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Abstract 

We report on the observation of ; mesons from T(4S) decays which are 

too energetic to come from 8 mesons. These events provide evidence for 
non-88 decays of the T (4S). The measured rate is 
B(T(4S)+fX)=0.22•0.06•0.041 for ; momentum above 2 GeV/c. 

PACS numbers: 13.20.Gd, 13.65.+i 

The T(4S) resonance is the third radial excitation of the bb system. It is 

massive enough to be above threshold for decay into s-a+ or B0S0 and is thought 

to decay dominantly into these modes. Other vector meson resonances decay into 

final states which do not contain the explicit flavors of the constituent 

quarks. For example, the 1. an sS state, decays 13~ of the time into pr1 and 

the ;(3770}, a cC state, has recently been observed to decay into non-charm 

final states. 2 

A previous search for non-BB final states in T(4S) decay investigated the 

inclusive charged particle momentum spectrum. No statistically significant 

signal was observed for particles above the kinematic limit forB decay. 3 The 

resulting upper limits on the non-BB decay fraction depend on the assumed shape 

of the non-BB spectrum. For a spectrum with the shape of continuum e+e-

annihi lations, the upper limit is 3.8~, while for a shape similar to three­

gluon decays of the T(lS), the limit is 13~, both at 90~ confidence level. 

In this analysis we investigate the production of ; mesons from the T(4S) 

in the momentum range above the kinematic I imit allowed for ;•s from B decay. 

Low mo~entum ;•s have previously been seen in T(4S) decay and were assumed to 

arise solely from B decays. 4 The inclusive branching ratio for B+;X was found 

to be 1.1~. Some fully reconstructed e~;K and s~;K* events have been seen. 

We use data taken with the CLEO detector using the Cornell Electron 

Storage Ring (CESR), The luminosities used consist of 212pb-l accumulated at 

the T(4S) resonance, 102pb-1 taken at a center-of-mass energy 60 MeV below the 

T(4S} and 116pb-l taken at the T(5S) resonance. There are 240,000 T(4S) decays 

and 35,000 T(5S) decays. The CLEO detector is described in detai I elsewhere.
5 

This analysis uses the charged particle tracking system and the electron and 

muon identification systems. The tracking chambers consist of a set of three 

drift chambers and have a charged particle momentum resolution of (6pjp)
2 = 

(0.007p) 2 + (0.0023) 2, with p in units of GeVfc. Electrons are identified by a 

combination of devices. Energy loss (dEjdx) is measured in the 51 layer inner 
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tracking chamber where the dE/dx resolution is 6.51 (rms) on Bhabha electrons. 

This measurement is used in combination with two other measurements from 

devices placed outside the 0.7 radiation length thick solenoid magnet coi I. 

These devices include wire proportional chambers which also determine dEjdx and 

a 12 radiation length thick lead-wire proportional chamber calorimeter which 

gives a measurement of electromagnetic energy. The muons system consists of 

segmented steel plates whose total thickness varies between 1.0 and 1.5 meters. 

Wire chambers inside and outside of the steel record hits made by muon 

candidate tracks. 

The event sample is selected by using standard CLEO hadronic event 

selection criteria. 6 In order to suppress electromagnetic and two-photon 

backgrounds, we impose the additional requirement that at least 5 charged 

tracks be found. ;•s are identified via the di-electron or di-muon modes. One 

muon must either penetrate a! I the iron and make two hits (a 1 cross 1 ) in 

orthogonal layers of the outer muon chambers, or produce a single hit in the 

outer chambers and a cross in the inner muon chambers. The second muon 

candidate is required only to make a cross in the inner layer or have at least 

one hit in the outer layer. Electrons are identified either by ionization loss 

(dE/dx) in the drift chamber or a combination of the former with outer dE/dx 

information and shower counter information, if the track points to the outer 

octant detectors. At least one of the two electrons must be identified using 

shower counter information. 

The reaction B+;r gives the most energetic ;•s possible from B decay; the 

; momentum is 1.73 GeVjc. Although this decay mode is Cabbibo suppressed with 

respect to the ;K mode, it is sti I I allowed. We do not expect many of these 

decays; the measured B+;K branching ratio4 is about 0.11 and ;r should be 

suppressed by the sine squared of the Cabbibo angle. To find the kinematic 

limit we need to Lorentz-boost the;, since the 8 is moving with velocity 

P=0.06. This results in a Doppler smearing about the endpoint, with the maximum 

possible momentum now being 1.94 GeVjc. There is an additional Gaussian 

momentum smearing of 30 MeV/c (rms) due to our momentum resolution. Therefore, 

2 GeV/c is a conservative upper limit for; momenta from B decay. This 

translates into a maximum allowed x of x8=0.378 at the T(4S), where x is the 

momentum divided by the beam energy. 

The ~+~- mass spectrum for the T(4S) sample is shown in Fig. la for x > x8 
and in Fig. lb for x ( x

8
. To suppress random background combinations and 
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better define the lepton acceptance, we require that the absolute value cosine 

of the decay angle of the leptons in the di lepton mass frame with respect to 

the di lepton direction in the laboratory be ( 0.9, The# peaks are fitted with 

Gaussians centered at the known# mass and with fixed width of 26 MeV rms as 

determined by Monte Carlo simulation. We find 160•14 events in the x ( x8 
sample and 15.2:: :: for x ) x8 . In the latter sample, we have 17 total events 

in the two bins centered on the# mass including a background of 5.0 events. 

The probabi I ity of the signal at the #mass being caused by a background 

fluctuation is 2x10-5 . There are approximately equal numbers of di-electron and 

di-muon candidates. As these events cannot be from 8 decay, they are either 

evidence of non-88 decays of the T(4S), or arise from the continuum under the 

T(4S) resonance. We have investigated two samples of continuum-rich data in 

order to see which is more likely. 

The first continuum sample comes from data taken 60 MeV in center-of-mass 

energy below the T(4S). The~·~- mass plot is shown in Fig. 1c for x > x8 and 

in Fig. 1d for x ( x8 . There is no signal in either x range. The probability 

that the excess in the T(4S) data for x) x8 is due to a continuum fluctuation 

is 2.6~, after we take into account that the T(4S) sample is 2.08 times larger. 

The lack of a signal in the low x data adds support to the idea that the signal 

on the T(4S) is not due to a continuum fluctuation. Summing the high x and low 

x samples together and fitting the resulting distribution gives a yield of 

1.6:~:: events. This can be expressed as an upper I imit on continuum# 

production of R#=a(e•e•#X)/a(e•e-·~·p-) ( 1.9x10-3 at 9~ confidence level for 

events with at least 3 charged tracks in addition to the#· We have previously 

pub! ished an upper limit at 90% confidence level of R# ( 2.3x10-3, requiring 

only one charged track in addition to the #· 7 Theoretical estimates8 of R# 

range from 3x10-4 to 7x10-4 . 

Another data sample we can use to search for continuum # production was 

taken on the T(5S) resonance. To insure that # mesons are not coming from 

Doppler shifted 8 decays, we increase the x cut to 0.48, as the B mesons are 

moving faster when produced at the T(SS) than at the T(4S). The only possible 

non-continuum source of real #mesons above 0.48 would be direct T(5S) decays. 

However, since the f(SS) cross-section is a factor of 3.8 smaller than the 

T(4S) and the x range is smaller we would expect only 1.2•0.4 direct T(5S)+#X 

events if the decay width was the same as on the T(45), while for x < 0.48 we 

expect 19•2 events from 8 decay by scaling from the observed low x T(4S) 
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signal. We find 21.6•6.4 events for x < 0.48 and no evidence for a signal for x 

) 0.48. (See Figs. 1e and lf.) In Fig. 2 we compare T(4S) with continuum plus 

T(SS) data for x ) 0.48. This summed sample is equal in size to the on T(4S) 

sample; the scaling factor of the summed distribution accounting for the energy 

squared dependence of the cross-section is 1.00. In the summed distribution 

there are 2 events in the two bins at the# mass including 0.8 background 

events. In estimating the probabi I ity that this distribution can come from the 

same population as the one we see on the T(4S) we have not included any 

allowance for direct T(6S)+#X decays. The probability of this joint 

T(SS)-continuum sample being consistent with the observation on the T(4S) is 

1.4% 

Global event shape characteristics can help discriminate between continuum 

events and events arising from different, less jot-like, production mechanisms. 

The Fox-Wolfram moment R2=H2/H0 is one such measure. 9 Fig. 3 shows the R2 
distribution for the high momentum #'s from the T(4S) sample as well as three 

other samples for comparison: events with continuum di leptons of mass exceeding 

2.5 GeV, the two continuum events at near the# mass (shaded), and T(4S) events 

containing a lepton with momentum greater than 1.4 GeVfc. The high momentum ; 

events in the T(45) sample have a spherical shape, not unlike that for BB 

decays with a lepton. They are very different from the above mentioned 

continuum samples. 10 The two continuum events near the # mass have only a 6% 

probabi I ity of coming from the same R2 distribution as the T(4S) #'s, while 

they have a 95% probability of coming from the continuum di lepton samp/e. 11 

These considerations provide additional evidence that it is much less probable 

that the high momentum # signal is due to continuum production than due to 

direct T(45) decay. 12 

After correcting for acceptances including our #detection efficiency, 20% 

for electrons and 28% for muons, and the#+~·~- branching ratio (13.6~), we 

find B(T(4S)+p X) = (0.22•0.06•0.04)1 for x ) 0.378. The momentum spectrum is 

shown in Fig. 4. The high momentum events are not concentrated near the 

kinematic limit from B decay, nor do they peak at any unique momentum. 

We have searched for other indications of non-BB T(45) decays. We have 

redone the charged particle momentum spectrum analysis in our new data sample. 

However, because of the sensitivity to the error in the relative T(4S) and 

continuum luminosities, the upper I imits are almost the same as those given in 

ref. 3. 
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The discovery of non-88 ~production naturally points to the possibility 

of high momentum charm production. It is possible that open charm is produced 

with a much higher rate than hidden charm. Thus, we have also searched for o•• 
above the endpoint allowed from 8 decay. The kinematic limit is 2.6 QeVfc, or 

x = 0.473. However, there is copious continuum charm production and we expect 

to have much less sensitivity than in the case of ~·s. We use the decay 

o•··~·oo and the subsequent decay of the 0° into K-~+ or K-s+~+r-, and the 

charge conjugate reactions for o•-. We find 8(T(4S)+(O•+ X+ o•- X)/2 = 1•2% 

for x} 0.473. This translates into a go% confidence upper limit of 3 7%. The 

I imit is more than one order of magnitude larger than the measurement of the 

branching ratio to ~'s. 

Another particle that is related to the cC ~ state is the si ; state. We 

search for ;•s above the kinematic limit for the reaction B+#r, which is 2.75 

GeV/c or an x of 0.52. The upper limit on the T(4S) branching fraction to ;•s 

above x=0.52 is 0.23% at 90% confidence level. 

We have also searched for T(1S) production from the T{4S) using the 

di lepton decay of the T(1S). A statistically significant signal was not 

observed, yielding an upper limit B(T{4S)+T(1S)+X) < 0.4% at 90% confidence 

level, where X contains at least one charged track. 

The high momentum ; events provide direct evidence for non-BB decays of 

the T(4S). Other such decays must be present. We have tried to find o•+, ; and 

T(1S) signals without success. Lipkin has argued13 that non-88 decays of the 

T(4S) are to be expected. He explains the #+p~ decay by a two step mechanism 

where ; goes to an Intermediate KK which then annihilate into pr. He proposed 

this two step mechanism as a way for the ~-· to decay into non-DO final states, 

which have been observed.2 However, Lipkin's predictions are not quantitative 

and therefore it is difficult to ascertain the validity of his assertions. 

There are other intriguing explanations. Marciano has suggested that 

transitions to lower lying 4-quark states are possible. He points out that 

there is a large, 18%, Coulomb enhancement of T(4S)+B+B-/T(4S)~BOS0 which may 

help generate a bound state which could in turn decay into such a 4-quark 

state. 14 This state could be a o• state which decays via 2-gluon emission. 

Because of helicity arguments, tho 2-gluons would decay preferentially to 

charm. It is also interesting to note that Ono et al. can explain the mass 

spl ittings between the T(3S), T(4S) and T(SS) and the total e+e- cross-section 

7 

above the T(4S) by postulating that the T(4S) has a mixture of pure bb and bbg 

hybrid state in the wave function. 15 The bbg part cannot decay into 88. 16 

None of these predictions is quantitative and we sti I I need to determine 

the decay mechanism. Whatever processs is responsible for producing ;•s on the 

T(4S), it is different from that on the T(1S). The width7 on the T(1S) is 50 eV 

while on the T(4S) it is in excess of 50-KeY. 1 
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FIGURE CAPTIONS 
1) m(t~t-) for various data samples. The curves are fits to the data using a 

Gaussian with fixed mass and width and a third order polynominal to describe 
the background. XB is the maximum allowed (.378) for a~;w decay on the 
T(4S). For T(4S) data (a) x) x8 and (b) x < x8 . For continuum data (c) x} 

x
8 

and (d) x < x
8

. For T(5S) data (e) x ) 0.48 and (f) x ( 0.48. 
2) m(t~t-) for x) 0.48, (a) on T(4S), (b) continuum plus T(5S). 
3) The R

2 
distribution for x ) x8 ;•s from the T(4S) shown as crosses, 

continuum with di lepton masses ) 2.6 GeV (from Fig. 1c). The two continuum 
events close to the; mass are shaded. The dashed curve is the measured 
distribution for BB with a lepton) 1.4 GeVfc which has been normalized to 
the large x ; data. 

4) The; momentum distribution for T(4S) decays. Note, that the bin size 
changes above 2 GeVfc. 
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