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Abstract

A search for doubly-charmed B decays with both charmed mesons reconstructed is

performed, using about 3.8 million hadronic Z decays recorded with the ALEPH detec-

tor at LEP. A clear signal is observed in the channels B! Ds
�D(X) and B! D�D(X)

(where D can be either a D0, a D+ or a D�+), providing the �rst direct evidence for

doubly-charmed B decays involving no Ds production. Evidence for associated K0
S and

K� production in the decays B! D�D(X) is also presented and some candidates for com-

pletely reconstructed decays B! Ds
�D(n�), B! D�DK0

S and B! D�DK� are observed.

Furthermore, candidates for the two-body Cabibbo suppressed decays B0
! D��D�+ and

B� ! D(�)0D(�)� are also observed. Measurements of the corresponding branching frac-

tions are extracted.

(To be submitted to The European Physical Journal C.)

1See next pages for the list of authors
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1 Introduction

Decays of B mesons to a charmed and an anticharmed meson plus anything are expected to occur

through the b quark to c quark transitions �b! �cW+, where the W+ materializes as c�s. Evidence

for such decays comes mainly from experiments running at the �(4S), which have shown [1, 2]

evidence for inclusive Ds production in B meson decays and also evidence for exclusive two-

body decays 1 B! D+(�)
s D�(�), D+(�)

s
�D0(�). The most recent measurement of the B! DsX

decays is B(B! DsX) = (12:11� 0:39stat � 0:88syst � 1:38B(Ds!��))% [2]. From an analysis of

the energy spectrum of the Ds mesons produced at the �(4S), the branching fraction for the

two-body component is found to be B(B! DsX (two-body))= (5:52 � 0:57 � 1:35 � 0:53)%

[2] and is interpreted as due to transitions �b! �c(c�s). However, the mechanisms responsible for

the remaining Ds production at the �(4S) have not been clearly identi�ed and could be either

�b! �c(c�s) transitions or �b! �c(u�d) transitions with s�s quark popping.

Until recently, it was believed that the c�s quarks would hadronize dominantly as D+(�)
s

mesons. Therefore, the branching fraction �b! �cc�s was computed from the inclusive B! DsX,

B! (c�c)X and B! �cX branching fractions, leading to B(b! c�cs) = 15:8� 2:8% [3].

Theoretical calculations are unable to simultaneously describe this low branching fraction

and the semileptonic branching fraction of the B meson [4]. It has been conjectured [5] that

B(b! c�cs) is in fact larger and that decays B! D�DK(X) (where D can be either a D0 or

a D+) could contribute signi�cantly. This might also include possible decays to orbitally-

excited Ds mesons, B! �D(�)D��s , followed by D��s ! D(�) �K. This picture is supported by the

evidence for wrong-sign D production in B decays which was found recently by CLEO and

yields B(B! DX) = (7:9� 2:2)% [6].

At LEP, the high statistics and the long decay length of the B mesons produced allow

comprehensive investigations to be made of the b! c(�cs) transitions. In the analysis described

below, two-body decays B! D+(�)
s

�D(�) and many-body decays B! D+
s
�DX and B! D�DX

(involving no Ds and never previously seen) have been searched for by completely reconstructing

two charmed mesons in the same hemisphere and trying to �nd a common vertex (the B decay

vertex). A measurement of the corresponding branching fractions is given, covering nearly

all the possibilities for doubly-charmed B decays. Candidates for completely reconstructed

decays B! D+
s
�D(n�), B! D�DK0

S and B! D�DK�, as well as for the Cabibbo suppressed

decay B0 ! D�+D��, are also presented.

2 The ALEPH detector

A detailed description of the ALEPH detector and of its performance can be found elsewhere

[7, 8]. Only a brief description of the properties of the apparatus relevant for this analysis is

given here. Charged particles are tracked in an axial magnetic �eld of 1.5T using a silicon vertex

1Charge-conjugate reactions are implied throughout this paper.
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detector (VDET), a drift chamber (ITC) and a time projection chamber (TPC). Surrounding

the beam pipe, the VDET consists of two concentric layers of double-sided silicon detectors,

positioned at average radii of 6.5 cm and 11.3 cm, and covering 85% and 69% of the solid angle,

respectively. The vertex detector has a spatial resolution of 12�m in r� and between 12�m and

22�m for the z coordinate, depending on the polar angle of the track. The ITC, at radii between

16 cm and 26 cm, provides up to 8 coordinates per track in the r� view, while the TPC measures

up to 21 three-dimensional points per track at radii between 30 cm and 180 cm. The combined

tracking system has a transverse momentum resolution of �(pT )=pT = 0:0006� pT � 0:005 (pT

in GeV/c).

In addition to tracking, the TPC is used for particle identi�cation by measurement of

the ionization energy loss associated with each charged track; it provides up to 338 dE/dx

measurements. In this paper, the dE/dx information is considered available when more than

50 measurements are associated to a charged particle. This occurs for 82% of the tracks and

this fraction is well simulated in the Monte Carlo. In the following, particle identi�cation with

energy loss is speci�ed in term of the dE/dx estimator de�ned as �H = (IH�Im)=�H , where Im

is the measured energy loss, IH the expected energy loss under the mass hypothesis H (H = �,

K, ...) and �H is the expected error on IH .

Photons and �0's are identi�ed in the electromagnetic calorimeter (ECAL), a lead-

proportional chamber sandwich segmented in 0:9o � 0:9o projective towers which are read out

in three sections in depth. The energy resolution achieved is �(E)=E = 0:25=
q
E=GeV for

single  in hadronic jets, and about 6.5%, almost independent of the energy, for �0, using the

kinematical constraint of the �0 mass [8].

3 Event selection

3.1 Data sample and outline

This analysis uses a sample of about 3.8 million hadronic Z decays recorded by ALEPH in

the period 1991�1995. The selection of Z! q�q events is based on charged tracks and is

described elsewhere [9]; its e�ciency is 97.5%. For the selected events the interaction point is

reconstructed on an event-by-event basis using the constraint of the beam axis position and

the size of the luminous region [10]. This interaction point is determined with an average

resolution projected along the sphericity axis of the event of 85�m for b�b events. Doubly-

charmed hadronic B decays are identi�ed by looking for events with both a charmed and

an anticharmed meson candidate in the same hemisphere originating from a common vertex

(the B decay vertex). The charmed mesons can be either a D0, D+, D�+ or a D+
s . They are

searched for in the decay modes D0 ! K��+, D0 ! K��+���+, D+ ! K��+�+, D�+ ! D0�+,

D+
s ! ��+(�! K�K+) and D+

s !
�K�0K+ ( �K�0 ! K��+). For D0 mesons from D�+ decay, the

decay mode D0 ! K��+�0 is also used.
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3.2 Charmed meson selection

The charmed mesons are reconstructed using all possible combinations of pion and kaon track

candidates with at least one hit in the silicon vertex detector (VDET). For all the decay

modes, at least two tracks are required to have VDET hits in both the r� and z views. Pion

candidates are required to have a momentum greater than 0:5GeV=c, whilst kaons are required

to have a momentum greater than 1:6GeV=c. For D0 ! K��+���+, the lowest momentum

pion threshold is lowered to 0:35GeV=c, but the two highest momentum pions must satisfy

p� > 1GeV=c. For D+ ! K��+�+, at least one of the pions must satisfy p� > 1GeV=c.

For the decay D�+ ! D0�+ followed by D0 ! K��+�0, the �0 is selected using the algorithm

described in [8] and is required to have energy E�0 > 1 GeV.

The charged kaon candidates are selected using the dE/dx information from the TPC,

when available: the associated tracks are required to satisfy �3 < �K < 1:5. For D�+ and

D0 ! K��+, which have a lower combinatorial background, a looser cut �3 < �K < 2 is used.

All pion candidates are required to satisfy �3 < �� < 3, when the dE/dx information is

available.

The track combinations satisfying the above criteria are �t to a common vertex. The �2

probability of the vertex �t must be larger than 0.1%. Finally, the reconstructed D vertex

must lie at least 3 standard deviations away from the interaction point. Since the decays

D0 ! K��+���+ and D+ ! K��+�+ su�er from a relatively high level of combinatorial

background, stronger particle identi�cation and vertexing criteria are applied. In this case,

the availability of the dE/dx information for kaons is mandatory and, except for D0 from D�+,

the D vertex is also required to be at least 1 mm away from the interaction point and tracks

with p < 3GeV=c which have a probability larger than 50% of originating from the interaction

point are discarded.

The D�+ candidates are reconstructed in the channel D�+ ! D0�+. The di�erence between

the reconstructed masses of the D0�+ and the D0 candidate must be within 2.5 MeV=c2 of

145.4 MeV=c2, which corresponds to approximately 3 times the average measured resolution

for this quantity. For the decays D+
s ! ��+ (D+

s !
�K�0K+), a cut at � 6 MeV/c2 (resp. �

25 MeV/c2) around the nominal � ( �K�0) mass is applied to the reconstructed K+K� (K��+)

mass. For D+
s !

�K�0K+, a cut j cos ��K j > 0:6 is also performed on the helicity angle of the

K+ in the rest frame of the �K�0, to take advantage of the decay distribution.

The decays D+
s ! ��+ and D+

s !
�K�0K+ are a potential background to D+ ! K��+�+.

These are e�ectively removed by rejecting D+ candidates where one of the pions is compatible

with the K+ hypothesis and a � or K�0 candidate satisfying the above requirements can be

formed.

To be able to estimate the combinatorial background, all the candidates which form an

invariant mass in the range 1.7�2.0 GeV/c2 (D0; D+) or 1.8�2.1 GeV/c2 (D+
s ) are selected. For

D0 ! K��+�0, which has a poorer mass resolution, the mass range of the selected candidates

is 1.6�2.1 GeV/c2.

3



0

0

         1cm

  
  

  
 1

cm

IP

B D

D

K

d

d
B

2

1

BD

ALEPH

Figure 1: Display of a decay B0 ! D�D0K+ reconstructed in the ALEPH detector (real data,

event 26856/1266 from Table 11).

3.3 Selection of doubly-charmed B decays

A typical D�DX event reconstructed in the ALEPH detector is shown in Fig.1. To select

such decays, pairs of D candidates are selected that belong to the same hemisphere. The

two D candidates, denoted D1 and D2 in the following, are required to form a vertex with

a probability of at least 0.1%. In true B! D�DX decays, the two D decay vertices must

be downstream of the B vertex relative to the interaction point. In Fig.2, the distance dBD

between the reconstructed B and D vertices, normalised by its error �BD, is displayed for

simulated B! D�DX and B! D�D��s decays and for combinatorial background events, after

the requirements on the D1D2 vertex reconstruction. The D+, which has a larger lifetime, is

displayed separately from the D0 and D+
s . Because of the larger average boost of the D's,

the mean dBD=�BD is larger for B! D�D��s events than for multibody decays B! D�DX. To

maintain a good acceptance for the B! D�DX signal whilst rejecting the backgrounds and

minimizing the model dependence of the selection e�ciencies, a cut dBD=�BD > �2 (>0) is

applied on the D0, D+
s (D+) decay length signi�cance. The decay length signi�cance of the D�D

vertex is also required to satisfy the condition dB=�B > �2. Finally, a cut on the sum of the

two D momenta, pD1
+pD2

> 15GeV=c is applied to further reduce the remaining combinatorial

4



background. No requirement is made on the opposite hemisphere.

4 Monte Carlo simulation and e�ciency calculation

In order to compute e�ciencies and study physical backgrounds for the various decay channels,

a Monte Carlo program based on JETSET 7.3 [11] is used. Full detector simulation is applied to

Monte Carlo events which are subsequently processed through the same reconstruction program

as used for real events. The energy spectra of b hadrons are generated according to the Peterson

et al. [12] fragmentation function. The b hadron properties are chosen to reproduce the most

up-to-date experimental results [13]. A sample of about 3.5 million Z! q�q, 1.3 million Z! b�b

and 0.3 million Z! c�c events is used. In addition, a sample of about 100,000 events with B

decays forced to D�D(X) and D decays forced to the modes used in this analysis is used to

reduce the statistical uncertainty on the various selection e�ciencies and to estimate the model

dependence of those e�ciencies.

To compute the e�ciencies for doubly-charmed B decays involving one Ds meson, both two-

body and multibody decays are used. Multibody decays are generated using the phase-space

decay scheme implemented in JETSET. The relative contribution of each process was adjusted

to study the model dependence of the selection e�ciencies.

In the case of decays B! D�D(X) involving no Ds meson, the contribution of the Cabibbo

suppressed two-body decays B! D(�) �D(�) is expected to be small; this is con�rmed by existing

experimental limits [14] and by the analysis described below. In the acceptance calculation for

the inclusive measurement of B! D�D(X) this contribution is therefore neglected. However,

a sample of 21,000 Cabibbo suppressed two-body decays B! D(�) �D(�) has been simulated for

speci�c studies concerning that mode.

Other processes contributing to B! D�D(X) can be either multibody decays

B! D(�) �D(�)K(�) (+n�) or two-body decays B! �D(�)D��s with subsequent decay of the

orbitally-excited D��s state to D(�)0K+ or D(�)+K0. Multibody decays B! D(�) �D(�)K(�) (+n�)

are simulated using the JETSET phase-space decay scheme mentioned above. A sample of

42,000 events with D decays forced to the channels considered in this analysis have been

simulated.

Heavy Quark E�ective Theory (HQET) predicts the existence and properties of four

orbitally excited (P Wave) D��s mesons. Two of these are expected to be narrow and have

been observed [15]. Only one of these, the D+
s1, is expected to be produced by the weak decay

process W+ ! c�s. It has a mass of 2535 MeV=c2 and is a JP = 1+ state, decaying dominantly

to D�K. Equal statistics of decays B! �DD+
s1 and B! �D�D+

s1 have been generated in the Monte

Carlo simulation used here. From isospin symmetry, the D+
s1 was assumed to decay equally to

D�0K+ and D�+K0.
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Figure 2: Distribution of the D0, D+
s (top) and D+ (bottom) decay length signi�cance, relative

to the reconstructed B decay point (D�D vertex) for simulated decays B! D�DX, B! D(�) �D��s

and for combinatorial background events.
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5 Inclusive branching fractions

5.1 Event counting

Evidence for decays b! D�D(X) is obtained by histogramming the D1 vs D2 mass

distributions for every possible combination of D and �D decay channels. A selection of the

signals observed for a few typical channels is shown in Fig.3. The D1 vs D2 distributions, as

well as their projections, are shown. The binning of the 2 dimensional mass table is chosen in

order to get all the signal events into a single (central) bin. Using �3 times the experimental

resolution on the D mass peaks, the bin size is chosen to be 90 MeV/c2 for D0 ! K��0, 70

MeV/c2 for D0 ! K� and 50 MeV/c2 for the other channels.

In each channel, the number of background events contributing to the signal bin has to

be estimated. The background can be divided into two categories: the pure combinatorial

background and the combination of a true D (D1 or D2) with combinatorial background:

Nbkg = N(b1b2) +N(b1D2) +N(D1b2): (1)

It was checked using Monte Carlo that the number of background events can be estimated

from simple event counting averaged over symmetric sidebands around the D mass peak. For

that, upper and lower sidebands regions are de�ned for the D1 and the D2 candidates. The

width chosen for the sidebands is 180 MeV/c2 for D0 ! K��0, 70 MeV/c2 for D0 ! K� and 100

MeV/c2 for the other channels. The pure combinatorial background contributionN(b1b2) is �rst

estimated by averaging the content of the bins belonging both to the D1 and to the D2 sidebands

(i.e. the corners of the 2-dimensional tables in Fig.3). The contributions N(b1D2) and N(D1b2)

are then computed in a similar way for events lying at the D mass peak in one projection and

in the D sidebands for the other projection, after subtracting the pure background component.

The total number of events in the signal region, the estimated background and the resulting

excess are given in Table 1. Also given in Table 1 is the sensitivity, de�ned as
P

i;j (�ij � B(D1 ! i)� B(D2 ! j)), where B(D1 ! i) and B(D2 ! j) are the D branching

fractions to modes i and j, and �ij is the detection e�ciency for the �nal state with D1 ! i and

D2 ! j. Typical e�ciencies range from �ij=1% up to �ij=20% in the most favourable channel.

A clear signal is observed in the data, both for decays involving a Ds and for decays

involving no Ds. After summing all the decay modes and removing double counting for events

involving a D��, which can appear both in the D�� and the D0 sections of Table 1, excesses of

41� 9 D+
s
�D(X) and 76� 19 D�D(X) events are observed, where D can be either a D0, a D� or

a D��. The corresponding D�D mass spectra are shown in Fig.4.

5.2 Average b branching fractions

Since measurements are available from many di�erent D decay channels, the branching fractions

B(b! D1D2(X)) for any process of the type b! D1D2(X) are extracted by maximizing the

7



Figure 3: The D1 vs D2 mass distributions for a few typical decay channels (a)

B! D0D�s (X)(D0 ! K��+;D�s ! ���) (b) B! D0 �D0(X)(D0 ! K��+; �D0 ! K+��) (c)

B! D0D�(X)(D0 ! K��+;D� ! K+����). The projection along D1 (D2) for D2 (D1) inside

the D mass window is shown as an unshaded histogram. The shaded histogram is the projection

along D1 (D2) for the average of upper and lower D2 (D1) sidebands, normalised to the surface

of the signal region.
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Channel N events Comb. bkg. Excess Sensitivity�106

DsD
0 45 16.1�2.9 28.9�7.3 202

DsD
� 15 5.1�1.4 9.9�4.1 146

D0 �D0 148 99.1�8.3 48.9�14.7 493

D0 �D� 53 39.0�4.4 14.0�8.5 330

D� �D� 8 16.8�2.5 -8.8�3.8 355

DsD
�� 17 3.9�1.1 13.1�4.3 257

D0D�� 53 25.6�3.4 27.4�8.0 520

D�D�� 28 11.6�1.9 16.4�5.6 370

D��D�� 15 3.0�0.9 12.0�4.0 623

Table 1. The number of D�D(X) events observed for each channel, the estimated combinatorial

background, the resulting excess and the single event sensitivity. Events involving a D��

decaying to D0�� also appear in the DD0 sections when the D0 from D�� satis�es the inclusive

D0 selection criteria.

following likelihood

L =
Y
i;j

0
@e

��nij �n
Nij

ij

Nij!

1
A (2)

where Nij is the number of events observed in the signal mass window for the D decay channels

D1 ! i, D2 ! j, and �nij is the expected number of events (including the combinatorial

background) in that channel:

�nij = Nbkg(i; j) + 2N(Z)
�b�b

�had

B(b! D1D2(X))B(D1 ! i)B(D2 ! j)�ij (3)

where Nbkg(i; j) is the combinatorial background measured for the channel i; j, N(Z) is the

number of hadronic Z events, B(D1 ! i) and B(D2 ! j) are the D branching fractions to

modes i and j, and �ij is the detection e�ciency for the �nal state with D1 !i and D2 !j.

The various parameters which have been used are summarized in Table 2. The Z partial width

�b�b=�had has been �xed to the Standard Model value. The D branching fractions have been

taken from [15], as well as the relative production rate for the di�erent species of weakly-

decaying b hadrons (not used here but needed in the following sections).

5.3 Systematic uncertainties and results

The following sources of systematic uncertainties have been considered: the simulation

of the detector performance, the Monte Carlo statistics, the event counting method, the

statistical uncertainty on the background, the model dependence of the selection e�ciencies, the

contribution from other physics processes to the D�D signal and the uncertainties in the D meson
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Figure 4: Unshaded histogram: the D�D mass spectra of the selected B! D�D(X) candidates

(a) D�+D�� (b) D�D�� (c) D0D�� (d) D+D� (e) D0D� (f) D0 �D0. All channels are mutually

exclusive, i.e. a DD�+ event with D�+ ! D0�+ appears only in the DD�+ histogram and not in

the DD0 histogram. Shaded histogram: the D�D mass distribution of the events in the sidebands

of the D1 or D2 mass spectra, normalised to the expected number of combinatorial background

events. Dotted lines: the D�D mass windows corresponding to two-body decays B! D(�) �D(�)

with zero, one or two missed neutrals from D� decay (cf. Section 6.4).
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branching fractions. Other systematic errors, such as the uncertainty on the b fragmentation

or on the b lifetime, are expected to be small compared to the statistical errors and have been

neglected.

(i) Detector performance: Di�erences between data and Monte Carlo in the selection

e�ciencies could occur through the dE/dx requirements on the K� identi�cation and through

the secondary vertex reconstruction. These e�ects have been thoroughly studied in previous

ALEPH publications. For instance, in [16] the relative systematic errors on the individual

D selection e�ciencies have been estimated to be about 1% for the dE/dx requirements and

about 3% for the D vertex reconstruction. In the present analysis two D's and 3 vertices are

reconstructed and the individual systematics on each vertex will add up. Therefore, a 10%

relative systematic error due to this source is assumed in the selection of B! D+
s
�DX and

B! D�DX events.

(ii) Monte Carlo statistics: The limitedMonte Carlo samples available in each decay channel

introduce a relative statistical uncertainty on the selection e�ciencies which ranges from about

5% for the individual D1 � D2 decay channels with the largest sensitivity up to 20% for the

channels with the lowest sensitivity.

(iii) Event counting: The event counting method was tested using the Z! q�q, Z! b�b and

dedicated B! D�D(X) Monte Carlo samples and comparing the number of reconstructed vs

true B! D�D(X) events. No signi�cant bias was observed.

(iv) Background: The statistical error on the average number of background events for each

channel reects in a systematic error which is estimated by varying by �1� each background

component in Equation (3) and repeating the analysis.

(v) Model dependence (Ds
�D(X)): The acceptance is larger for two-body decays B! D(�)

s
�D(�)

than for multibody decays B! D(�)
s
�D(�)X. The relative contribution of two-body decays to

the total inclusive Ds rate at the �(4S) has been measured [2] to be 0.457�0.042. This number

is used here to estimate the acceptance to B! Ds
�D(X) events. However, the �0.042 error

cannot be used directly, because part of the low xE Ds production at CLEO could be due to

single Ds production following s�s popping from the sea, thus increasing the relative contribution

of two-body decays in B! Ds
�D(X). A direct measurement of multibody decays B! Ds

�DX

is presented in Section 6 of this paper. It is in agreement with the CLEO measurement and

leads to measurement errors of about 13% on the relative contribution of each component. To

be conservative, an error of +0:13
�0:04 on the relative contribution of two-body decays is assumed to

estimate the corresponding systematic error on B(�b! Ds
�DX).

(vi) Model dependence (D�D(X)): Both multibody decays B! D(�) �D(�)K(�)(n�) and two-

body decays B! D��s
�D(�) followed by D��s ! D(�)K can contribute to the observed excess

of D�D(X) events. Because of the higher average D's boost, the acceptance is larger for

B! D��s
�D(�) than for B! D(�) �D(�)K(�)(n�) events in the Monte Carlo, mainly because the

rate of three-body decays B! D(�) �D(�)K produced in the JETSET phase-space decay scheme

is low compared to the rate of many-body decays B! D(�) �D(�)Kn�. Therefore, the uncertainty
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on the relative contribution of each component introduces a model dependence of the selection

e�ciencies. In the inclusive analysis presented here, the acceptances for B! D�D(X) are

computed assuming a contribution of 50�25% from the decays B! �D(�)D��s to the total D�D(X)

rate. This mixture is needed to reproduce the observed B! D(�) �D(�)K three-body decay rate

(Section 6) and also the inclusive �DD mass spectrum of the data, although no direct evidence

for D��s production is found. The � 25% error on the relative contributions of the two processes

is used to estimate the systematic error corresponding to the model dependence of the selection

e�ciencies.

(vii)Contribution from other physics processes: The physics processes other than B! D�DX

which could contribute to the observed excess of D�D events are either genuine Z! b�bg; c�cg

events with both quarks in the same hemisphere, or events involving the materialization of a

heavy quark pair from a radiated gluon, g! c�c; b�b. No such events from Z! b�bg or g! b�b

is selected from the whole Monte Carlo sample. From one selected event out of about 900,000

Z! c�c Monte Carlo events, the contribution of Z! c�cg to the D�D(X) signal is estimated to

be smaller than 2.3 events at 90% con�dence level. The contribution of g! c�c is suppressed

by the cuts on the D decay length and by the cuts on the sum of the two D momenta. One D�D

pair from g! c�c is selected out of the 3.5 million Z! q�q Monte Carlo events, with a D�D mass

of 7.3 GeV=c2, i.e. much larger than the B mass. From this event and using the most precise

published measurement of g! c�c [17], the contribution of g! c�c is estimated to be smaller

than 7.8 events at 90% con�dence level (over the whole D�D mass range) and smaller than 4.6

events for m(D�D) < 5:4GeV=c2. In the following, both Z! c�c and g! c�c contributions have

been neglected when extracting the inclusive b branching fractions to D�D(X).

(viii) D meson branching fractions: All the D branching fractions are normalised to

D0 ! K��+, D+ ! K��+�+ and D+
s ! ��+. The errors quoted in Table 2 are from

[15]. They are used to estimate the corresponding systematic errors on B(�b! Ds
�D(X)) and

B(�b! D�D(X)).

The branching fractions measured for the average mixture of b hadrons produced at LEP are

summarized in Table 3, where the �rst error is statistical, the second is the sum of all systematic

errors except those from the D branching fractions and the last one is the systematic error due

to the uncertainties on the D meson branching fractions. The relative contribution of each

source of systematic error is detailed in Table 4 for the sum of all decays to Ds
�D(X) and the

sum of all decays to D0 �D(X).

6 Search for exclusive decays

6.1 Introduction

Exclusive decays are searched for by looking for additional tracks originating from the D�D

vertex. In order to ensure precise vertex reconstruction, only tracks with a least one VDET hit
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Parameter Value

�b�b=�had 21.7%

N(Z! q�q) 3,838,156

Z! q�q selection e�ciency 97.5%

B(Ds ! ��)� B(�! K+K�) 1:77� 0:45%

B(D0 ! K+��) 3:83� 0:12%

B(D� ! K+����) 9:1� 0:6%

B(Ds ! K�0K�)=B(Ds ! ��) 0:93� 0:09

B(D0 ! K+���+��)=B(D0 ! K+��) 1:97� 0:10

B(D0 ! K+���0)=B(D0 ! K+��) 3:62� 0:24

fB0

d

= fB� 37:8� 2:2%

fB0
s

11:2� 1:9%

Table 2. The parameters used in the calculation of branching fractions.

Channel B(%)

b! D0D�s (X) 9:1+2:0�1:8
+1:3
�1:2

+3:1
�1:9

b! D+D�s (X) 4:0+1:7�1:4 � 0:7 +1:4
�0:9

Sum b! D0D�s ;D
+D�s (X) 13:1+2:6�2:2

+1:8
�1:6

+4:4
�2:7

b! D0 �D0(X) 5:1+1:6�1:4
+1:2
�1:1 � 0:3

b! D0D�;D+ �D0(X) 2:7+1:5�1:3
+1:0
�0:9 � 0:2

b! D+D�(X) < 0:9% at 90%C.L.

Sum b! D0 �D0;D0D�;D+ �D0(X) 7:8+2:0�1:8
+1:7
�1:5

+0:5
�0:4

b! D�+D�s (X) 3:3+1:0�0:9 � 0:6 +1:1
�0:7

b! D�+ �D0;D0D��(X) 3:0+0:9�0:8
+0:7
�0:5 � 0:2

b! D�+D�;D+D��(X) 2:5+1:0�0:9
+0:6
�0:5 � 0:2

b! D�+D��(X) 1:2+0:4�0:3 � 0:2� 0:1

Table 3. Summary of the di�erent branching fractions measured in this analysis. The �rst

error is statistical, the second one is the sum of all systematic errors except those from the

D branching fractions, and the last one is the systematic error due to the uncertainty on the

di�erent D branching fractions. The modes involving a D�+ (lowest part of the table) are also

included in the upper part results as a subsample of the modes involving a D0 or a D+.

13



b! D�s D
0(X), D�s D

�(X) b! D0 �D0(X), D0D�(X)

Combinatorial background +6
�5

+17
�15

Monte Carlo statistics �4 �3

Model +2
�5

+9
�7

Detector +11
�9

+11
�9

D branching fractions +34
�21 �6

Table 4. Relative systematic errors in percent of the B(�b! D�D(X)) measurement, for the sum

of �b! D+
s
�D0(X), D+

s D
�(X) and the sum of �b! D0 �D0(X), D0D+(X) decays.

in both the r� and z projections are considered. From the D and �D tracks, the B decay vertex

is reconstructed and a pseudo B track is created, using the direction of the D and �D momentum

sum. A common vertex is then made between this pseudo B track and every additional track

with momentum p > 500MeV=c. This vertex has to be either 1 mm or 3 standard deviations

downstream from the interaction point (with a minimum of 600�m), with a �2 probability of

at least 0.1%.

A search for additional K0
S decaying to �

+�� is also performed in the D�D hemisphere. The

K0
S's are identi�ed using the algorithm described in [8]. They must have a momentum greater

than 1 GeV=c and a reconstructed mass within 15 MeV=c2 of the nominal K0
S mass. The

K0
S decay vertex must be located at least 1cm downstream of the D�D vertex with respect to

the interaction point and its �2 probability must be at least 0.1%. Finally, a common vertex

between the D, the �D and the the K0
S is formed and its �2 probability is required to be higher

than 0.1%.

6.2 Decays B! D+
s
�D(X)

In this section, the branching fractions for the two-body decay B! D(�)+
s

�D(�) (Fig.5a) and for

the many-body decays B! D+
s
�DX (Fig.5b) are measured separately. Only the decay mode

Ds ! ��, which has a high e�ciency and a low combinatorial background, is used. Among the

39 events selected, only 37 are compatible with a B0
d or B

+ hypothesis (m(D+
s
�D) < 5:32GeV=c2),

for an estimated combinatorial background of 5.5�1.3 events. Ten events have additional tracks

from the D�D vertex; all the additional tracks are either compatible with a �� hypothesis or

have no dE/dx measurement available. The reconstructed D+
s
�D(n��) mass distribution is

shown in Fig.6 for the di�erent topologies (n = 0, n � 1) and for the sum. Nine events are

reconstructed at the B mass: six fully reconstructed two-body decays, one B0 ! D+
s
�D0��,

one B0 ! D+
s D

���+�� and one B0 ! D+
s
�D0���+�� candidate. This is the �rst indication of

completely reconstructed multibody decays B0 ! D+
s
�D0 + n�� (n � 1).

The two-body decays B! D(�)+
s

�D(�) can be distinguished from the multibody decays

B! D(�)+
s

�D(�)X on the basis of both the D+
s
�D mass distribution and the lack of additional
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Figure 5: The di�erent diagrams expected to contribute to two-body and three-body decays

B! D�D(X) studied in this paper (a) B! D(�)+
s

�D(�) (two-body) (b) B! D(�)+
s

�D(�)�; �; !; :::

(three-body) (c) B! D(�)+ �D(�)K(�) (three-body, external spectator) (d) B! D(�)+ �D(�)K(�)

(three-body, internal spectator) (e) B! D(�)+ �D(�) (two-body, Cabibbo suppressed) (f)

B0 ! D(�)0 �D(�)0 (two-body, W exchange).
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charged tracks at the D�D vertex. In the following, events inside the two-body allowed D+
s
�D

mass region (4:80 < m(D+
s
�D0;D+

s D
�) < 5:32GeV=c2 or 5:04 < m(D+

s D
��) < 5:32GeV=c2, cf

Fig.6a), with no additional tracks at the D�D vertex, are classi�ed as two-body decays (events

in the upper part of the mass spectrum in Fig.6b), while other events (lower part of the mass

spectum in Fig.6b plus all events with D+
s Dn�

� < 5:32GeV=c2 in Fig.6c) are classi�ed as

multibody decays. From Monte Carlo studies, it has been checked that the fraction of wrongly

assigned events is less than 3% and can therefore be neglected, given the statistical errors. A

total of 16 events are observed in the two-body class for an estimated combinatorial background

of 1.7�0.7 events. These events are used to estimate the following two-body branching fractions:

B(B0 ! D(�)+
s D(�)�) = (5:0+2:9

�1:9
+1:1
�1:0

+1:7
�1:0)%

B(B+ ! D(�)+
s

�D0(�)) = (6:2+3:0
�2:3

+1:1
�1:0

+2:1
�1:3)%:

Averaging over B0 and B� one gets for the two-body decay modes

B(B! D(�)+
s

�D(�)) = (5:6+2:1
�1:5

+0:9
�0:8

+1:9
�1:1)%:

The �rst error is statistical. The second is the systematic error resulting from detector

modelling, Monte Carlo statistics, uncertainty on the combinatorial background and uncertainty

on the fraction of B0 and B� produced at the Z. The third error results from the uncertainty

on the di�erent D branching fractions and is dominated by the uncertainty on B(D+
s ! ��+).

This result is in good agreement with previous measurements of the same quantity [1, 2].

The multibody branching fraction is computed in the same way. Twenty-one D+
s
�DX events

are observed in the multibody class for an estimated combinatorial background of 5.2�1.2

events. To estimate the average B0 and B+ many-body branching fraction B(B! D(�)+
s

�D(�)X),

the contribution from possible decays B0
s ! D�s

(�)

DX must be subtracted. A B0
s can decay

either to D�s D
�K(X) or to D+

s
�DK(X). Therefore, a reasonable guess is to assume that

B(B0
s ! D�s

(�)

DX) = (2 � 1) � B(B! D(�)+
s

�D(�)X), where the �1 error accounts for possible

di�erences in the hadronisation of the �cs pair (spectator quarks) and the c�s pair (quarks from the

W), and for phase space e�ects. With this assumption, and neglecting any possible contribution

from b-baryon decays, the fraction �s of events from B0
s decays in the multibody D

+
s
�DX sample

is

�s =
(2� 1)� fB0

s

(2� 1)� fB0
s
+ fB0

d

+ fB�
= (22:9+8:6

�10:4)%:

Subtracting the B0
s contribution and correcting for the D branching fractions and the multibody

decay selection e�ciencies, one gets

B(B! D(�)+
s

�D(�)X) = (9:4+4:0
�3:1

+2:2
�1:8

+2:6
�1:6)%:

These results are consistent with the fully inclusive results of Section 5, but can be used to

extract the fraction of two-body decays with smaller error:

B(B! D(�)+
s

�D(�) (two� body))

B(B! D
(�)+
s

�D(�)(X))
= (37� 13)%:
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Finally, a search for decays B0
s ! D+

s
�DK(X) is performed, looking for events with one

additional K0
S correlated to the Ds and the D. For this search, the main background is from

the correlation between a genuine B0 or B+ decaying to D+
s
�DX and a K0

S from fragmentation.

To study this background, K0
S ! �+�� are searched for in the B hemisphere using a sample

of 199 completely reconstructed B0 and B+ mesons decaying to �D(�) + n� or D+
s
�D. The

fraction of events with a reconstructed fragmentation K0
S is measured to be (4:0 � 1:4)% for

p(K0) > 1GeV=c and (0.5�0.5)% for p(K0) > 3GeV=c, leading to an expected contribution

of 0:8 � 0:3 events (p(K0) > 1GeV=c) or 0:1 � 0:1 events (p(K0) > 3GeV=c) among the 21

D+
s
�DX events. Selecting K0

S ! �+�� decays with the criteria of Section 6.1, three events with

an associated K0
S are found. All events are kinematically compatible with the three-body decay

hypothesis B0
s ! D(�)�

s D(�)�K0 where one or more neutrals from D��s ! D�s  or D�� ! D��0

has been missed. This hypothesis is also supported by the fact that in all three events a charged

D(�)� is found, while the background from fragmentation K0
S would also give D

0 K0
S correlations.

Two of the events involve a K0
S with momentum p(K0) > 3GeV=c and the probability that both

of them are from fragmentation is smaller than 0.5%.

6.3 Decays B! D�DK(X)

6.3.1 Evidence for associated K production

To check that the observed D�DX signal is indeed due to decays B! D�DK(n�), associated K

production has been searched for in the selected sample. The K0
S's are selected as described in

Section 6.1. The charged K's are selected among the tracks found at the D�D vertex (Section

6.1) on the basis of the dE/dx measurement in the TPC. To ensure a good �/K separation,

the K momentum is required to be greater than 1.6 GeV/c and the dE/dx estimator for the

K hypothesis is required to satisfy �K < 1. Unambiguous low momentum K's (0:5 < pK <

0:9GeV=c) are also selected requiring j �K j< 2, j �� j> 2 and ����K > 1:5. Removing events

where the reconstructed D�DK mass is above the B meson mass (m(D�DK) > 5:32GeV=c2)

and counting events in the signal region with the same technique as in Section 5.1, the results

summarized in Table 5 are obtained. A clear improvement of the signal over background ratio

is seen when adding the requirement of an associated K: 43% of the signal events satisfy this

requirement, compared to only 12% of the combinatorial background (o� peak) events. The

average e�ciencies for reconstructing the K in Monte Carlo three-body decays B! D�DK where

both D's have been reconstructed is 20:8� 1:5% for K0 and 41:2� 2% for K�.

The reconstructed mass of the selected D0 �D0K, D0D�K or D+D�K events is shown in Fig.7a.

This can be compared to the spectrum expected for simulated three-body decays B! D(�) �D(�)K

(Fig.7b). Here, the decays D�+ ! D0�+ are not reconstructed and only the D0 are used, to

treat in the same way decays involving a D�+ and decays involving a D�0. Due to the very good

mass resolution, the three peaks corresponding to decays B! D� �D�K, B! D�D�K+D� �DK
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Figure 6: Invariant mass m(D+
s
�D(n��)) reconstructed for (a) Monte Carlo two-body decays

B! D(�)+
s D(�)�, and for ALEPH data (b) D+

s
�D (c) D+

s
�Dn��, n � 1 (d) sum of all channels.

The peak close to 5.1 GeV/c2 is due to events with one missing neutral from decays D� ! D�0; 

or or D�+s ! D+
s . Here,

�D is a generic term and can be either a reconstructed �D0, D� or D��.
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N events Comb. bkg. Excess

No tag 256 180.3� 10.2 75.7�19.0

K0 tag 25 9.8� 2.1 15.2�5.4

K� tag 29 11.6� 2.5 17.4�5.9

K0 or K� tag 52 19.8� 3.3 32.2�7.9

K0 tag (three-body) 14 3.1� 1.3 10.9�3.9

K� tag (three-body) 13 3.0� 1.2 10.0�3.8

K0 or K� tag (three-body) 27 5.8� 1.7 21.2�5.5

Table 5. The observed signal and background in the D�DX channel with and without associated

kaon tag.

and B! D�DK are clearly separated and can be �tted by 3 gaussians at average masses of

4.95, 5.11 and 5.28 GeV/c2, and widths (�) of 32, 21 and 11 MeV/c2, respectively. Evidence

for these peaks are also seen in the data, and the excess of events observed in the three-body

mass window 4:80 < m(D�DK) < 5:32GeV=c2 indicates that a large part of the observed signal

is indeed compatible with three-body decays B! D(�) �D(�)K. These decays are studied more

quantitatively in the following section.

6.3.2 Analysis of three-body decays B! D(�) �D(�)K

Apart from their experimental simplicity, three-body decays are interesting because they

can probe the di�erent quark amplitudes responsible for those decays. Moreover, it is

possible to identify which D(�) is from the b quark and which D(�) is from the virtual W

decay. The three-body decays may also include the resonant two-body decays B! �D(�)D��+s

followed by D��+s ! D(�)K. Genuine three-body decays can proceed either through the external

spectator diagram of Fig.5c or through the internal spectator diagram of Fig.5d. The decays

B� ! D(�)0D(�)�K0 and �B0 ! D(�)+ �D(�)0K� can only occur through an external spectator

amplitude (E). The decays B� ! D(�)0 �D(�)0K� and �B0 ! D(�)+D(�)�K0 occur through the

interference of both amplitudes (EI). The decays �B0 ! D(�)0 �D(�)0K0 and B� ! D(�)+D(�)�K�

can occur only through an internal spectator amplitude (I): they are expected to be colour-

suppressed and the measurement of their branching fraction would test the e�ectiveness of the

colour suppression mechanism in B decays. To date, colour-suppressed B decays have only been

seen through the occurence of decays B!  ; �cX.

Three-body decays are searched for among the D�DK(X) events selected in the previous

section, by requiring that no additional charged track, incompatible with the interaction point,

originates from the D�DK vertex. The mass spectrum of the selected events is shown in

Fig.8a (D�DK0) and Fig.8b (D�DK�). Here, contrary to Fig.7, the �� from D�� ! D0�
�
have

been included in the mass computation and D means therefore either a D0, a D+ or a D�+.
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Figure 7: The D0 �D0K, D0D�K or D+D�K mass of D�D events with a reconstructed K0
S or

a K� for (a) ALEPH data (b) simulated three-body decays B! D(�) �D(�)K. The �+ from

D�+ ! D0�+, even if reconstructed, are not used in the mass. For the data, the distribution

expected for combinatorial background events is also shown (shaded histogram). Its shape is

obtained from the sideband events in the D1 vs D2 mass distributions, and its normalization is

computed as explained in Section 5.1.
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Depending whether there are zero, one or two reconstructed D��, the mass window for events

compatible with a three-body B! D(�) �D(�)K decay is de�ned asm0 < m(D�DK) < 5:32 GeV/c2,

with m0=4.80, 5.04 or 5.24 GeV/c2 respectively. The number of signal and combinatorial

background events found in the three-body D�DK mass window is estimated with the technique

used previously. The results are given in Table 5 and show that a large fraction of the signal

events are indeed compatible with a three-body B! D(�) �D(�)K hypothesis. However, some

events in the lowest mass peak region of Fig.7 and Fig.8 (4:80 < m(D�DK) < 5:04GeV=c2)

are also compatible with a four-body B! D�DK� decay hypothesis where the � has not been

seen. Because of this ambiguity, they are not used to extract the three-body decay branching

fractions in the following.

Seven candidates for completely reconstructed decays B! D(�) �D(�)K0
S and �ve candidates

for completely reconstructed decays B! D(�) �D(�)K� are obtained over a combinatorial

background of 0:4 � 0:1 and 0:3 � 0:1 events respectively. Two candidates for partially

reconstructed B! D(�) �D(�)K0
S (background 1:0� 0:3 events) and four candidates for partially

reconstructed B! D(�) �D(�)K� (background 1:0 � 0:3 events) are also observed at 5:04 <

m(D�DK) < 5:24GeV=c2: these events are compatible with three-body decays where a �0 or

 from D� ! D�0;  was missed. The branching fractions for the di�erent possible three-body

decays B! D(�) �D(�)K are obtained from the number of events observed in each channel at

5:24 < m(D�DK) < 5:32GeV=c2 (completely reconstructed decays) and at 5:04 < m(D�DK) <

5:24GeV=c2 (events involving one unreconstructed D�0 ! D0�0;  or D�+ ! D+�0). The

selection e�ciencies are computed using a sample of Monte Carlo events involving three-body

decays B! D(�) �D(�)K. The branching fractions B(B! D1D2K) are extracted by maximizing

the likelihood from Equation (2), where ni;j is now given by

�nij = Nbkg(i; j) + 2N(Z)
�b�b

�had

fB0

d

B(B! D1D2K)B(D1 ! i)B(D2 ! j)�ij (4)

Here, the e�ciency �ij incorporates also the K reconstruction e�ciency. The sum over i; j

is performed over all possible contributing channels (for instance, a decay B! D0D�+K can

be detected either in the channel D0D�+K with 5:24 < m(D0D�+K) < 5:32GeV=c2 or in the

channel D0D+K with 5:04 < m(D0D+K) < 5:24GeV=c2). The sharing of the background

between the individual channels is assumed to be the same as in the inclusive analysis.

In order to increase the statistics per channel, the isospin symmetry of these decays is used

[18, 19], and the B0 and B+ branching fractions corresponding to the same decay amplitude

are assumed equal. The average B branching fractions found for each decay amplitude are

summarized in Table 6. For the channels with no detected signal or a low signi�cance, a 90%

C.L. upper limit on the branching fraction is extracted. For the other channels, the �rst error on

B is statistical, the second one is the systematic resulting from Monte Carlo statistics, detector

simulation, uncertainty on the combinatorial background and uncertainty on fB0

d

, and the last

one is the error resulting from the uncertainty on the di�erent D branching fractions. For decays

B! D� �D�K corresponding to I or EI transitions, only the results from B! D�+ �D��K are used
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Figure 8: Invariant mass m(D�DK) for events with one identi�ed K and no other additional

track from the D�DK vertex. D can be either a D0, a D+ or a D�+. (a) Events D�DK0, (b) events

D�DK�, (c) sum of both channels. The distribution expected for combinatorial background

events is also shown (shaded histogram). Its shape is obtained from the sideband events in the

D1 vs D2 mass distributions, and its normalization is computed as explained in Section 5.1.
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Diagram Channel Number of B(B! D(�) �D(�)K)

(B0, B+) candidates (B0/B+ average)

E D�D0K+, �D0D+K0 3 1:7+1:2�0:8 � 0:2� 0:1%

E (D��D0 +D�D�0)K+, ( �D�0D+ + �D0D�+)K0 5 1:8+1:0�0:8 � 0:3� 0:1%

E D��D�0K+, �D�0D�+K0 1 < 1:3%

I �D0D0K0, D+D�K+ 1 < 2:0%

I (�D0D�0 + �D�0D0)K0, (D�+D� +D+D��)K+ 1 < 1:6%

I �D�0D�0K0, D�+D��K+ 1 < 1:5%

EI D+D�K0, �D0D0K+ 1 < 1:9%

EI (D�+D� +D+D��)K0, ( �D�0D0 + �D0D�0)K+ 4 1:6+1:0�0:7 � 0:2� 0:1%

EI D�+D��K0, �D�0D�0K+ 1 < 3:0%

Sum E D(�)�D(�)0K+, �D(�)0D(�)+K0 9 3:5+1:7�1:1
+0:5
�0:4 � 0:2%

Sum I �D(�)0D(�)0K0, D(�)+D(�)�K+ 3 0:8+1:0�0:4
+0:2
�0:1 � 0:1%

Sum EI D(�)+D(�)�K0, �D(�)0D(�)0K+ 6 2:8+1:6�1:0
+0:4
�0:3 � 0:2%

E+I+EI Sum D�DK 5 2:3+1:5�0:9
+0:3
�0:3 � 0:2%

E+I+EI Sum D�D�K+D� �DK 10 3:8+1:6�1:1
+0:5
�0:4 � 0:2%

E+I+EI Sum D� �D�K 3 1:0+1:3�0:6
+0:2
�0:2 � 0:1%

E+I+EI Sum D(�) �D(�)K 18 7:1+2:5�1:5
+0:9
�0:8 � 0:5%

Table 6. Summary of the various branching fractions B! D�DK measured in this analysis. For

the channels with no signi�cant signal, the upper limits are given for a 90% con�dence level.

in the B average, since no B! �D�0D�0K measurement is performed. The largest branching

fractions are measured for decays possible through an external spectator amplitude (E or EI).

The total branching fraction for three-body decays is

B(B! D(�) �D(�)K) = (7:1+2:5
�1:5

+0:9
�0:8 � 0:5)%:

Compared to the result of Table 3

B(b! D0 �D0;D0D�;D+ �D0(X)) = (7:8+2:0
�1:8

+1:7
�1:5

+0:5
�0:4)%;

scaled by a factor 1=2fB0

d

= 1:3 to account for b! B0;B�, one sees that the three-body decays

B! �D(�)D(�)K are a large part (about 70%) of the inclusive B! D�D(X) decays.

The event properties for the eighteen three-body decay candidates discussed above are given

in Appendix 1, Tables 11 and 12. From the invariant mass of the allowed DK combinations, no

evidence for decays B! �D(�)D+
s1 followed by D+

s1 ! D�K is found: the D+
s1 should appear at a

mass of 2535 MeV=c2 in D�+K0 (completely reconstructed decays) and about 2390 MeV=c2

in D0K+ or D+K0 (partially reconstructed decays with one unreconstructed neutral from

D� ! D�0; ). No resonant substructure in the �DD mass of the selected candidates is found
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either. For the thirteen events where the D from b (D1) can be distinguished from the D

from W (D2), the invariant mass m(D1K) tend to be higher than m(D2K) (and hence the

momentum p(D1) in the B rest frame is higher than p(D2)). However, after the Lorentz boost,

the distributions of p(D1) and p(D2) in the laboratory are quite similar.

6.4 Search for Cabibbo suppressed decays B! �D(�)D(�)+

The decay �b! �cW+ followed by the Cabibbo suppressed amplitude W+ ! c�d (Fig.5e) can

give a small contribution to the observed �DD signal in the mass region m(�DD) ' m(B). The

two-body decays B! �D(�)D(�)+ are expected to be suppressed by a factor tan �C
2 ' 1=20

relative to the two-body decays B! �D(�)D(�)+
s , leading to an expected branching fraction

B(B! �D(�)D(�)+) ' 0:3% if one uses the values measured in Section 6.2. The two-body

decays B0 ! D(�)�D(�)+ are especially interesting since they are favorable modes for testing CP

violation in B decays at future B factories. These decays have never been observed previously.

From the �DD mass distribution of the events selected in the inclusive analysis (Fig.4),

two candidates for completely reconstructed decays B0 ! D��D�+ and four candidates for

partially reconstructed decays B+ ! �D(�)0D(�)+ with a �D0D+ pair in the �nal state are observed.

The combinatorial background in the signal region is estimated by �tting the background

distributions shown in Fig.4 to an exponential or a second order polynomial. The results are

summarized in Table 7. The numbers of events expected in each channel for a branching

fraction of 0.1% are also indicated in the table, as well as the D�D mass window used to search

for a signal. From these results, a 90% con�dence level upper limit on the individual B0, B+

and on the average B branching fractions is derived (Table 8). The results for the average of

B0 and B+ decays is computed assuming equality of the corresponding B0 and B+ branching

fractions.

The parameters of the six candidates are given in Table 9. The more signi�cant channel

is B0 ! D��D�+, where two candidates are observed over a combinatorial background of

0:10 � 0:03 events. Assuming the two candidates are signal, the corresponding branching

fraction is:

B(B0 ! D�+D��) = (0:23+0:19
�0:12 � 0:04� 0:02)%:

The �rst error on B is statistical, the second one is the systematic resulting from Monte

Carlo statistics, detector simulation and uncertainty on fB0

d

, and the last one is from the

uncertainty on the di�erent D branching fractions. However, taking into account the uncertainty

on the combinatorial background, the probability that the two D�+D�� candidates result

from a statistical uctuation of the background is still at the 1% level. Therefore, their

compatibility with the B0 ! D��D�+ decay hypothesis is now examined. The selection is

tightened, discarding events with additional tracks at the B vertex that are incompatible

with the interaction point, or additional K0
S in the D�D hemisphere. A cut xE > 0:70, where

xE = ED�D=Ebeam, is also applied: because of the hard B fragmentation, most fully reconstructed
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Decay Detection Predicted # Signal Events Comb.

channel channel of events mass window seen bkg.

(B=0.1%) (GeV/c2)

�B0 !

D�+D�� D�+D�� 0.56 5.24-5.32 2 0:10� 0:03

D�D�+;D+D�� 0.27 5.04-5.24 0 0:47� 0:15

D�D+ 0.04 4.80-5.04 0 0:79� 0:12

D+D�� +D�+D� D�D�+;D+D�� 0.43 5.24-5.32 0 0:11� 0:04

D�D+ 0.12 5.04-5.24 0 0:44� 0:09

D+D� D+D� 0.39 5.24-5.32 0 0:12� 0:05

B+ !

D�0D�+ D0D�+ 0.37 5.04-5.24 0 0:78� 0:10

D0D+ 0.11 4.80-5.04 2 1:41� 0:25

D0D�+ +D�0D+ D0D�+ 0.19 5.24-5.32 0 0:20� 0:05

D0D+ 0.22 5.04-5.24 2 0:65� 0:09

D0D+ D0D+ 0.34 5.24-5.32 0 0:16� 0:03

Table 7. Detection channel, reconstructed D(�)D(�) mass window for the signal events, expected

and observed number of events in the signal region for the di�erent two-body Cabibbo

suppressed B decays. The expected number of events have been computed assuming a 0.1%

branching fraction.

B mesons should have a large energy. When both cuts are applied to Monte Carlo Z! q�q or

Z! b�b events, 64% of the B! D�D decays reconstructed in the inclusive analysis are retained,

for only 8% of the combinatorial background (over the whole D�D mass region) and 31% of the

combinatorial background at m(D�D) > 4:8GeV=c2. The two D�+D�� candidates survive the

additional cuts.

Close scrutiny of the remaining �D0D+ candidates listed in table 9 shows that they have some

interesting properties, although no branching fraction measurements can be made. For instance,

in event F (Fig.9) both D's are well separated from the D�D vertex, and the latter is more than

3 mm away from the interaction point. Moreover, a �0 of momentum p(�0) = 2:9GeV=c,

compatible with the hypothesis D�� ! D��0, is reconstructed. The event is compatible with

a decay B� ! D��D0 and no other plausible explanation is found.

6.5 Search for decays B0
! D(�)0 �D(�)0

The decays B0 ! D(�)0 �D(�)0 are forbidden in the spectator model: neither colour favoured,

colour suppressed nor penguin amplitudes can lead to such �nal states. They can only occur

through the W exchange diagram of Fig.5f. This leads to decay amplitudes suppressed by
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Decay channel 90%C.L. Upper limit on B

�B0 ! D�+D�� < 0:61%

�B0 ! D+D�� +D�+D� < 0:56%

�B0 ! D�D+ < 0:59%

B+ ! D�0D�+ < 1:11%

B+ ! D0D�+ +D�0D+ < 1:30%

B+ ! D0D+ < 0:67%

average �B0;B+

�B! D�D�� < 0:59%

�B! DD�� +D�D� < 0:55%

�B! DD� < 0:31%

Table 8. Branching fraction measurements for the two-body Cabibbo suppressed B decays.

Event A B C D E F

D1 D�� D�� D� D+ D+ D�

D1 decay mode K� K��� K�� K�� K�� K��

P(D+
s ) - - < 10�10 0.33 < 10�7 < 10�7

D2 D�+ D�+ D0 �D0 �D0 D0

D2 decay mode K��0 K� K��� K��� K� K���

xE(�D
(�)D(�)) 0.80 0.81 0.79 0.60 0.80 0.81

p(D1) (GeV/c) 11.7 17.5 16.3 18.1 18.7 24.0

p(D2) (GeV/c) 24.6 19.4 18.6 9.0 17.6 11.8

m(D1D2) (GeV/c
2) 5.29 5.26 5.01 5.13 4.86 5.05

dB(mm) 1.6�0.3 0.3�0.2 5.8�0.2 4.0�0.2 4.5�0.2 3.2�0.2

dBD1
=� +5.7 +5.7 +37.0 +4.6 +0.8 +28.4

dBD2
=� +0.5 +6.7 +0.9 +1.6 +3.1 +3.7

Table 9. Properties of the 6 Cabibbo suppressed B! D(�) �D(�) candidates. For D+ ! K��+�+,

P(D+
s ) is the probability to �t the D+

s hypothesis, based on the dE/dx measurements of the

�+'s and on the reconstructed masses for each of the K�K+�+ hypotheses
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Figure 9: A closeup view of event F (from Table 9) near the interaction point. This

event is a candidate for B� ! D��D0 with D0 ! K��+���+ and D�� ! D��0 followed by

D� ! K+����. The error ellipses represent 2�.
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Decay Events Comb. 90% C.L.

channel seen background Upper limit on B

�B0 ! D0 �D0 0 0.3�0.0 < 0:7%

�B0 ! D0 �D�0 +D�0 �D0 1 1.0�0.1 < 1:2%

�B0 ! D�0 �D�0 6 1.9�0.2 < 2:7%

Sum �B0 ! D(�)0 �D(�)0 7 3.2�0.3 < 2:7%

Table 10. Limits obtained on the branching fractions for the decays �B0 ! D(�)0 �D(�)0.

VcbVcdfB=mB, where fB ' 200MeV is the B meson decay constant. However, it was pointed out

recently [20] that �nal state interactions (rescattering from B0 ! D(�)+ �D(�)�) could signi�cantly

enhance this decay amplitude. For instance, the branching ratio for B0 ! D0 �D0 is expected to

be B(B0 ! D0 �D0) ' 2 � 10�5 [20]. No experimental measurements of these decays currently

exists and it is therefore interesting to search for them, although the statistical sensitivity

expected is far from the predicted theoretical values.

The best sensitivity is obtained by using the selection criteria of the inclusive analysis and

adding the requirements of no additional track at the D�D vertex and no additional K0
S in

the hemisphere. The D0 �D0 mass distribution of the selected events is shown in Fig.10a. No

signi�cant excess of events over the combinatorial background is observed. The 90% C.L. upper

limits obtained on the corresponding branching fractions are given in Table 10.

6.6 Search for the decay B0
s ! D(�)+

s D(�)�
s

Doubly-charmed B0
s decays have been searched for from events with a pair of opposite sign

reconstructed Ds mesons. Using the criteria described in Section 5.1, two events are observed in

the whole D+
s D

�

s mass spectrum, while the combinatorial background is expected to be 3.4�1.4

events. The D+
s D

�

s mass distribution of these events is shown in Fig.10b. While the low mass

event is clearly compatible with the background, a candidate for a two-body decay B0
s ! D+

s D
�

s

is observed at m(D+
s D

�

s ) = 5:357� 0:006GeV=c2, where no combinatorial background remains.

The decay length of this event is dB = 9:5 � 0:2mm, its scaled energy is xE(D
+
s D

�

s ) = 0:97

and both D vertices are more than 1.7 standard deviations (about 0:8mm) downstream from

the B vertex. However, this event is also compatible with a reection from the two-body decay

B0
d ! D�s D

+, where the decay D+ ! K��+�+ mimics a decay D+
s ! K�0K+(K�0 ! K��+).

From the Monte Carlo and from the observed number of two-body decays B0
d ! D�s D

+, the

expected number of reections from B0
d ! D�s D

+ is estimated to be 0.1 events. The following

90% con�dence level upper limit on the two-body doubly-charmed B0
s decays is extracted

B(B0
s ! D(�)�

s D(�)+
s ) < 21:8%:
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Figure 10: (a) D0 �D0 mass distribution of the events selected in the search for decays

B0 ! D(�)0 �D(�)0 (b) D+
s D

�

s mass distribution of the events selected in the search for decays

B0
s ! D(�)+

s D(�)�
s . Unshaded histograms are signal. Shaded histograms are events in the

sidebands of the D1 or the D2 mass spectra, normalised to the expected number of combinatorial

background events.
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6.7 Search for the decay Bc ! D��D0

The D��D0 mass plot of Fig.4c deserves special attention since D��D0 is a possible decay

mode for the Bc meson (by analogy with the Ds decay to K�K). However, assuming that the

fraction of Bc produced is in the range 0:6� 2 � 10�3 per b�b pair [21], and even if the branching

fraction to D��D0 is equal to the branching fraction of the Ds to K
�K, the expected number of

events after selection is 0:01� 0:03. One candidate event is observed in the data. The mass of

this candidate is m(D�+ �D0) = 6:403� 0:011GeV=c2, i.e. higher than the 6:24 � 6:28GeV=c2

mass range predicted by theoretical models [22]. The combinatorial background expected for

m(D�+ �D0) > 5:4GeV=c2 is estimated to be 0.6�0.2 events. Moreover, the reconstructed decay

length of this Bc candidate is dB = 0:1� 0:1mm, i.e. the D�+ �D0 vertex is compatible with the

interaction point. The following 90% con�dence level upper limit is extracted:

B(Z! BcX)� B(Bc ! D�+ �D0) < 1:9� 10�3;

to be compared with a theoretical expectation at the 10�6 level.

7 Conclusion

In this paper, a comprehensive study of all possible B meson decays into a charmed and an

anticharmed meson plus anything has been performed. The inclusive branching fraction of b

quarks to DsD(X) is measured to be

B(b! DsD
0;DsD

�(X)) =
�
13:1+2:6

�2:2(stat)
+1:8
�1:6(syst)

+4:4
�2:7(BD)

�
%;

in good agreement with previous measurements of the inclusive branching fraction of the B

mesons to Ds [1, 2]. For the �rst time, doubly-charmed B decays involving no Ds production

are observed. The corresponding inclusive branching fractions are

B(b! D0 �D0;D0D�(X)) =
�
7:8+2:0

�1:8(stat)
+1:7
�1:5(syst)

+0:5
�0:4(BD)

�
%

and

B(b! D�D�(X)) < 0:9% at 90% C:L:

Hence, as suggested in [5], a signi�cant fraction of the doubly-charmed B decays leads to

no Ds production. For the average mixture of b hadrons produced at LEP, the sum over all the

decay modes above yields:

B(b! DsD
0;DsD

�;D0 �D0;D0D�(X)) =
�
20:9+3:2

�2:8(stat)
+2:5
�2:2(syst)

+4:5
�2:8(BD)

�
%:

This measurement is in good agreement with the recent ALEPH measurement of the total charm

rate in b events [16] nc = 1:230� 0:036(stat)� 0:038(syst)� 0:053(BD), and with theoretical

expectations [5].
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Evidence for associated K0
S and K� production among the B! �DD(X) candidates is also

found and 18 candidates for three-body decays B! �D(�)D(�)K are observed. The three-body

decay branching fraction, averaged over B0
d and B�, is measured to be

B(B! �D(�)D(�)K) =
�
7:1+2:5

�1:5(stat)
+0:9
�0:8(syst)� 0:5(BD)

�
%:

Compared to the inclusive b results above, scaled by a factor 1=2fB0

d

= 1:3 to account for

b! �B0;B�, one sees that the three-body decays B! �D(�)D(�)K are a large part of the inclusive

doubly-charmed B! �DD(X) decays . No evidence for decays B! �D(�)D+
s1(2535) is found.

Semi-exclusive doubly-charmed B decays involving a Ds meson in the �nal state have also

been studied. Through the reconstruction of both the �D and the Ds, this analysis clearly

establishes that the low xE Ds production observed at the �(4S) is indeed due to decays

B0;B+ ! �D(�)D+
s X. For the �rst time, some candidates for completely reconstructed decays

B0;B+ ! �D(�)D+
s n�

� (n � 1) are also observed. A measurement of the branching fraction for

many-body decays B0;B+ ! �D(�)D+
s X is performed, leading to

B(B! D(�)�
s D(�)X) =

�
9:4+4:0

�3:1(stat)
+2:2
�1:8(syst)

+2:6
�1:6(BD)

�
%:

The branching fraction of B0 and B+ mesons into doubly-charmed two-body decay modes is

also measured and gives

B(B! D(�)+
s

�D(�)) =
�
5:6+2:1

�1:5(stat)
+0:9
�0:8(syst)

+1:9
�1:1(BD)

�
%;

in good agreement with previous measurements of the same quantity [1, 2].

Finally, two candidates for the Cabibbo suppressed decay B0
d ! D�+D�� are observed. The

corresponding branching fraction is measured to be

B(�B0
d ! D�+D��) =

�
0:23+0:19

�0:12(stat)� 0:04(syst)� 0:02(BD)
�
%:

One candidate for the Cabibbo suppressed decay B� ! D��D0, with both D vertices well

separated from the reconstructed B decay point, is also observed.
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9 Appendix: D�DK� and D�DK
0
S event properties

Run 12049 16176 16744 26062 26478 26814 26856 28490 36630

Event 2539 6779 1804 3422 7624 5048 1266 6843 5090

B type �B0 �B0 B+ B� B+ B0 B0 B+ �B0

D1 (from b) D�+ D+ �D0 D0 D�� D� D� D� D+

D2 (from W) �D0 �D0 D0 �D0 D+ D0 D0 D�+ �D0

K K� K� K+ K� K+ K+ K+ K+ K�

Diag. Type E E IE IE I E E I E

xE(DDK) 0.81 0.64 0.61 0.60 0.68 0.57 0.91 0.69 0.72

p(D1) 14.5 13.6 11.8 13.2 6.8 13.9 14.4 13.9 14.3

p(D2) 19.3 10.3 14.7 10.3 17.9 9.7 15.0 12.5 12.0

p(K) 2.8 4.8 0.8 3.5 5.8 2.3 11.7 4.6 6.2

�K(K) +0.7 +0.4 0.4 �0.3 +0.1 +0.1 +0.0 �2.2 +0.6

��(K) �1.0 �0.8 2.3 �2.2 �2.2 �1.7 �2.2 �4.2 �1.6

m(D1D2) (4.41) (4.06) 3.79 4.50� 4.61 (4.30) (4.37) 4.08� (3.99)

m(D1K) (2.958) (3.056) (3.063) (2.675)� (2.883) (3.165) (2.948) (2.926)� (3.141)

m(D2K) 2.710 2.793 3.335 2.377 (2.494) 2.531 2.695 (2.888) 2.635

m(D1D2K) 5.27 5.14 5.26 5.08 5.29 5.26 5.27 5.09 5.05

dB(mm) 3.3 3.2 1.9 3.7 1.4 1.0 7.3 6.9 8.2

�dB 0.2 0.1 0.4 0.2 0.3 0.2 0.3 0.2 0.4

dBD1
=� 7.2 6.8 1.1 +9.8 +2.5 +2.2 +30.4 +3.1 �1.2

dBD2
=� 4.0 4.0 5.3 +2.1 +1.8 +1.2 +4.3 �0.2 0.3

�� (K from D1) �1.7 �2.5 �3.0 �1.0 �0.1 �1.7 �1.6 �0.9 �0.4

�� (K from D2) �1.8 �2.4 �1.9 - �1.2 �0.9 �2.1 �2.5 -

Table 11. Properties of the 5 fully reconstructed and the 4 partially reconstructed D(�)D(�)K�

events. () means resonance impossible in c�c [m(D1D2)] or in c�s [m(D1K), m(D2K)], due to

the electric charge. The diagram types E, I and EI mean external, internal or both spectator

diagrams. The � means 150 MeV/c2 must be added to obtain the fully reconstructed event; it

is quoted only for events where the partially reconstructed D� is unambiguous.
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Run 15066 15931 16249 23223 27804 29425 36643 37192 37789

Event 499 5619 3332 5757 742 7168 2440 9758 15771

B type B� B� B0, �B0 B+ B0, �B0 B0, �B0 B0, �B0 B+ B0, �B0

D1 type D0 D0 D+ �D0 D�� D+ D�� �D0 �D0

D2 type D�� D�� D�� D+ D�+ D�� D+ D+ D0

Diag. type E E IE E IE IE IE E I

xE(D1D2K
0) 0.74 0.75 0.75 0.94 0.75 0.89 0.73 0.74 0.77

p(D1) 12.1 14.1 13.6 25.8 16.2 20.1 17.6 17.3 8.8

p(D2) 16.8 17.3 11.8 13.7 12.3 14.8 12.6 13.4 20.3

p(K0) 4.7 2.8 8.3 3.7 5.2 5.6 2.6 3.3 6.5

m(D1D2) (4.51)� (4.56) 4.35 4.72 4.57 4.26 4.69 (4.17)� 4.63

m(D1K
0) (2.693)� (2.655) 2.619 (2.466) 2.630 2.754 2.607 (2.903)� (2.810)

m(D2K
0) 2.585 2.795 3.139 2.603 2.968 3.206 2.619 2.702 (2.460)

m(D1D2K
0) 5.147 5.280 5.273 5.289 5.298 5.303 5.279 5.088 5.309

dB(mm) 6.2 2.2 2.7 9.1 19 6.5 2.7 5.0 3.1

�dB 0.2 0.2 0.3 0.2 0.5 1.5 0.2 0.2 0.2

dBD1
=� +0.8 +0.4 +1.8 +0.8 +0.7 +4.9 +5.5 +2.7 �0.8

dBD2
=� +5.0 +8.1 +4.2 +12.4 +0.6 �1.1 +2.3 +1.0 +0.3

�� (K from D1) �2.7 �2.3 �1.0 �1.7 - �2.8 �2.9 �2.7 �3.0

�� (K from D2) �2.9 �2.4 �0.4 �2.7 �0.4 �2.0 �1.5 �1.9 �2.4

Table 12. Properties of the 7 fully reconstructed and the 2 partially reconstructed D(�)D(�)K0

events. () means resonance impossible in c�c [m(D1D2)] or in c�s [m(D1K), m(D2K)], due to

the electric charge. The � means 150 MeV/c2 must be added to obtain the fully reconstructed

event; it is quoted only for events where the partially reconstructed D� is unambiguous.
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