11.1 e�ef�f background events are expected. For the ���

channel, 11 candidates remained while 10.7 ���f�f background events are expected.

In the high mass con�guration a jet analysis was again performed after removing the

energetic leptons. Kinematic cuts were made requiring the total energy of the leptons to

be greater than 30GeV and the invariant mass of one lepton with each jet to be larger

than 12GeV=c2 for two-jet events and 8GeV=c2 for three-jet events. Finally, requiring

the two lepton invariant mass to be larger than 4GeV=c2 rejected q�q events with two

semileptonic (cascade) decays in the same jet. The observed and expected numbers of

events were respectively 6 and 4.1 for the e�e search, and 5 and 3.3 for the ��� search.

Combining the high and low mass analyses gives an e�ciency for both the e�e and

the ��� channel which varies from 40% to 50% over the `� mass range.

5.2.4 Final states with one charged lepton, one neutrino and hadrons

In CC processes, an energetic neutrino is emitted. Setting the neutrino energy, E� , equal

to the magnitude of the missing momentum, E� > 5GeV was required and the angle of

the missing momentum with the beam direction was required to exceed 18�. De�ning

r� = E�=Emiss, with Emiss the missing energy, the requirement 0:4 < r� < 1:6 was applied

removing most of the �+�� and q�q backgrounds with one lepton candidate.

The kinematic and geometric cuts described in Section 5.2.3 were used for this search

with the neutrino now playing the role of a charged lepton. All cuts were applied with

the same values, except for the lepton-neutrino invariant mass cut which was increased

to 7GeV=c2 in the high mass con�guration.

In the low mass con�guration the number of observed events in the e�e search is

11 while the expected background is 8.4. For ���, 3 events are observed and 8.8

background events are expected. In the high mass con�guration, the observed and

expected background numbers are 15 and 14.8 for the e�e search, and 14 and 16.5 for

���. The signal e�ciencies vary with mass from 35% to 60%, independent of `� avour.

5.2.5 Invariant mass reconstruction

In the case where two charged leptons are identi�ed, the masses of excited lepton

candidates can be reconstructed either directly as the invariant mass of one of the two

leptons with the hadrons, or as the recoil mass to the other lepton. The same procedure

has been applied in the case of one charged lepton and one neutrino. Signal simulations

show that the �rst method is more accurate at low mass, while the second is better at
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high mass. The invariant mass of a candidate has been taken as the weighted average of

the two and the mass resolution is typically 10GeV=c2 [39]. The mass spectra for data

and background are in agreement.

5.3 Combination of limits

From the results presented in the preceding sections, limits on compositeness parameters

for di�erent decay topologies have been established separately for both single and pair

production of excited leptons. In the following, limits based on a combination of all

the available topologies are presented. For single production these are combined in two

stages: the separate channels (leptonic and hadronic) from the NC and CC modes are

combined separately; then a full combination of all channels, including radiative decays,

is made.

In the case of pair production, where only leptonic �nal states are studied, separate

combinations are made for channels coming respectively from double NC, double CC and

mixed modes (ZZ, WW, WZ); again full combinations are performed for the three modes

and the radiative one.

In order to combine channels, a probability distribution function for s events has been

de�ned as the product of separate Poisson distributions for each decay channel i [40]

D(s) =
Y
i

P (ni; pis+ bi) (4)

where pi is the relative weight of the channel, given by pi = �iBRi=
P

j �jBRj, �i being the

detection e�ciency, and BRi being the branching ratio for the decay Z (W)! fi�fi; ni and

bi are the number of observed events and predicted background events respectively.

The total number of signal events, s, expected for given values of the compositeness

parameters includes all channels mediated by a virtual Z (W). From the 95% c.l.

upper limits on s obtained in the two cases, corresponding limits on the compositeness

parameters have been obtained. This procedure has been applied in order to combine

topological limits for pair production (Figs 8 and 9) and single production (Figs 10 and 11)

assuming the known branching ratios of the Z (W). In the case of single production,

because of the large hadronic branching ratios (70%) and their good e�ciencies (around

50%), the combined limits are very close to those estimated from the hadronic �nal states

alone.

The same method has been applied to combine the radiative, the NC and the CC

decay channels with weights determined from the model of ref. [35]. Two sets of values

of the parameters f and f 0 in equation 2 are particularly signi�cant in this model |

f = f 0 = 1 and f = 1, f 0 = �1. In the �rst case, radiative decays of the excited

neutrinos are forbidden and only weak decays are allowed, dominated by the CC decay

which represents more than 75% in the mass range 10 { 80GeV=c2. For excited charged

leptons the radiative decay is close to 100%. In the second case the `� radiative decay is

forbidden and only the weak decays remain; the CC branching ratio dominates, varying

from 73% to 86% in the mass range 10 { 80GeV=c2. For �� the radiative decay dominates

and is very close to 100% over the whole mass range. However as soon as f and f 0 vary by

just a small amount from these limiting cases radiative decays dominate all channels. For

example if f = 1:025 and f 0 = 0:975 the �� branching ratios change completely so that
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Figure 8: Form factor times branching ratio limits in `� double production. Curves (1),

(2) and (3) show limit combinations for ``ZZ, �`�`WW and �``WZ decays (` = e, �, � )

respectively. For curve (1) BR � BR(`� ! `Z); for curve (2) BR � BR(`� ! �`W); for

curve (3) BR �
q
2BR(`� ! `Z)BR(`� ! �`W).

19



0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40 50
νe

* mass (GeV/c2)

F
 ×

 B
R ALEPHνe

*νe
*

(1)

(3)

(2)

0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40 50
νµ

* mass (GeV/c2)

F
 ×

 B
R ALEPHνµ

*νµ
*

(1)

(3)
(2)

0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40 50
ντ

* mass (GeV/c2)

F
 ×

 B
R ALEPHντ

*ντ
*

(1)

(3)
(2)

Figure 9: Form factor times branching ratio limits in �� double production. Curves (1),

(2) and (3) show limit combinations for �`�`ZZ, ``WW and `�`WZ decays (` = e, �, � )

respectively. For curve (1) BR � BR(�� ! �`Z); for curve (2) BR � BR(�� ! `W); for

curve (3) BR �
q
2BR(�� ! `W)BR(�� ! �`Z).

20



0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
e* mass (GeV/c2)

(c
Z

e*
e/

Λ
) 

√B
R

 (
T

eV
-1

)

ALEPH(a)

e* → e Z

(1)

(2)
(3)

(4)
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
e* mass (GeV/c2)

(c
Z

e*
e/

Λ
) 

√B
R

 (
T

eV
-1

)

ALEPH(b)

e* → νe W

(1)
(2)
(3)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
µ* mass (GeV/c2)

(c
Z

µ*
µ/

Λ
) 

√B
R

 (
T

eV
-1

)

ALEPH(c)

µ* → µ Z

(1)
(3)(2)

(4)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
µ* mass (GeV/c2)

(c
Z

µ*
µ/

Λ
) 

√B
R

 (
T

eV
-1

)
ALEPH(d)

µ* → νµ W

(1)
(2)
(3)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
τ* mass (GeV/c2)

(c
Z

τ*
τ/

Λ
) 

√B
R

 (
T

eV
-1

)

ALEPH(e)

τ* → τ Z
(1)

(3)
(2)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
τ* mass (GeV/c2)

(c
Z

τ*
τ/

Λ
) 

√B
R

 (
T

eV
-1

)

ALEPH(f)

τ* → ντ W

(1)

Figure 10: Coupling times branching ratio limits for e�, �� and � � single production. (a)

e� NC decay: (1) e(`�̀), (2) e(���), (3) e(q�q), (4) combined limit. (b) e� CC decay: (1)

�e(`�`), (2) �e(q�q
0), (3) combined limit. (c) �� NC decay: (1) �(`+`�), (2) �(���), (3)

�(q�q), (4) combined limit. (d) �� CC decay: (1) ��(`�`), (2) ��(q�q
0), (3) combined limit.
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BR(�� ! �+) is greater than 92% for m�� less than 30GeV=c
2, decreasing progressively

to 5% at 80GeV=c2.

The model allows limits to be set on the two ratios cZ`�`=� and cZ���=� as a function

of f and f 0 for the three avours of l� and ��. The two speci�c cases mentioned above are

shown in Figs 12 and 13. The limits range respectively from 0:04TeV�1 to 0:28TeV�1

in the `� channels and from 0:036TeV�1 to 0:36TeV�1 in ��.

Limits can also be found on the substructure energy scale, �. The pairs of values for f

and f 0 considered above give cZ`�` = 0:32 and 0.59, and cZ��� = 0:59 and 0.32 respectively,

leading to lower limits on � as also shown in Figs 12 and 13. They vary from 1.4 to 16TeV

for charged excited leptons and from 3.2 to 16:5TeV for excited neutrinos.

The form factor limits for `� �̀� and ����� production are shown in Fig. 14. In the mass

range 10 { 40GeV=c2, they vary from 0.005 to 0.08 in the `� �̀� channels and from 0.004 to

0.05 in the ����� channels. For a mass close to 45GeV=c2, which is the upper kinematic

bound, form factor limits increase rapidly.
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Figure 12: Compositeness limits at 95% c.l. for excited charged lepton production

assuming the given values for f and f 0. (a) and (c) are the upper limits on cZ=�, (b) and

(d) are the lower limits on the compositeness energy scale.
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Figure 13: Compositeness limits at 95% c.l. for excited neutrino production assuming

the given values for f and f 0. (a) and (c) are the upper limits on cZ=�, (b) and (d) are

the lower limits on the compositeness energy scale.
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Figure 14: Upper limits at 95% c.l. on pair production form factors assuming the given

values for f and f 0.
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5.4 Summary

No evidence for weak decays of excited leptons has been found and stringent coupling

limits have been set. By combining radiative, CC and NC channels, a mass dependent

lower limit on the compositeness energy scale, �, of up to 16TeV is deduced, con�rming

the hypothesis that leptons are point-like at LEP 1 energies.

Coupling limits for weak decays of excited leptons have been reported at higher LEP

energies [17,28,30,32], and for weak decays of e� and �� in the mass range 100 { 250GeV=c2

at HERA [33,34].

6 The search for excited quarks

The existence of excited quarks is expected in many composite models. Their couplings

may be the same as standard quarks or may be modi�ed by form-factors [41].

Deexcitation is via q� ! q +  and q� ! q + g, with branching ratios that are model

dependent; in the absence of any special constraints the gluonic decay has been estimated

to be about 90% [42].

In order to set mass limits it is assumed that cross-sections for pair production are

given by the Standard Model. In addition, form factor limits are derived for lower masses.

Below about 10GeV=c2 the topology of events arising from q� production is very similar

to q�q and in this region limits have been derived from the Z hadronic width.

For single production, e+e� ! q�q, the Lagrangian assumed is an adaptation of the

one described in Section 1, with a colour factor and a gluon interaction term added [43].

The latter does not contribute to the production process, but provides the \gluonic"

decay mode.

The results previously published by ALEPH [16] were based on a small part of the

present data. There unit form factor had been assumed for pair production and only

masses above 40GeV=c2 had been considered for single production.

6.1 The decay q� ! q + g

Separate searches have been carried out for single and pair production, the backgrounds

being the QCD processes q�qg, q�qgg, q�qq�q, which were simulated using JETSET 7.3 [44].

Monte Carlo signal events were generated with a modi�ed version of this generator in

which q� generation is followed by the decay q� ! q + g, then by parton showering from

quarks and gluons.

The q��q� analysis was based on the search for four-jet events in which the jets can be

assigned to two dijet subsystems which are similar in topology and invariant mass. Events

were discarded if they had aplanarity less than 0.02 or thrust above 0.925 (for q� masses

below 20GeV=c2 these cuts were changed to 0.01 and 0.95 respectively). The remaining

events were forced into a four-jet con�guration using the JADE cluster algorithm and any

event in which a jet had fewer than three charged tracks was discarded. The jet energies

were rescaled using energy and momentumconservation and the dijet invariant masses for

the three dijet pairings were computed. The combination with the lowest mass di�erence

was chosen and the mass di�erence was required to be less than 15GeV=c2. The di�erence

in opening angles between the two jets forming each q� candidate was required to be less

than 45� (increased to 90� for masses below 20GeV=c2). The decay angles �d1 and �d2,
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de�ned as the acute angle measured in the rest frame of each q� between the direction

of the q� and the back-to-back jet pair, had to satisfy cos �d1 cos �
d
2 < 0:9. With these

cuts the signal e�ciency is 58% for a q� mass between 40 and 44GeV=c2, but decreases

with decreasing mass. The modi�cations to the cuts in the low mass region increase the

e�ciency by about 30%. The variation in e�ciency with quark avour is small. The

resolution on the dijet mass sum varies between 1.7 and 2:1GeV=c2 over the mass range

and is about 6GeV=c2 on the dijet mass di�erence. Fits were made to the distribution

of the dijet mass di�erence for successive bins of the average dijet mass 7GeV=c2 wide,

moved in 1GeV=c2 steps. A sum of background and signal Monte Carlo distributions was

�tted to the data and the signal fraction in each mass bin was determined. The data

contain no evidence for a q� signal and limits have been set on the form factor times the

branching ratio to qg, assuming the existence of a single excited u-type quark (the most

conservative assumption). These limits are shown in Fig. 15(a).

10
-2

10
-1

1

10 20 30 40 50

ALEPH

q*→q+g

q*→q+γ

(a)

0
q* mass (GeV/c2)

F×
B

R

10
-1

1

10

20 40 60 80 100

ALEPH

q*→q+g

q*→q+γ

0

(b)

q* mass (GeV/c2)

λ Z
/m

q*
 √

B
R

 (
T

eV
-1

)

Figure 15: (a) Form factor times branching ratio limits at 95% c.l. for q��q� production

for gluonic and photonic decay. (b) Single q� production: 95% c.l. upper limits on

�Z=mq�
p
BR for q� ! q +  and q� ! q + g.

The q��q analysis was based on events with thrust less than 0.925. Such events were

forced into a three-jet con�guration and those in which the lowest energy jet did not

contain a charged track or in which either of the other two jets did not have at least

three charged particles were rejected. The e�ciency for Monte Carlo signal is around 70%

over most of the mass range, decreasing rapidly below 20GeV=c2 and above 80GeV=c2 to

around 20%. The jets were projected onto the plane de�ned by the thrust and major axes

(the event plane) and then rescaled using energy and momentum conservation. The dijet

invariant masses and the corresponding decay angles, �d, were computed for the three

combinations of jet pairs. The highest mass combination was omitted in searches for q�

masses below 50GeV=c2 and the lowest mass combination was omitted for searches above

80GeV=c2. Fits were made to the cos �d distribution for sliding mass bins of 15GeV=c2

and hence limits derived for �Z
p
BR=mq� as a function of mass assuming production of

a single excited quark, where BR is the branching ratio for q� ! q + g (Fig. 15(b)).
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6.2 The decay q� ! q + 

The background in this channel is radiative q�q production, Z! q�q, with either initial or

�nal state radiation. Both isr and fsr photons tend to have low energy, and fsr photons

are usually close to their parent particles, so that background is readily distinguished

from signal.

The q��q� ! q�q analysis followed that of the gluonic channel until four jets had

been found, but omitted the aplanarity cut. It was then required that one jet has at

least four charged tracks, another at least two, and that the other two have at least

90% of their energy due to one identi�ed photon and have no charged particle above

0:5GeV within 30� of the photon (for q� masses below 20GeV=c2 this was reduced to

15�). After energy rescaling the invariant masses for the jet-photon combinations were

calculated and again the lower mass di�erence was required to be less than 15GeV=c2.

The same variables and cuts were then used as in the gluonic channel. The e�ciency is

around 40% for masses above 20GeV=c2, but falls sharply to 2% at 10GeV=c2. A very

important source of events in this channel is expected to be second order isr, but this was

not included in the background simulation. Accordingly only 46.6 events were predicted,

whereas 98 were found in data, but there was no evidence for any preferred mass, so limits

were set by using the factor exp(�(�Mjet;=�)
2) to weight the events in favour of equal

mass candidates, where � is the resolution on the mass di�erence �M . The resultant

mass plot was �tted for maximal signal permitted by the data and background, with the

background normalization factor allowed to oat in the �t. The form factor times the

branching ratio limit is shown in Fig. 15(a). For mq� < 10GeV=c2 the sensitivity of the

direct searches is poor because of merging of the jets from the q� decay. Where the limit

derived from the measured Z hadronic width (Appendix A) is better this has been used

and displayed on the �gure.

For single production, q�q events form a signi�cant background. After three-jet

reconstruction of the event, one jet was required to contain at least four charged tracks,

another at least two, and the third to satisfy the photon criteria described above. Energy

rescaling was applied and the two possible jet-photon invariant masses were calculated.

Signal e�ciency is low at q� masses close to the Z mass since the two jets frequently

overlap, and thus two-jet events in which one jet was an energetic photon, were also

selected. In this case the invariant mass was set to the centre of mass energy. Fits were

made to the photon energy distribution in di�erent bins of jet-photon invariant mass

with two entries per event. The coupling limits derived are shown in Fig. 15(b).

Finally, assuming that the sum of the gluonic and photonic branching ratios is unity,

limits can be set on the form factor, F , for q��q� production and the coupling �Z=mq� for

single q� production, independent of the individual branching ratios. In both cases these

branching ratio independent limits are very close to the q� ! q + g limits (with BR= 1)

plotted in Fig. 15 and are not shown.

6.3 Summary

No evidence has been found for production of excited quarks. The search for pair

production has allowed mass limits for Standard Model couplings to be set at 45GeV=c2,

while for lower masses form factor limits have been set which depend on the assumed

decay mode. For single production, limits have been set on the parameter �=mq� for
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masses up to 85GeV=c2, again dependent on the decay mode. Other LEP collaborations

have also published limits on some of these processes [45, 46]. Limits on excited quark

production have also been established at ep [33, 34] and p�p [47, 48] colliders but their

sensitive mass range is generally above that covered here.

7 Search for the decay Z to S

In models in which the Z is composite it is expected to decay to the scalar (S) combination

of the same preonic constituents plus a photon, provided that mS < mZ. Although

similar to the Higgs, S would have di�erent couplings. Taking the value of an e�ective

subconstituent mass to be 1TeV, �S is O(few MeV), signi�cantly smaller than the

detector resolution on the mass of the S. If the preonic constituents are coloured then a

larger width could be expected, but �S is still likely to be small [49].

The decays of the S considered here are `+`�, q�q, gg,  and ���. A Higgs boson

generator [50] was used for signal Monte Carlo. Events were produced with both negligible

width and with a width equal to 0.05mS at 5GeV=c
2 mass intervals up to 80GeV=c2, then

at 1GeV=c2 intervals above this.

The searches in the `+`�, gg and q�q channels used similar cuts to those described

earlier for `� and q� radiative decays. The only signi�cant change was the extension of

the photon energy range down to 3GeV in order to increase the mass reach for the S.

Where there was more than one photon in an event the most energetic was assumed to

originate from the Z decay.

In the `+`� channel the �nal sample contains 6787 e+e� events, 4469 �+�� events

and 3309 �+�� events, compared to 6616, 4515 and 3183 predicted from radiative

electroweak processes. Contamination from other processes is negligible, but some

electron and muon events appear in the tau channel. Signal e�ciencies are 65% and

above in the e+e� and �+�� channels, and 45% in the �+�� channel.

In the q�q and gg channels too many signal events are lost by the photon isolation

cut at masses above 80GeV=c2 where the jets are back-to-back and the photon is soft,

and it was reduced to 15� in this mass region. Signal e�ciencies are 30% and above

in both channels, except at low and high mS, and somewhat lower if the S has a

width. The number of data events accepted is 7509 compared with 7210 predicted | an

underestimate of about 4% in the simulation, which is rather uniformly distributed at

higher masses.

The three-photon channel is characterised by three coplanar deposits of energy in

the electromagnetic calorimeter and no charged tracks. Because a Z mediated process is

expected to be more isotropic and to have a more uniform distribution of photon energies

than the QED background, cuts of j cos �j < 0:8 and E > 3GeV were made on all three

photons. The sum of the three photon energies was required to be greater than 0:75
p
s.

There were 57 selected events in the data (with three candidates per event) compared

to a Monte Carlo prediction using the generator GGG of 57.8. The signal e�ciency is

around 50% up to about 87GeV=c2 where it drops suddenly because of the photon energy

cut.

Energy rescaling was again employed, with signi�cant improvements in resolution. In

the e+e� and �+�� channels, the branching ratio limit was determined from the invariant

mass plot. In the  channel, where the resolution is about three times worse, and the �
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channel, where the resolution is an order of magnitude worse, the bin edges were moved

in 200MeV steps while maintaining a bin of width 4�. In the hadronic channel, �ts were

made to the distribution of E in di�erent dijet invariant mass intervals. The branching

ratio limits thus obtained are shown in Fig. 16. The limit for the gg channel is very

similar to that for q�q and is not shown.

Single photon events are the signature of the decay of the scalar into invisible particles,

such as a neutrino pair. Events were selected as described in Section 4.2 except that

photons were accepted at all energies above 7GeV. There are 77 events seen in data,

while 77.1 are predicted by the radiative neutrino-pair Monte Carlo and 0.3 are predicted

by GGG. The signal e�ciency is around 60% for all masses up to 70GeV=c2, after which

it falls slowly to about 50% at 81GeV=c2 and then rapidly declines, reaching zero at

84GeV=c2. The resolution on the mass recoiling from the photon is around 1GeV=c2 at

80GeV=c2 but worse than 5GeV=c2 below 35GeV=c2. There is good agreement between

the observed and predicted mass distributions and no signal is observed. The variation

of the energy resolution has been taken into account by using variable sized mass bins

when deriving the limit on the branching ratio product (Fig. 16).
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Figure 16: Branching ratio limits at 95% c.l. for scalar production and decay into di�erent

�nal states.

The other LEP collaborations have also published limits on searches for a similar

state [45,51{54].

8 Z decays to three bosons

Anomalous four-boson vertices, leading to the enhancement of branching ratios of Z

to three bosons, arise in some composite models. The cross-section is controlled by

a compositeness scale factor, �, and is proportional to ��8. The Standard Model
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predictions for the branching ratio for the decays Z! gg and Z!  are 7:0� 10�7

and 3� 10�10 respectively [55] but values in the range 10�2 to 10�5 have been predicted

for some composite models [41]. Variants of analyses reported in previous sections have

been used to set branching ratio limits on these decays. A Standard Model signal Monte

Carlo was constructed using the JETSET quarkonium to three gluon decay mode, with

one or three of the gluons reassigned as a photon as appropriate.

A search for the decay Z! gg was made using a similar analysis to the q� ! q + 

search, but omitting events containing a single jet and a photon, and with a charge

multiplicity cut of four in the hadronic jets. The numbers of data and background Monte

Carlo events surviving these cuts were 7350 and 6610 respectively, but the discrepancy

is in the region of low photon energy while the Monte Carlo signal is predominantly at

high photon energy. The e�ciency for the signal Monte Carlo is 46%. The branching

ratio limit of 2:8 � 10�5 has been derived from a comparison of the distribution of the

cosine of the angle between the hadronic jets as a function of photon energy between the

data and the Standard Model prediction. A limit has also been obtained using a matrix

element containing composite e�ects [56] to reweight events from the Standard Model

Monte Carlo, but it is not signi�cantly di�erent.

The search for Z!  was based on the analysis for the channel Z! S, S! ,

excluding events with low energy photons. Cuts were designed to select events with

three photons of comparable energy. The lowest photon energy, E3, was required to

have at least 20% of the beam energy, and the ratio of the energies of the second and

third photons was required to be less than 2.4. The low polar angles of the background

were exploited by requiring that the lowest energy photon should have a polar angle, �3,

satisfying j cos �3j � (E3=Ebeam + 0:7)=1:2. The numerical values used in the cuts were

optimized using signal and background Monte Carlo events. The signal e�ciency is 45%

and 42.6 QED events were predicted. As only 41 events were seen, there is no evidence

of a signal and a limit is set on the branching ratio Z!  at 0:50 � 10�5.

These analyses update the previous ALEPH limits [16] on these branching ratios.

Limits have also been published by the other LEP collaborations for Z !  [57{59]

and Z! gg [60].

9 Conclusions

Extensive searches have been made for evidence of compositeness using the full data

sample collected by ALEPH at LEP I but no such evidence has been found. The negative

outcome of searches for pair production imply mass limits of mZ=2 for excited leptons

and quarks with Standard Model coupling to the Z, irrespective of their decay modes.

If form factors are assumed at the Zf��f� vertex then these are typically less than 0.01

for `� and �� and 0.1 for q� for masses between 10 and 40GeV=c2. A comprehensive

search for weak and radiative decays of excited leptons has enabled limits to be set on

couplings for Z! `�` and ��� production which are a signi�cant improvement on earlier

measurements for masses up to nearly 90GeV=c2. No evidence has been found for virtual

e� exchange in the reaction e+e� !  and an e� mass limit of 160GeV=c2 is deduced if

the e�e coupling is the same as the ee coupling. Coupling limits have been set for single

production of excited quarks decaying by either photon or gluon emission. Searches have

been made for a scalar partner, S, of the Z in all possible decay modes, for an S mass up
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to about 85GeV=c2 and branching ratio limits have been presented. Finally, branching

ratio limits of 2:8 � 10�5 and 0:50 � 10�5 have been set for the decays Z ! gg and

Z! .

Appendix Limits on new processes from electroweak data

Limits on partial widths for new processes can be derived from a comparison of measured

electroweak parameters with Standard Model predictions. These can then be used to

set coupling limits etc. The procedure was described in detail in a previous ALEPH

publication [16] and is updated here. Briey the experimentally determined values of

the total Z width, �Z, the hadronic peak cross-section, �0h, the hadron to lepton width

ratio, R` [61], are compared to the Standard Model predictions and maximum allowed

values of �X, the width of a hypothetical new decay mode Z ! X, determined at

95% con�dence level. The Standard Model predictions depend on the top quark mass

(175 � 5GeV=c2), the Higgs boson mass (60 < mH < 1000GeV=c2), the strong coupling

constant (0:118�0:003), the �ne structure constant (���1 = 0:12) and the b quark mass

(�mb = 0:3GeV=c2). Details of the calculation are given in the 1995 CERN Electroweak

Working Group Report [62]. Updated values of the input parameters and their errors

have been used here to determine a bound (Table 4) on the Standard Model prediction for

each observable, taken as one unit of the error from the central value. The allowed interval

of a variable was determined assuming a Gaussian measurement error and imposing the

Standard Model bound. As an example, for the total width, �Z, the model provides a

lower bound of 2483:8MeV; the area under the Gaussian above the bound is divided in

proportion 95:5 and the dividing line gives the position of the upper bound allowed by the

measurement error. For the example of �Z this is at 2499:0MeV, leading to an allowed

interval for any new process to contribute to the total Z width of 15:2MeV. The details

of the calculation for each variable are given in Table 4. A lower bound is required for

�0h, while both upper and lower bounds are needed for R`.

Table 4: Determination of the interval allowed by the Standard Model and consistent

with the data at the 95% con�dence level.

Predicted S.M. Measured 95% c.l. Allowed

Variable value Error bound value bound interval

�Z (MeV) 2493.7 9.9 > 2483:8 2494:6 � 2:7 < 2499:0 15.2

�0h (nb) 41.471 0.019 < 41:490 41:508 � 0:056 > 41:391 �0:099
R` 20.747 0.036 < 20:783 20:788 � 0:029 > 20:683 �0:100
R` 20.747 0.036 > 20:711 20:788 � 0:029 < 20:837 0.126

The relationships between the allowed intervals in Table 4 and partial widths for

di�erent event topologies are given in [16]. The limits thus derived are shown in Table 5.

The invisible width limit has been derived from the number of neutrino species quoted

in Ref. [61] as 2:989 � 0:012. These limits have been used in various analyses described

in this paper where a direct search was not possible or was inappropriate.
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Table 5: Topological width limits from the LEP Z lineshape measurements.

Topology Origin Width limit BR limit

(MeV) (%)

any �Z 15.2 0.61

purely hadronic �Z 15.2 0.61

non-hadronic �0h 3.0 0.12

purely leptonic R` 1.2 0.05

invisible N� 2.8 0.11
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