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Measurement of the Spectral Functions of

Vector Current Hadronic Tau Decays

The ALEPH Collaboration 1

Abstract

A measurement of the spectral functions of non-strange � vector current final

states is presented, using 124 358 � pairs recorded by the ALEPH detector at LEP

during the years 1991 to 1994. The spectral functions of the dominant two- and

four-pion � decay channels are compared to published results of e+e� annihilation

experiments via isospin rotation. A combined fit of the pion form factor from �

decays and e+e� data is performed using different parametrizations. The mass

and the width of the ��(770) and the �0(770) are separately determined in order

to extract possible isospin violating effects. The mass and width differences are

measured to be M��(770)�M�0(770) = (0:0 � 1:0) MeV=c2 and ���(770)���0(770) =

(0:1 � 1:9) MeV=c2.

(To be submitted to Zeitschrift f�ur Physik)

1See next pages for the list of authors.
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1 Introduction

The spectral functions of vector current hadronic � decays are related to the isovector
cross section of electron-positron annihilation [1] if isospin invariance of the hadronic
currents (Conserved Vector Current property | CVC) is valid. In this respect, data
on hadronic � decays provide not only an additional and precise measurement, but also
an independent test of theoretical and experimental consistencies. This is even more
important as e+e� data for those final states with higher pion multiplicity are in some
cases rather inconsistent. Finally, and most importantly, � spectral functions are an
important probe for the study of perturbative and non-perturbative QCD.

A total number of 124 358 Z boson decays into � pairs were accumulated by the ALEPH
detector at LEP during the years 1991 to 1994. These events, in addition to the high
reconstruction efficiency of exclusive � decay modes, allow a precise measurement of the
spectral functions of the dominant vector hadronic � decays including those with high
neutral pion multiplicity.

The measurement of the non-strange � vector spectral functions is presented, with
special emphasis on the dominant two- and four-pion final states. In addition, extensive
comparisons to isovector e+e� annihilation results are performed. The pion form factor
in �� ! ���0 ��

2 decays is fitted using parametrizations of K�uhn-Santamaria [2] and
Gounaris-Sakurai [3]. Additionally, e+e� and � data are combined in fitting the masses
and widths of the ��(770) and �0(770) separately in order to extract information about
isospin violation between these states.

Several analyses have already been performed along these lines. In 1987, the ARGUS
Collaboration published the spectral function of the decay ��! 2���+�0 �� [4]. The
CLEO Collaboration compared e+e� results via CVC to the corresponding invariant
mass spectra of the � final states 2h�h+�0 and 3h�2h+�0 [5]. Recently, the ALEPH
Collaboration published a study of � decays into � and ! mesons [6], in which the final
states ���0� and ��! were found to be in good agreement with e+e� data.

The paper is organized as follows: after the definition of the � vector spectral
functions and its relationship to e+e� annihilation data, a brief introduction of the ALEPH
experiment is given and the � selection and particle identification procedure are described
as well as the � decay classification including the photon and neutral pion reconstruction.
Then the measurement of the spectral functions, which are directly related to the invariant
mass spectra of the respective � decay channels, is presented. This is an important step
in the analysis since the unfolding of detector effects requires particular care. A detailed
description of systematic effects affecting the measurements follows. The results are
compared to the published data of e+e� annihilation experiments and, in particular, a fit
of the pion form factor is performed.

More tests concerning QCD phenomenology, in particular precise fits of the strong
coupling constant �s and non-perturbative contributions, tests of QCD sum rules and
the measurement of the axial-vector spectral functions will follow in forthcoming papers.

2Throughout this paper, charge conjugate states are implied.
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Preliminary results have already been presented in Ref. [7].

2 Spectral Functions

The measurement of the non-strange � vector current hadronic spectral functions requires
the selection and identification of � decay modes with a G-parity G=+1, i.e., hadronic
channels with an even number of pions, neutral or charged. The isovector spectral function
v1; X�(s) of a � vector channelX

� �� is obtained by dividing the normalized invariant mass-
squared distribution (1=NX�)(dNX�=ds) for a given hadronic mass

p
s by the appropriate

kinematic factor:

v1; X�(s) = H
B(��! X� �� )

B(��! e� �� ��e)

1

NX�

dNX�

ds

2
4
 
1�

s

M2
�

!2  
1 +

2s

M2
�

!3
5
�1

(1)

with the branching ratio B(��! X� �� ) normalized to the branching ratio of the electron
channel. The dimensional constant H is defined as

H =
M2

�

6 jVudj2 SEW
; (2)

where jVudj = 0:9752 � 0:0007 denotes the CKM weak mixing matrix element [8]
and SEW = 1:0194 accounts for electroweak radiative corrections [9]. The � mass
M� = 1776:96+0:31�0:27 MeV=c2 is taken from the recent BES measurement [10].

Theoretically, the spectral functions of hadronic � decays are related via dispersion
relations to the imaginary parts of the analytic two-point correlation functions ���

ij;U(q) �
i
R
d4x eiqxh0jT (U�

ij(x)U
�
ij(0)

y)j0i of vector (U � V = � j
� i) or axial-vector (U �

A = � j
�5 i) colour-singlet quark currents in corresponding quantum states (see, e.g.,

Ref. [11, 12]).

Then, using the optical theorem and isospin rotation, the spectral function of a �
decay mode X� �� in a given isospin state for the hadronic system is related to the e+e�

annihilation cross section of the corresponding isovector final state X0:

�I=1e+e�!X0 =
4��2

s
v1;X� : (3)

For the two-body hadronic final state X� � ���0 in � decays, it is customary to introduce
a weak pion form factor ~F I=1

� to describe phenomenologically the probability density of
the transition W�! ���0:

j ~F I=1
� (s)j2 =

12

�3�(s)
v1; ���0(s) ; (4)

where ��(s) = (1 � 4m2

�=s)
1=2 is the pion velocity in the hadronic centre of mass. The

weak pion form factor can be identified with the isovector electromagnetic form factor,
given by

jF I=1
� (s)j2 =

3

�

s

�2 �3�(s)
�I=1e+e�!�+�� ; (5)

using isospin invariance (CVC).
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3 The ALEPH Detector

The ALEPH detector provides both tracking and calorimetric information over almost the
full solid angle. The features relevant for this analysis are briefly mentioned here, while
a detailed description of its components and performance can be found in Refs. [13, 14].

The momentum of charged particles is reconstructed using the information given by
the three tracking devices immersed in a 1.5 T axial magnetic field: a double-sided silicon
microstrip vertex detector, an eight-layer axial wire chamber and a large time projection
chamber (TPC), the last providing up to 21 space points for tracks of charged particles
and up to 338 measurements of the ionization loss (dE/dx). The transverse momentum
resolution achieved in the combined fit is �pT=pT ' (5 � 0:6 pT (GeV=c)�1)� 10�3.

The electromagnetic calorimeter (ECAL), located inside the magnetic coil, is formed
of a barrel surrounding the TPC, closed at each end by an endcap. It consists of 45
layers of a total thickness of 22 radiation lengths. The energy and position of a shower
is read out using cathode pads with dimensions 3 � 3 cm2, arranged to form towers
pointing to the interaction zone; each tower is read out in three segments in depth
corresponding respectively to 4, 9, and 9 radiation lengths. The energy resolution is

�E=E ' 18%=
q
E=(GeV) + 0:9%. There are 74 000 such towers, corresponding to

an average granularity of 0.9��0.9�. The inactive zones (\cracks") between the ECAL
modules represent 2% of the total solid angle in the barrel and 6% in the endcaps. The fine
granularity and the longitudinal segmentation of the calorimeter play an important role
in the photon and neutral pion reconstruction, and in the identification of fake photons
produced by hadronic interactions of charged hadrons or split-offs from electromagnetic
showers.

The hadron calorimeter (HCAL) has 23 layers of iron absorber each 5 cm thick with
limited streamer tubes 9�9 mm2 in cross section between each layer. The tower read-
out is built from pads with an angular size of 3.7��3.7�. Strips running along the tubes
provide a digital readout giving a two-dimensional view of the development of hadronic
showers and muon trajectories.

The trigger efficiency is measured to be better than 99.99% within the selection cuts
of this analysis.

Tau pair events produced at the Z mass peak are simulated using the standard Monte
Carlo program KORALZ [15, 16, 17] and passed through a full detector simulation based
on GEANT [18]. Electromagnetic showers are simulated according to parametrizations
obtained from test beam data [13]. Several tests and corrections of the detector simulation
have been carried out within the scope of this analysis to assure its reliability and to
estimate systematic uncertainties.

3



4 Event Selection and Classif ication

4.1 � Pair Selection

The topology of � pair events produced at the Z mass scale is characterized by back-to-
back, narrow jets with an average multiplicity much lower than for hadronic Z decays.
Thus, candidates are selected by retaining low multiplicity events coming mainly from
lepton pair decays of the Z. A detailed description of the � pair pre-selection can be
found in Ref. [19]. Additional cuts are applied in order to suppress Bhabha and dimuon
background as well as background coming from two-photon processes and cosmic ray
events [20]. More details about the cuts to remove hadronic Z decays from the � pair
sample are provided in Ref. [21]. The analysis presented here is based on a sample of
data recorded by the ALEPH detector during the years 1991 up to 1994 of LEP running.
In total 124 358 � pairs are selected, with a detection efficiency of (78.8 � 0.1)%. The
overall non-� background contribution in the hadronic modes, obtained from Monte Carlo
simulation corrected with data [20, 21], amounts to (0.6 � 0.2)%.

Tau decays are classified according to the number of charged hadrons and to the
number of reconstructed �0's.

4.2 Charged Particle Identification

To identify charged particles coming from � decays, a maximum likelihood method is
employed, combining different and essentially uncorrelated information measured for each
individual track. This procedure is originally described in Ref. [22] and additionally
improved in Ref. [20]. As a result, hadrons from one-prong � decays with a momentum
above 2 GeV=c are correctly identified with an efficiency of (98.31 � 0.06)%. The
probabilities of electrons and muons being misidentified as hadrons are (0.51 � 0.10)%
and (0.68 � 0.10)%, respectively.

4.3 Photons and Neutral Pion Reconstruction

Photon identification and �0 reconstruction, briefly described in this section, and the
subsequent � decay classification follow in detail the procedure of Ref. [21].

Photons have characteristic shower profiles in the electromagnetic calorimeter. They
are reconstructed by collecting associated energetic ECAL towers, forming a cluster. To
distinguish genuine photons from fake photons a likelihood method is applied using ECAL
information, e.g., the fraction of energy in the respective ECAL stacks, the transverse size
of the shower or the distance between the barycentre of the cluster and the closest charged
track, to veto fake photon candidates. This procedure is performed for all photons in a
given hemisphere, attributing a probability to be a genuine photon to each of them. A
more detailed description of the likelihood and the variables used can be found in Ref. [21].

In order to identify in an ensemble of reconstructed photons those originating from a �0

decay, probabilities are calculated as the product of the genuine photon probabilities and
a probability that the pair originates from a �0 using a �0 mass constraint. Neutral pions

4



reconstructed with two photons are called resolved. At higher �0 energy, the opening angle
between the boosted photons tends to become smaller than the calorimeter resolution so
that the two electromagnetic showers are often merged in one cluster. The transverse
energy distribution in the ECAL nevertheless allows the computation of energy-weighted
moments providing a measure of the two-photon invariant mass. Such reconstructed �0's
are called unresolved. A remaining photon considered as originating from a �0 while the
second photon has been lost is called residual.

To improve the energy resolution of resolved �0's, the energies of the contributing
photons and the opening angle are refitted using the nominal �0 mass as a constraint.
The reconstructed energies and momenta of identified �0's are subjected to a certain
number of tests and corrections to assure the reliability of the simulation. These are
described in Ref. [21] and Section 6 as far as crucial points of this analysis are concerned.

5 Measurement of the � Vector Spectral Functions

The measurement of the � spectral functions defined in Eq. (1) requires the determination
of the physical invariant mass-squared distribution. To extract it from the measured one it
needs to be unfolded from the effects of measurement distortion. The unfolding procedure
used in this analysis follows a new method published in Ref. [23], which is briey recalled
here.

5.1 The Unfolding Procedure

The convolution (folding) of an invariant mass distribution during the measurement
process can be understood as a linear equation

Ax = b ; (6)

where x = x1; : : : ; xn is the unknown (binned) true mass distribution to be determined,
A = A11; : : : ;Amn is the detector response matrix taken from the simulation of the
measurement process, and b = b1; : : : ; bm is the measured distribution. The matrix element
Aij gives the probability that an event with a true mass in bin j is reconstructed in bin i.
Since the detector response matrix is a numerically singular matrix, the direct inversion
of (6) leads to very unstable and therefore useless results. To extract the statistically
significant information in A, a Singular Value Decomposition is applied, i.e. the matrix
A is decomposed through A = U S V T , where U and V are orthogonal matrices and S
is diagonal. The inversion of (6) now reads

xi = Vij
1

Sjj
UT
jk bk : (7)

Small diagonal elements Sjj may give rise to meaningless fluctuations in the solution
distribution x. In order to suppress them, a regularization parameter � which performs a
smooth cutoff is introduced in (6), transforming the system of linear equations into the
following minimization problem:

jAx � b j2 + � jC x j2 = min : (8)
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Figure 1: Plot (a) shows the detector response matrix used for the unfolding of the mass-

squared (s) spectrum of the decay ��! 2���+�0 �� . The true, reconstructed (\measured")
and unfolded distributions of the corresponding Monte Carlo test spectrum are plotted in

(b). The shaded region illustrates the uncertainty after unfolding, taking into account the

statistical errors.

The additional regularization term jC x j2 in (8) is the total curvature (sum of the
squares of the second derivatives) of the solution distribution x, where C is the symmetric
curvature matrix defined as C1;1 = Cn;n = �1, Ci;i = �2 (i = 2; : : : ; n � 1),
Cj;j+1 = Cj+1;j = 1 (j = 1; : : : ; n � 1) and Ci;j = 0 otherwise. The cut parameter �
controls the relative importance of the two terms in Eq. (8): if � is chosen too small,
the solution x contains meaningless fluctuations; on the other hand, if � is too big,
significant physical information is lost. The solution of the unfolding problem is now
transformed into the optimal choice of �. In practice, the best � is found by means of
the parallel unfolding of a simulated test distribution btest, for which the solution xtest
is known (see Fig. 1). The best choice of � yields the smallest �2 between the unfolded
test distribution and the original true one. In order to make sure that this procedure
applied to a simulated distribution leads to the optimal � for data use, a test distribution
has to be found, which reproduces the data as well as possible. For example, in the
particular case of the ��! 2���+�0 �� channel (see Fig. 3), the Monte Carlo simulation
disagrees with the data in the peak region. As an appropriate test function, the unfolded
data distribution is taken, found by an iterative adjustment of � for the data. In this
process it is important to distinguish significant information in the raw data distribution
from insigni�cant statistical fluctuations, taking into account the mass resolution. Local
statistical fluctuations in the measured distribution are washed out after unfolding. The
systematic uncertainty coming from possible ambiguities in the choice of � is described in
Section 6.3.

In order to measure exclusive spectral functions, individual unfolding procedures with
specific detector response matrices AX and cut parameters �X are applied for each � decay
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channel X considered.

5.2 Spectral Functions for Exclusive � Decay Modes

The following vector � decay modes are exclusively reconstructed: ���0 �� , �
�3�0 �� ,

2���+�0 �� , 2���+3�0 ��and 3��2�+�0 �� . The measured mass-squared spectra
corresponding to these channels are shown in Fig. 2 and 3. Before unfolding them,
the � and non-� background and the strange contributions are subtracted using the
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Figure 2: Invariant mass-squared distribution of the ��! h��0 �� decay. The PDG [8]
values m�� (m�0) are assumed for the masses of charged (neutral) particles.

Monte Carlo simulation3 which is based on models of resonance production implemented
in KORALZ3.8 with TAUOLA1.5 as � decay library [15, 16, 17]

The spectral functions of the dominant two- and four-pion modes are shown in the �rst
three plots of Fig. 4. The errors shown are the diagonal elements of the covariance matrix.
They include both statistical and systematic uncertainties. The 2���+�0 �� decay mode
is compared to data of the ARGUS Collaboration [4].

3No strange contribution is assumed in the 2h�h+3�0 �� channel.
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and 3h�2h+�0 �� decay channels, respectively. The points are the measured data, the
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Figure 4: Spectral functions of the � decay channels ���0 �� , �
�3�0 �� , 2�

��+�0 �� and

the total � vector spectral function. The error bars are the diagonal elements of the

covariance matrices. They contain both statistical and systematic contributions. The

ARGUS data [4] in the ��! 2���+�0 �� channels contain statistical errors only.
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5.3 The Total � Vector Spectral Function

The total vector current spectral function is obtained by summing up the exclusive spectral
functions with the addition of small contributions from unmeasured modes, as discussed
below. Table 1 gives a survey of the exclusive decay modes considered, their classification
and the corresponding branching ratios. If not otherwise specified, the latter were taken
from ALEPH publications [21, 6] complemented by CLEO measurements [24, 25, 26, 27]
and new results about branching fractions of � decay modes involving kaons presented
in Refs. [28, 29]. The individual fractions have been refitted so that the sum of all
branching ratios adds up to 100%. The branching ratios of the subsequent meson decays
are taken from [8]. The small contributions labeled \MC" are taken from the Monte Carlo
simulation. The two-, four- and six-pion modes are exclusively reconstructed as explained
in Section 5.2. Special care is taken with isospin-violating ! and � decays, and with final
state Kaon production, as explained in the following:

{ The decay channel �� ! ��! �� is partly reconstructed in the 2h�h+�0 �� class
(! ! �+���0), in the h� 2�0 �� class (! ! �0) and in the 2h�h+ �� class
(! ! �+��). Corrections to the total � vector spectral function are applied for the
latter two cases using invariant mass-squared distributions predicted by the Monte
Carlo simulation. The systematic error due to the uncertainties in the Monte Carlo
predictions is estimated to be 20% in every simulated mass bin. For all the following
channels where the Monte Carlo simulation is used to complete the total � vector
current spectral function, the uncertainty is assumed to be 50% in every simulated
mass bin in order to take into account the poorer knowledge of the spectrum.

{ The decay channel K�K0 �� consists of 50% K0

L
and 50% K0

S
. The long-lived K0

L

does not decay within the reach of the ALEPH tracking system. Its characteristic
signature in the detector is a large energy deposition in the HCAL, exceeding the
expected amount from the charged kaon alone. The decay rate for ��!K�K0

L
��

was measured by ALEPH [30, 31]. The K�K0

L
�� decay is included in the inclusive

��! h� �� selection sample. The K�K0

S
�� decay is reconstructed in the 2h�h+ ��

and h� 2�0 �� samples which are dominated by axial-vector decays. Thus both
K�K0 �� contributions are taken from the simulation and added to the vector
spectral functions.

{ The � decay channel ���0� �� is reconstructed in the inclusive channels h�3�0 �� ,
h�4�0 �� and 2h�h+2�0 �� . The last two contributions to the � vector spectral
functions are taken from the simulation, whereas in the h�3�0 �� channel, the
measurement includes the contribution from the ���0� �� mode.

{ By virtue of isospin constraints it was deduced in Ref. [32] that the � decay
modes K�K0�0 �� , K

�K+�� �� and K0 �K0�� �� are (78
+22

�28)% vector currents. Their
contributions to the � vector spectral functions are taken from the simulation.
Neglecting so-called second class currents, the branching ratios of both K�K�� states
are equal using isospin symmetry ([33] and references therein).

{ The � decay into K�K�� is poorly known. According to their respective final states,
about 40% of the K�K�� decays are reconstructed in vector channels while about
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30% (30%) are selected in the axial-vector (strange) channels. The vector part of
the total K�K�� branching ratio is estimated to be (0.08� 0.08)%.

original �� � branching
vector mode

final state input data
ratio (in%)

���0 �� h��0 25.35 � 0.19
��3�0 �� h�3�0 1.17 � 0.14

2���+�0 �� 2h�h+�0 2.54 � 0.09
2���+3�0 �� 2h�h+3�0

3��2�+�0 �� 3h�2h+�0
)

0.037 � 0.022(1)

��5�0 �� {
2���+�0 �� 2h�h+�0 1.63 � 0.08

��! �� ���0 �� MC 0.155 � 0.010
2�� �+ �� MC 0.038 � 0.005
���0 2 �� h�3�0 0.068 � 0.011
�� 4�0 �� MC 0.055 � 0.009

���0� �� 2���+ 2�0 �� MC 0.039 � 0.007
2���+�0 �� MC 0.008 � 0.001

K�K0 �� MC 0.194 � 0.042

K�K0�0 �� MC 0.100 � 0.046
K�K+ �� �� [34, 35] MC 0.168 � 0.030

K0 �K0�� �� MC 0.168 � 0.030(1)

K�K�� Vector MC 0.08 � 0.08

Total Vector 31.71 � 0.31

1The branching ratio is obtained using isospin invariance as explained in the text.

Table 1: Tau decays contributing to the total vector current spectral function. The �rst and
second columns contain the physical decay modes and the corresponding �nal states. The

third column shows the topology as reconstructed in the detector. Contributions from the

\MC" labeled modes, are taken from the Monte Carlo simulation. The right-hand column

gives the corresponding �nal state branching ratios. The vector part of the K�K� �� modes
is estimated to be (78+22�28)% [32].The last line gives the total branching fraction of vector

hadronic � decays.

{ For the six-pion final states, one can deduce most restrictive upper bounds
for unknown or unprecisely measured channels utilizing isospin invariance in
conjunction with the method developed by Pais [36] (see Appendix) in which the �
partial width is decomposed into a set of orthogonal classes fijkg. As values for the
corresponding branching ratios one may take half the bounds with 100% uncertainty.
Using advantageously only the 3��2�+�0 �� data [21, 8, 24] and subtracting from it
the contribution from the isospin violating, axial-vector 2���+� final state [37], we
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Figure 5: Correlations between the data points of the total � vector spectral function

shown in Figure 4. The shaded (empty) boxes are proportional to the positive (negative)

correlation in the interval [0; 1] ([0; j � 1j]). The contour lines illustrate the 75% (solid

line), 50% (dashed line) and 25% (dotted line) correlations, respectively, for positive and

negative correlations.

obtain a total vector six-pion branching ratio ofB(��! (6�)�V �� ) = (0:030�0:030)%
from an upper (lower) limit when choosing the class f330g (f411g) to be dominant.

The total � vector spectral function is shown in Fig. 4, while Fig. 5 depicts the
corresponding correlation matrix.

6 Systematic Errors

The study of systematic errors affecting the measurement is subdivided into several
classes according to their origin, i.e., the photon and �0 reconstruction, the charged
track measurement, the unfolding procedure and additional sources. All systematic
uncertainties concerning the classification are contained in the errors of the branching
ratios measured under identical conditions using the same analysis techniques [21]. Only
the systematic effects affecting the mass-squared distributions need to be examined here.
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6.1 The �0 Reconstruction

The following effects are studied:

{ The photon energy calibration is performed by comparing the ratio of the ECAL
cluster energy of electrons, reconstructed as if they are photons, to the momentum
of the track in data and simulation. The electrons are taken from two-photon
processes at low energies, ��! e� ��e�� decays at low and intermediate energies, and
Bhabha events at beam energy. At the lowest energies (below 10 GeV) electron
showers cannot be used because of the large curvature of their trajectories. To
circumvent this, neutral pion decays with wide opening angles are used for the
energy calibration. Special care is necessary to correct the calibration for energy
dependent effects, i.e., differences in the distribution of the photon opening angle
between data and the simulation due to an excess of fake photons in the data.
Depending on the polar angle, the final relative calibration uncertainty is found
to be about 0.6{2.3% for energies up to 3 GeV, 0.4{2.2% between 3 and 10 GeV,
0.5{1% between 10 and 20 GeV, 0.3{0.5% between 20 and 40 GeV and finally about
0.2% at beam energy. The corresponding systematic error is determined by varying
the energy dependent calibration within its respective uncertainty. It should be
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Figure 6: Energy resolution of resolved and unresolved �0's in the simulation as a function

of the �0energy before and after the �0 mass constrained �t in the barrel (jcos�j � 0:774)
and endcaps (0:774 < jcos�j � 0:95), respectively.

emphasized that due to a precise measurement of the two photon opening angle at
low energies, uncertainties in the calibration are highly recovered by the �0 mass
constrained fit. This is not valid at high energies. Fig. 6 shows the gain achieved
in the energy resolution when performing the fit, as found in the simulation.

{ The ECAL energy resolution in data and simulation at high energies is studied
using Bhabha events with low radiation (EECAL=ETPC ' 1, at beam energy). It
is found to be overestimated in the simulation by about 14%. At low energies,
the resolution of photon energies is directly tested, using the experimental width
of the reconstructed �0 mass. All detected deviations in the energy resolution are
corrected in the simulation, while its uncertainties are taken as systematic errors.
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Figure 7: Fraction of fake photons in (a) residual �0's and (b) resolved �0's in hadronic

� decay channels as a function of the �0 energy.

{ The reference distributions for the likelihood procedure to evaluate the photon
probability are obtained from the Monte Carlo simulation. These distributions
are slightly corrected after detailed comparisons between data and Monte Carlo
simulation. By switching off this correction, a conservative systematic error is
determined (see Ref. [21] for more details).

{ The threshold for photon detection is 300 MeV. The comparison of low energy
photons belonging to resolved �0's in data and Monte Carlo simulation shows that
the inefficiency in data is larger by (4.4 � 3.4)% with respect to the simulation [21].
This is corrected in the simulation. A variation of the threshold by �20 MeV
corresponds to a change of the photon reconstruction efficiency near threshold of
3.4%. A variation of the photon energy threshold by �30 MeV is used to extract a
conservative systematic error due to the quoted uncertainty in the determination of
the efficiency.

{ A cut on the minimal distance between the barycentre of an electromagnetic
cluster and the closest track is applied in order to veto fake photon candidates
from hadronic interactions in the ECAL. Thus, a cluster deposited in the ECAL
is considered as a photon candidate if its minimal distance to the nearest charged
track exceeds 2 cm. The comparison of the distribution of this distance between
data and simulation below 8 cm shows good agreement. Similar to the minimal
photon energy threshold, a possible discrepancy can be covered by a variation of the
minimal distance cut value by �0.1 cm, which is used to extract the corresponding
systematic error (see Ref. [21] for more details).

{ The data suffer from an excess of fake photons compared to the simulation. This
excess is measured by fitting the simulated distributions of the �0 probabilities for
resolved �0's and the single photon probabilities for residual photons originating
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Figure 8: Spectra of �0 energy for (a) residual �0's and (b) reconstructed �0's in

��! h��0 �� decays for data (points) and the Monte Carlo simulation (histogram). The

shaded areas illustrate the fake photon contamination. The unresolved component of the

�0 sample in (b) is shown by the hatched area. The lower plots show the corresponding

Monte Carlo/data ratios.

from fake and good photons to the data. Fig. 7 shows the fraction of fake photons
in the residual and resolved �0 sample of hadronic � decays as a function of the �0

energy. Unresolved �0's occur preferentially at high energy. They have a negligible
contamination of fake photons. The enhancement of the fraction of fake photons
in the high energy region in the resolved �0 sample is due to split-off effects
when energy fluctuations produce a low energy satellite cluster, misidentified as
a photon, near the unresolved one. The measured spectrum of invariant mass of
each considered decay channel is corrected according to its corresponding energy-
dependent excess of fake photons. The statistical errors of the probability fits
together with the systematic uncertainty coming from genuine differences in the
probability distributions (extracted by switching off the corrections of the respective
likelihood variable distributions as discussed in Ref. [21]) are used to estimate the
corresponding systematic uncertainty.

{ The apparent �0 mass and resolution depend on the the �0 energy. This
dependence is used as a reference in order to calculate the probability for two
photons to originate from a �0. Varying these dependences within their uncertainties
yields the corresponding systematic errors. In performing the constrained fit, the
measured photon energies and their opening angle are refitted in order to constrain
the apparent energy dependent masses to the nominal �0 mass.
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Fig. 8 shows the energy spectrum of residual and reconstructed �0's after applying
the corrections mentioned above. The contamination of the residual sample with
fake photons is illustrated by the shaded area (upper left plot).

6.2 Systematics in the Measurement of Charged Tracks

The following systematic effects are studied:

{ The momentum calibration is performed using muon pairs and final states
originating from narrow resonances. The corresponding systematic errors are found
by varying the partly correlated errors of the polar angle dependent calibration.
These fluctuations are assumed to be sagitta errors and therefore scale with the
squared particle momentum. They amount up to an uncertainty of 0.1%. The
relative uncertainty on the magnetic field is estimated to be lower than 0.03% [38].

{ The momentum resolution is studied with � pair events at beam energy. A
correction of about 20% has to be applied to the simulation. The uncertainty on
this correction yields a systematic error.
Fig. 9a shows the momentum spectrum of the charged hadron in �� ! h��0 ��
decays for data and the Monte Carlo simulation. Good agreement is found.
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Figure 9: Momentum spectrum of the charged hadron in ��! h��0 �� decays (a) and

distribution of the angle between equal charged tracks in three-prong � decays (b) for
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{ The reconstruction efficiency of highly collimated tracks as they occur in multi-
prong events can be tested by comparing the angular distribution between like-sign
tracks in the data and the simulation in ��! 2h�h+ �� events. They are found to
be in good agreement (see Fig. 9b). The corresponding systematic uncertainty is
negligible.

{ The effect of secondary nuclear interactions is studied by comparing the
invariant mass-squared distributions of enriched data samples to the Monte Carlo
simulation. An enrichment of about 48% of events containing nuclear interactions
is found in the simulation when requiring a minimal distance d0 between track(s)
and interaction point of at least 1 cm [13]. The resulting hadronic invariant mass
spectra are found to be in good agreement between data and the simulation. Again,
the systematic effect on the shape of the measured distributions is negligible. The
consequences of topology-changing effects, i.e., a feed-through of events between
different � decay modes, are contained in the branching ratio uncertainty and are
described in detail in Ref. [21].

6.3 Systematic Errors in the Unfolding Procedure

Two important tests are performed to evaluate potential systematic biases introduced by
the unfolding procedure:

{ The cut parameter � of Eq. (8) is varied in the region �2=dof � 2 around
the minimum, obtained when unfolding the corresponding test distribution under
same conditions as the data, i.e. using the same detector response matrix. The
appropriate test distribution is designed to reproduce well the data (as explained
in Section 5.1). The test distribution must not introduce additional statistical
uctuations and should therefore be smoothed as if it were built with in�nite
statistics. Nevertheless, the corresponding �2 is computed within the accuracy of
given data statistics.

{ The total bin-to-bin differences between the unfolded test and its true
distribution is considered as an additional systematic uncertainty of the unfolding
procedure in order to be more conservative. It is taken as a diagonal, i.e.,
uncorrelated, systematic error in the unfolded data distribution (see Fig. 1).

6.4 Other Sources of Systematic Errors

In addition, the following sources are examined:

{ The limited statistics in the simulation causes a systematic error which is
determined by making the two-dimensional entries in the detector response matrices
fluctuate independently.

{ The uncertainties in the hadronic branching ratios introduce the dominant
systematic errors in the subtraction of the � background and kaon channels from
data and in the respective normalization of the spectral functions. They are quoted
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by varying the branching ratios, taking into account the correlation matrix given in
Ref. [21].

{ The non-� background is varied by �50%.

All mentioned sources of systematic errors other than those originating from
uncertainties in the branching ratios, i.e., the absolute normalization of the respective
mass-squared distributions, are only considered when they concern the shape of the
measured distribution. Their effect on the normalization is already included in the error
of the corresponding branching ratio.

To illustrate the respective importance of the mentioned systematic uncertainties,
one may perform an integration over the spectral function with some given kernel,
characteristic of the physical problem to be studied. The integration error is then obtained
by Gaussian error propagation, taking into account the correlations; using moderate,
s-dependent integration kernels, the integration error will clearly be dominated by
normalization uncertainties, i.e., the errors on the respective � branching ratios. However,
the error of an integration with strongly s-dependent weighting kernels enhancing the low
energy part of the spectral functions will be dominated by systematics (mainly due to the
fake photon rejection and the photon efficiency correction at threshold), while the central
energy region (0.6 { 1.4 GeV2=c4) is statistically limited. When enhancing the higher part
of the spectrum, the integration error will be equally dominated by uncertainties due to
the unfolding process, and by limited data and Monte Carlo statistics.

7 Applications

Two applications of this analysis are described. In the first one the measured spectral
functions of the two- and four-pion final states are compared via isospin rotation to data
from e+e� annihilation experiments. The second application deals with a fit of the ���0

spectral function in terms of vector resonances.

7.1 Comparison to e
+
e
� Results

In this section, the most precise spectral function measurements of the � vector current
final states ���0, ��3�0 and 2���+�0 are compared to the cross sections of the
corresponding e+e� annihilation isovector states �+��, �+���+�� and �+���0�0. Using
Eq. (1) and isospin rotation [39, 40] (see Appendix) the following relations hold:

�I=1;0e+e�!�+�� � �I�! =
4��2

s
v1; ���0 �� ; (9)

�I=1e+e�!�+���+�� = 2 �
4��2

s
v1; �� 3�0 �� ; (10)

�I=1e+e�!�+���0�0 =
4��2

s
[v1; 2���+�0 �� � v1; �� 3�0 �� ] : (11)
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In Eq. (9) the small isospin-violating, isoscalar, electromagnetic contribution !(782) !
�+�� is taken into account through its interference with the main isovector contribution
yielding the (s-dependent) correction �I�! obtained from a fit of the total e+e�!�+��

cross section [2]. The mass and the width of the !(782) are taken from Ref. [8].

The e+e�! �+�� measurements are taken from OLYA [44, 45], TOF [46], NA7 [47],
CMD [44], DM1 [48], DM2 [49], MEA [50] and BCF [51, 52]. The comparison to � data
according to Eq. (9) is shown in Fig. 10. The two sets of measurements are very precise
and in good agreement. Fig. 10b shows the square of the isovector pion form factor F I=1

�

in the threshold region of the two-pion production for � and e+e� data. A second order
expansion can be used as a description of F I=1

� at very low energies [42, 43]:

FChPT

� ' 1 +
1

6
hr2i� s+ c� s

2 +O(s3) : (12)

Exploiting precise results from space-like data [53], the pion charge radius-squared
hr2i� = (0:431�0:026) fm2 and the coefficient c� = (3:2�1:0) GeV�4 from Eq. (12) have
recently been determined by means of a simultaneous fit [54]. An expanded view of the
�(770) peak region is given in Fig. 10c.

The e+e�! �+���+�� data are taken from OLYA [55], ND [56], MEA [57], CMD [58],
DM1 [59, 60], DM2 [61, 62, 63] and M3N [64]. The comparison to the decay channel
�� ! ��3�0 �� using Eq. (10) is shown in Fig. 11a. It is found to be in rather good
agreement.

The e+e�! �+���0�0 data are taken from OLYA [55], ND [56], M2N [65],
DM2 [61, 62, 63] and M3N [64]. The measurements originating from different e+e�

experiments show some inconsistencies (see Fig. 11b). On the low mass side, the
cross section is dominated by ND and OLYA data from the VEPP-2M storage ring at
Novosibirsk. The ND measurement points are significantly higher than the OLYA data.
At higher mass, data are dominated by the Orsay experiments DM2 and M3N: the DM2
cross section points are significantly lower than the M3N measurements. Tau data slightly
favor the OLYA data on the low mass side; furthermore, they are clearly higher than the
DM2 results in the central region between 2 and 2.6 GeV2=c4. The small dots in Fig. 11b
illustrate the resonant !�0 ! �+���0�0 contribution taken from ND [56] and DM2 [62].

Finally, the total e+e� isovector cross section is compared to the � vector current
spectral function. The following contributions require some discussion:

{ The isospin descriptions for the two- and four-pion final states are easily found by
inverting Eqs. (9), (10) and (11). The isoscalar ! ! �+�� contribution is subtracted
from the total �+�� cross section.

{ The four-pion final state of the !�0 mode is already contained in the �+���0�0

cross section. A 11.2% correction for the other ! decay modes is applied.

{ The e+e�! �+��� data are taken from ND [56] and DM2 [66].

{ The cross sections for the six-pion final states 3�+3�� and 2�+2��2�0 were
measured by DM1 [67], M3N [64], CMD [58] and DM2 [68]. Using Pais' classes [36]
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Figure 10: The two-pion data from � decays compared to the corresponding isovector e+e�

cross section (data points from di�erent e+e� experiments, measured at the same mass

have been averaged). Both distributions are shown with statistical and systematic errors.

The two rectangles indicate the regions that are expanded in (b) and (c). Figure (b) shows

the pion form factor near threshold. The chiral expansion FChPT

� is de�ned in Eq. (12).
The additional function labeled \[2; 0]" (indistinguishable from \[1; 1]" in the plotted energy

region) denotes di�erent parametrizations (Pad�e approximants [41]) deduced from Chiral

Perturbation Theory as discussed in Ref. [42, 43]. The dotted line in Figure (c) represents

the total (uncorrected) isoscalar and isovector e+e� cross section.
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Figure 11: Comparison of the isospin-rotated four-pion � data with the corresponding

e+e� cross sections. The error bars shown contain both statistical and systematic errors.

An enhancement in the low mass part of the �+���0�0 channel in (b) is expected from

the resonant !� contribution (small points).

(see Appendix) one can deduce an upper limit for the unknown ����+ 4�0 cross
section. Assuming conservatively the classes f411g and f510g to be dominant, one
obtains ��+��4�0 � (3=2)� �2��2�+ 2�0 � (9=24)� �3��3�+.

{ To extract the isovector part of the K+K� and K0

S
K0

L
states, the SU(3) relation

between pion and kaon form factors is adopted to infer the relation [52]

�K+K�(s) =
�3
K

4 �3�
��+��(s) ; (13)

where �K;� = (1� 4M2

K;�=s)
1=2. This can be directly related to the ��! K�K0 ��

spectral function, for which, due to the uncertainty of the relation (13), a total
systematic uncertainty of 25% is assumed.

{ The DM1 and DM2 collaborations [69, 70] made some effort to isolate a small
isovector component of the e+e�!K�K0

S
�� cross section. This can be scaled up

to the full K�K� contribution which can be related to the corresponding � spectral
function using isospin symmetry.

{ The inclusive reaction e+e�!K0

S
+X was analyzed by DM1 [71]. Having subtracted

from its cross section the separately measured contributions of the final states
K0

S
K0

L
, K0

S
K+�� and K0

S
K0

L
�0, it still includes the modes K0

S
K0

S
�+��, K0

S
K0

L
�+��,
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Figure 12: Total hadronic vector current spectral function from � decays (data points)

and the corresponding distribution calculated from e+e� isovector states using isospin

symmetry. The shaded band includes statistical and systematic errors. The dashed line

corresponds to the naive isovector quark-parton prediction.

K0

S
K+���0 and K0

S
K��+�0. With the assumption that the cross sections for the

processes e+e�!K0 �K0(��)0 and e+e�!K+K�(��)0 are equal, one can summarize
the total K�K�� contribution as twice the above corrected K0

S
+X cross section. A

reasonable estimate of the systematic uncertainty, implied by the assumption made,
is obtained by taking the cross section for the channel K+K��+�� measured by
DM1 [72] and DM2 [61]. Since the K�K�� isovector part is unknown it is assumed
to be (50� 50)%.

Fig. 12 shows both the total � vector current spectral function and the corresponding
spectral function coming from the isovector e+e� cross section. Agreement is found at
low mass-squared. Above 2 GeV2=c4, the � data are somewhat higher than the e+e�

measurements (note that the � data points are highly correlated | see Fig. 5). This
is essentially due to the observed disagreement between the ��! 2���+�0 �� spectral
function and the corresponding e+e� cross section.
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7.2 A Fit of the Pion Form Factor

Several parametrizations of the pion form factor Eq. (5) can be found in the literature.
(See, e.g., Refs. [2, 3, 44, 73].) In this section, different fits using the K�uhn-Santamaria [2]
and the Gounaris-Sakurai parametrizations [3] are presented. In addition, a combined fit
to � and e+e� data is performed, where the masses and widths of the ��(770) and the
�0(770) are separately determined, in order to extract possible isospin violating effects.

As seen in Section 6.3, the unfolding procedure introduces additional systematic
uncertainties because of the numerical instability of the problem. Generally, one can
state that unfolding is necessary if a theoretical description of an observed distribution
is not available, as is the case for the total vector (and axial-vector) hadronic spectral
functions in � decays. Also, unfolding is needed for comparison with e+e� results where
the mass is experimentally known with very good accuracy. However in the specific case
of the ���0 spectral function, phenomenological models based on vector resonances which
describe the lineshape exist. One therefore does not need to unfold, as a convolution of
the theoretical curve with the detector response matrix A is a well defined and stable
problem. The convolved theoretical distribution can subsequently be fitted to the data.
This procedure is followed here.

The results of all types of fits are given with errors, including both statistical and
systematic uncertainties. The sources of systematic uncertainties correspond in detail to
those mentioned in Section 6, apart from those introduced by the unfolding procedure.
The correlations between the fitted parameters in the combined fit are given as a
correlation matrix.

Systematic errors of the e+e� annihilation data are caused by uncertainties coming
mainly from the determination of the efficiency of the two-pion reconstruction and the
luminosity measurement. These errors are given as normalization uncertainties by the
experiments, i.e., they scale linearly with the measured cross sections. The usual way
of introducing such errors into a least square minimization is to treat them as being
totally correlated. They therefore populate the o�-diagonal elements of the corresponding
covariance matrix. However, it is known that this procedure introduces a bias into the
minimization, leading systematically to lower values in terms of the normalization of the
fitted parametrization [74]. To avoid such an effect, the best estimate of the parameters
is found when using systematic errors as the statistical ones without correlations. The
corresponding parameter errors, however, are determined by repeating the fit when taking
into account the full correlations of the systematic errors among the measurements of one
experiment. Measurements between different experiments are assumed to be uncorrelated.

7.2.1 The K�uhn-Santamaria (KS) Parametrization

In the K�uhn-Santamaria parametrization the pion form factor is given by contributions
from the known isovector meson resonances �(770), �(1450) and �(1700), taking into
account �|! interference:

F I=1;0
� (s) =

BW�(770)(s)
1+�BW!(783)(s)

1+�
+ � BW�(1450)(s) +  BW�(1700)(s)

1 + � + 
; (14)
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with the Breit-Wigner propagators

BWKS

�(M�)
(s) =

M2

�

M2
� � s � i

p
s��(s)

(15)

and the energy dependent width

��(s) = ��(M
2

� )

 
M2

�

s

!�  
k(s)

k(M2
� )

!3
; (16)

where k(s) = 1

2

p
s ��(s) and k(M2

� ) is the pion momentum in the � rest frame. As in
Refs. [2] and [44] the amplitudes �,  and � are assumed to be real. Interference with
the isospin-violating electromagnetic ! ! �+�� decay occurs only in e+e� annihilation.
Consequently, � is fixed to zero when fitting � data. According to Ref. [73] a fit parameter
� is added to take into account possible uncertainties in the p-wave approximation of the
s-dependent width.

Parameter K�uhn-Santamaria Gounaris-Sakurai

M��(770) 774.9 � 0.9 776.4 � 0.9
���(770) 144.2 � 1.5 150.5 � 1.6

� �0.094 � 0.007 �0.077 � 0.008
M��(1450) 1363 � 15 1400 � 16
��(1450) � 310 � 310
 �0.015 � 0.008 0.001 � 0.009

M��(1700) � 1700 � 1700
��(1700) � 235 � 235
� � 1:0 � 1:0

�2/dof 81/65 54/65

Table 2: Fit results of the pion form factor in �� ! ���0 �� decays using the K�uhn-

Santamaria (left-hand column) and the Gounaris-Sakurai parametrization (right-hand

column). The values of ��(1450), M��(1700) and ��(1700) are taken from Ref. [8].

The results of the � data and the combined fit using the KS parametrization are listed
in the left-hand columns of Tables 2 and 3.

7.2.2 The Gounaris-Sakurai (GS) Parametrization

Starting from a more elaborate treatment of the p-wave scattering amplitude for a broad
resonance, the following parametrization was obtained with the additional requirement
of the normalization F�(0) � 1, as in the KS parametrization. The simple Breit-Wigner
resonances in (14) are replaced (for s � 4m2

�) by [3]

BWGS

�(M�)
(s) =

M2

� ( 1 + d � ��=M�)

M2
� � s + f(s) � i

p
s��(s)

; (17)
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where

f(s) = ��
M2

�

k3(M2
� )

"
k2(s)

�
h(s)� h(M2

� )
�
+ (M2

� � s) k2(M2

� )
dh

ds

����
s=M2

�

#
: (18)

The s dependence of ��(s) and k(s) is the same as in Eq. (16). The function h(s) is
defined as

h(s) =
2

�

k(s)p
s
ln

p
s+ 2k(s)

2m�

; (19)

with dh=dsjM2
�
= h(M2

� )
h
(8k2(M2

� ))
�1 � (2M2

� )
�1

i
+ (2�M2

� )
�1.

The normalization BWGS

�(M�)
(0) = 1 fixes the parameter d = f(0)=(��M�). It is found

to be [3]

d =
3

�

m2

�

k2(M2
� )

ln
M� + 2k(M2

� )

2m�

+
M�

2� k(M2
� )

�
m2

�M�

� k3(M2
� )

: (20)

The results of the � data and the combined fit using the GS parametrization are listed
in the right-hand columns of the Tables 2 and 3.

Concluding from Table 2, the fits establish a need for the �(1450) contribution
to the weak pion form factor in the KS and GS parametrizations (� = �0:087 �
0:012) with a fitted mass M�(1450) = (1380 � 24) MeV=c2 when fixing the width at
��(1450) = 310 MeV=c2 [8]. No significant evidence of a �(1700) contribution is found
( = �0:008� 0:008). The previous values are the weighted averages between the results
of both fit types. Their errors account for statistical and systematic uncertainties coming
from model dependence. It must be stated that the fitted �(1450) parameters show large
correlations with the corresponding �(1450) width. In fact, �xing ��(1450) = 600 MeV=c2

leads to the averaged fit results: � = �0:156, M�(1450) = 1470 MeV=c2 and  = �0:030
with a substantial improvement of the �2, i.e., 56 (KS) and 51 (GS) over 65 degrees of
freedom.

One could try to explain the enhancement of the pion form factor centered around
1200 MeV=c2 as originating from an inelastic effect induced via unitarity by the opening
of the !�0 channel which occurs at 920 MeV=c2 [75]. Although this effect is physically
sound and should take place, the proposed description is not very predictive and requires
a factor (M2

0
=(M2

0
� s� iM0�0))

n0 with three additional parameters M0, �0 and n0 to be
adjusted in the fit. However, the existence of a �(1450) meson is already well established
in the �+��2�0 final state [76] and since the sensitivity of the data on the pion form
factor is not sufficient to fit a larger number of parameters, the inelastic parametrization
is not used in the present analysis.

Fig. 13 shows the KS/GS-type fits using one and three Breit-Wigner amplitudes.

7.2.3 Combined Fit of � and e+e� Data

The results of the combined � and e+e� data fit with the KS and GS parametrizations are
presented in Table 3. In these fits, the pion form factor is described by the � resonance
with different parameters fitted for �� and �0, while the much smaller �(1450) and
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Figure 13: Fit of the ��! ���0 �� invariant mass spectrum using the K�uhn-Santamaria

(KS) and the Gounaris-Sakurai (GS) parametrization. The solid and dashed curves

are the functions corresponding to the KS/GS-type form factor �ts given in Table 2.
They have been convolved with the detector resolution and the � phase space. Due to

statistical uctuations in the detector response matrix, the functions are not smooth after

convolution. The dashed-dotted line corresponds to a GS-type �t in which only the �(770)
contribution is taken into account.
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�(1700) contributions are assumed to be isospin invariant. In this way, it is possible
to directly compare, for the first time, in a model-independent way the parameters
of the charged and the neutral �'s. Due to the large number of degrees of freedom
in the combined fits, all free parameters can be simultaneously determined with good
precision. All presented fits resulted in significantly higher �(770) masses than the value
of M�(770) = (768:5 � 0:6) MeV=c2 (average of �� and �0) given by the PDG [8]. Within

Parameter K�uhn-Santamaria (KS) Gounaris-Sakurai (GS)

� (1.91 � 0.15)�10�3 (1.97 � 0.10) �10�3 (1.97 � 0.15)�10�3
M��(770) 773.4 � 0.9 775.7 � 0.9 783.8 � 3.0
M�0(770) 773.4 � 0.7 775.7 � 0.7 783.8 � 3.0
���(770) 147.7 � 1.6 150.8 � 1.7 162.0 � 5.3
��0(770) 147.3 � 1.3 150.8 � 1.3 162.4 � 5.0
� �0.229 � 0.020 �0.161 � 0.010 �0.184 � 0.010

M�(1450) 1465 � 22 1448 � 19 1490 � 23
��(1450) 696 � 47 503 � 38 591 � 53
 0.075 � 0.022 0.076 � 0.009 0.074 � 0.010

M�(1700) 1760 � 31 1757 � 20 1799 � 34
��(1700) 215 � 86 237 � 78 255 � 39
� � 1.0 � 1.0 0.45 � 0.11

�2/dof 190/195 194/195 193/194

M��(770) �M�0(770) 0.0 � 1.0 0.0 � 1.0 0.0 � 1.2
���(770) � ��0(770) 0.4 � 1.8 0.0 � 2.0 �0.4 � 2.5

Table 3: Results of the combined �t of the ���0 and �+�� resonance amplitudes according

to the K�uhn-Santamaria and the Gounaris-Sakurai model. In the second GS-type �t, the

parameter � introduced in Eq. (16) is additionally �tted. This leads to higher parameter

errors with strong correlations among them.

ALEPH M�

� M0

� ��� �0�
M�

� 1 0.18 0.32 0.02
M0

� - 1 0.03 0.31
��� - - 1 0.17

Table 4: Average correlations found in the KS/GS-type �ts (with �xed �) between masses

and widths of the charged and neutral �0(770).

large uncertainties (about 8 MeV=c2) essentially due to model dependence, the width
��(770) was found to be in agreement with the PDG value of ��(770) = (150:7� 1:2) MeV=c2.
The additional fit parameter � in the second type of fit is found to be � = 0:45 � 0:11,
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i.e., quite different from the fixed value � � 1 in the first type of fits. As can be
expected, a different adjustment of � has a considerable impact on the fitted mass and
width of the �(770). Both � and e+e� data are sensitive to the �(1450) parameters. The
�(1450) width is found to be strongly model-dependent, but from all fit types its value
is significantly higher than the PDG value of ��(1450) = (310 � 60) MeV=c2 obtained
from e+e�! !� data. This difference could be linked to the neglect of inelastic effects as
discussed in the previous section. The fitted masses M�(1450) from all fit types are found
to be in rather good agreement with the PDG average of M�(1450) = (1449 � 8) MeV=c2.
The information concerning the mass, width and relative amplitude of the �(1700) is
essentially extracted from the e+e� data and found to be in fairly good agreement with
the PDG values.

Systematic uncertainties due to the energy scale in e+e� annihilation experiments are
difficult to estimate as, in general, the publications do not refer to this point. In most
cases, the experiments used the narrow �(1020) resonance peak to calibrate the beam
energy. Consequently, intrinsic uncertainties are introduced by slight modifications of
the central � mass value over the years, e.g., M� = 1019:57 MeV=c2 in 1980 became
M� = 1019:41 MeV=c2 in 1996. An additional systematic uncertainty of 0.3 MeV=c2 is
considered in the �0 mass measurement.

Although the absolute values of the �(770) masses and widths depend significantly
on the KS- or GS-type of the fit and the parameter �, their respective differences, i.e.,
�M�(770) =M��(770) �M�0(770) and ���(770) = ���(770) � ��0(770) are stable. Using the fit
results from Table 3, one obtains the average

�M�(770) = (0:0 � 1:0 � 0:1) MeV=c2

���(770) = (0:1 � 1:8 � 0:5) MeV=c2 :

The first errors are due to statistical and systematic uncertainties (including correlations
between the fit parameters), while the second ones account for differences from the
resonance parametrizations. Fig. 14 shows the results with its 39% CL error ellipse taking
into account the correlations between the fit parameters given in Table 4.

A difference between ��� and ��0 could occur on one hand through electromagnetic
isospin-violating decay modes such as �! ��, which is observed at the 1% level for the
�0 [8]. On the other hand the dominant �! �� channel could also manifest some isospin
violation. An obvious contribution comes from the observed ��|�0 and a potential ��|
�0 mass differences which reflect into different values for the width according to (16). The
� mass dependence is not completely clear: one could consider a variation given by

�� � k3(M2

� )=M
2

� (21)

or, as argued in Chiral Perturbation Theory [77],

�� � k3(M2

� ) : (22)

According to the charge of the �, the pion momentum in the � rest system is given
by 2k(M2

�0) = (M2

�0 � 4m2

��)
1=2 for the neutral �0 and 2k(M2

��) = [M2

�� � 2(m2

�� +
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Figure 14: Width di�erence ���(770) = ���(770)���0(770) as a function of the di�erence in

the �(770) mass �M�(770) = M��(770) � M�0(770). The point is the measurement with

its correlated one-sigma error ellipse. The dashed and solid lines show the expected

dependences from Eqs. (21) and (22), respectively. The hatched area depicts the

electromagnetic � mass di�erence predicted in [78].

m2

�0)+(m2

���m2

�0)
2=M2

�� ]
1=2 for the charged ��, respectively. The dashed and solid lines

in Fig. 14 give the functional dependence of the width difference ��� on �M� in the
approximations of Eqs. (21) and (22), respectively, normalized to the fitted value of ��.

It is interesting to observe that the measured �M� is significantly smaller than the
mass difference between charged and neutral pions �M� = M�� � M�0 = (4.5936 �
0.0007) MeV=c2 [8], where the dominant effect is understood to be of electromagnetic
origin (�M em

� ' 4:5 MeV=c2 [79]). The �M� measurement can be compared to
the (model dependent) result of �M� = (�0:3 � 2:2) MeV=c2 [8] obtained in
hadronic production, however in good agreement with this determination. The Mark
III Collaboration exploited data on J= ! �+���0 decays, dominated by J= ! ��, to
measure the mass difference of the charged and neutral �'s [80]. Their preliminary result
is found to be in good agreement with the result presented here. Note that the value
deduced from the difference in the mean values taken from Ref. [8] hM��i � hM�0i =
(�1:8� 1:4) MeV=c2 is potentially unreliable as they both represent the weighted mean of
independent measurements using not necessarily the same parametrizations. A theoretical
electromagnetic � mass difference of �0.7 MeV=c2< �M� < 0.4 MeV=c2 in agreement
with the measurement has recently been evaluated in Ref. [78]. The measured difference
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��� is found to be consistent with the expected isospin violation from the ��|�0 and
��| �0 mass differences.

8 Conclusions

Measurements are presented of the non-strange � vector current spectral functions, with
special emphasis on the two- and four-pion final states. Their distributions and the
corresponding error matrices can be obtained as postscript and data files from the ALEPH
publication server on the WWW4.

The CVC property of the Standard Model provides the possibility to identify the �
vector decay channels with the isovector components of the e+e� hadronic final states by
means of isospin symmetry. The �+�� and �+���+�� cross sections measured in e+e�

annihilation have been found to be in good agreement with the respective ���0 and ��3�0

spectral functions. The �+���0�0 cross section has been compared to the corresponding
linear combination of ��3�0 and 2���+�0 spectral functions from � decays. Above
2 GeV2=c4, � data points are significantly higher than the respective e+e� measurements
(DM2). This is thought to be due to a disagreement in the non-resonant contribution as
a good agreement with DM2 for the resonant (!�) part of the cross section has recently
been found by the ALEPH Collaboration [6].

Fits of the pion form factor based on the K�uhn-Santamaria [2] and the Gounaris-
Sakurai [3] parametrizations have been performed. In this framework, the existence of
an additional �(1450) contribution is firmly established in � decays. The fit using the
GS parametrization resulted in a better description of � data yielding a �2 of 54 over 65
degrees of freedom. The parameters of the dominant �(770) contribution found in this fit
are: M��(770) = (776:4� 0:9) MeV=c2 and ���(770) = (150:5� 1:6) MeV=c2.

A combined fit to � and e+e� data has been performed in order to measure
the difference in mass and width between the dominant charged and neutral �(770)
amplitudes, expected to be generated by isospin-violating effects. The observed mass
difference M��(770) � M�0(770) = (0:0 � 1:0) MeV=c2 is significantly smaller than the
corresponding value for the pions, while the width difference ���(770) � ��0(770) =
(0:1 � 1:9) MeV=c2 is consistent with isospin violation from the ��|�0 and ��| �0

mass differences.
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Appendix

In the classification developed by Pais [36], pion isospin states are organized in symmetry
classes with orthogonal wave functions. To each isospin class fijkg corresponds a partial
width �ijk in � decays and a cross section �ijk in e

+e� annihilation. In these terms, the
four-pion isovector states are linear combinations of the classes f310g and f211g:

���3�0 =
2

5
�310 ;

�3���0 = �211 +
3

5
�310 ;

��+���+�� =
4

5
�310 ;

��+���0�0 = �211 +
1

5
�310 :

For the six-pion � final states one obtains the following decompositions [33, 81]:

��� 5�0 =
9

35
�510 ;

�2���+ 3�0 =
2

7
�510 +

1

5
�411 +

4

5
�330 +

1

2
�321 ;

�3��2�+ �0 =
16

35
�510 +

4

5
�411 +

1

5
�330 +

1

2
�321 ;

and for the e+e� states:

����+ 4�0 =
3

35
�510 +

3

5
�411 ;

�2��2�+ 2�0 =
8

35
�510 +

2

5
�411 +

2

5
�330 + �321 ;

�3��3�+ =
24

35
�510 +

3

5
�330 :
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