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Abstract

The avour changing neutral current decay b ! s has been detected in
hadronic Z decays collected by ALEPH at LEP. The signal is isolated in
lifetime-tagged b�b events by the presence of a hard photon associated with

a system of high momentum and high rapidity hadrons. The background
processes are normalised from the data themselves. The inclusive branching
ratio is measured to be

(3:11� 0:80stat � 0:72syst)� 10�4;

consistent with the Standard Model expectation via penguin processes.
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1 Introduction

The avour changing neutral current decay b! s may proceed via an electromagnetic penguin

diagram in which the photon is radiated from either the W or one of the quark lines. The next-

to-leading order calculations are now available for this transition [1] and the Standard Model

predicts the inclusive b! s branching ratio to be (3:51 � 0:32) � 10�4 for measurements at the

�(4S) resonance and (3:76 � 0:30) � 10�4 at the Z peak [2]. Virtual particles in the loop may

be replaced by non-Standard Model particles, such as charged Higgs bosons or supersymmetric

particles. These additional contributions could either enhance or suppress the decay rate [3, 4]

making it sensitive to physics beyond the Standard Model.

The b ! s process is expected to be dominated by two-body (resonant) decays such as

B ! K�, and �nal states with soft gluon emission (non-resonant) which kinematically resemble

two-body decays [5, 6]. In this case, the photon energy in the b-hadron rest frame, denoted E?
 ,

has a spectrum which is peaked at approximately half the b-hadron mass. In contrast, charged

current radiative b decays such as b ! cW � and b ! uW � (where W � represents a virtual

W boson) produce photons with a spectrum resembling that from bremsstrahlung and hence

of much lower energy [7]. The decay b ! d can also be mediated by penguin diagrams but is

Cabibbo suppressed, with a predicted branching ratio � 2.8 � 10�5 [8]. In the ALEPH data

sample of 4.1 million hadronic Z decays, collected between 1991 and 1995, the Standard Model

predicts the production of � 660 b ! s decays. It is thus important, if a b ! s signal is

to be observed, that both the signal acceptance and background rejection be high and that E?


be accurately reconstructed. The latter requires precise determination of the parent b-hadron's

momentum and direction.

In the analyis described in this paper, b�b events are tagged by lifetime in one hemisphere.

The signal for the b ! s decay in the other hemisphere is characterised by the presence of a

hard photon associated with a system of high momentum and high rapidity hadrons, originating

from a displaced secondary vertex. The extraction of the signal is based on a Monte Carlo

simulation constructed using Heavy Quark E�ective Theory [5], and from measurements and

assumptions about exclusive decay rates.

2 The ALEPH detector

A detailed description of the ALEPH detector and its performance is given in [9, 10]. What

follows is a brief description of those parts of the detector relevant to this analysis. Charged

particles are detected in the central part of the detector, consisting of a high precision vertex

detector (VDET), a cylindrical multi-wire drift chamber (ITC) and a large time projection

chamber (TPC). The VDET consists of two concentric layers of double sided silicon detectors

surrounding the beam pipe, positioned at average radii of 6.5 and 10.8 cm covering 85% and 69%

of the solid angle, respectively. The intrinsic spatial resolution of the VDET is 12 �m for the

r� � coordinate and between 11 and 22 �m for the z coordinate, depending on the polar angle

of the charged particle. The ITC, at radii from 16 to 26 cm, provides up to eight coordinates

per track in the r � � view while the TPC measures up to 21 three-dimensional points per

track at radii between 40 and 171 cm. The TPC also serves to separate charged particle species

with up to 338 measurements of their speci�c ionization. The three detectors are immersed

in an axial magnetic �eld of 1.5 T and together provide a transverse momentum resolution of

�(1=pT ) = 0:6� 10�3 (GeV/c)�1 for high momentum tracks.

Electrons and photons are identi�ed and measured in the electromagnetic calorimeter

(ECAL) which is formed by a barrel surrounding the TPC, closed at each end by end-

cap modules. It consists of 45 layers of lead interleaved with proportional wire chambers.

The position and energies of electromagnetic showers are measured using cathode pads each

subtending a solid angle of 0.9� by 0.9� in � and � and connected internally to form projective

1



towers. Each tower is read out in three segments, known as storeys, with depths of 4, 9 and

9 radiation lengths. The inactive zones of this detector represent 2% of the solid angle in the

barrel and 6% in the end-caps. The iron return yoke of the magnet is instrumented with streamer

tubes to form a hadron calorimeter (HCAL), with a thickness of over 7 interaction lengths. It

is surrounded by two additional double layers of streamer tubes used for muon identi�cation.

An energy ow algorithm, which is described in [10], is used to improve the energy resolution

of events. The algorithm links charged tracks to calorimeter clusters and uses the resultant

redundancy in energy measurements to assign neutral particle energy. Particle identi�cation

methods are used in this algorithm to distinguish between particle species and the resulting

objects are labelled energy ow objects. The algorithm to identify photons in ECAL is also

described in detail in [10]. The clusters found by the algorithm are retained as candidate photons

if their energy is greater than 0.25 GeV and there is no charged track impact at a distance of

less than 2 cm from the cluster barycentre. The photons are detected with angular resolution of

��;� = (2:5=
p
E(GeV)+0:25) mrad and energy resolution of �E=E = (0:25=

p
E(GeV)+0:009).

The detector's ability to resolve a �0 into two  clusters decreases for energies greater than 10

GeV above which the two  clusters overlap to form one larger cluster which tends to be more

elliptical than single  clusters. A moments analysis of the energy sharing between neighbouring

detector elements within the cluster enables the length of the major axis of the shower ellipse,

�l, to be measured. This quantity is used in the analysis which follows to separate high energy

�0 mesons (�l > 2.3 cm) from single photons (�l < 2.3 cm).

3 Monte Carlo simulation

Monte Carlo events were generated using JETSET [11] with the ALEPH standard parameter

set. These events were processed through a detailed simulation of the ALEPH detector and the

ALEPH reconstruction program. A sample of 9.9 million hadronic Z decays | simulated without

the b! s decay and henceforth called the standardMonte Carlo | is used to model background

processes in this analysis. The rate of production of photons from �nal state radiation (FSR)

in the standard MC is reweighted by a factor 1.21 as required by the ALEPH measurements of

this process over the full kinematic range [12].

The composition of the signal (b ! s) Monte Carlo event sample is based primarily

on predictions from Heavy Quark E�ective Theory for the exclusive ratios RK�� = �(B !

K��)=�(B ! Xs), where K�� is any particular K-resonance and the B meson is either

a Bu or Bd [5]. RK�(892) is taken as the ratio of the CLEO measurements of the exclusive

B ! K�(892) branching ratio [13] and the inclusive b ! s branching ratio [14], giving

RK�(892) = 18:1 � 6:8%. The �-resonances, produced in Bs penguin decays, are assumed to

be in the same relative proportions as the K-resonances. The exclusive ratios for resonant

decays are summed and the remaining inclusive branching ratio is completed with non-resonant

penguin decays, where Xs is a multi-body state involving a kaon and n pions, hadronised using

JETSET. The photon energy spectrum in the non-resonant decays is obtained from a fully

inclusive spectator model including gluon bremsstrahlung and higher order radiative e�ects [6].

The model parameters used were mq = 150 MeV/c2, where mq is the spectator quark mass,

and pF = 265 MeV/c, where pF is the Fermi momentum of the b quark in the hadron, taken

from CLEO �ts to the inclusive lepton spectrum in B ! Xl� decays [15]. Baryonic penguins

are modelled by one channel, �b ! �, where the �b is produced directly from hadronisation

or from the decay of a heavier b baryon. The resulting signal Monte Carlo composition is shown

in Table 1, where the b-hadron production fractions are taken to be : Bu(d) 75.6% ; Bs 11.2% ;

and �b 13.2% [16].
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Exclusive decay channel Exclusive decay fraction, R(%)

Bu(d) ! K�(892) 13.6 � 5.1

Bu(d) ! K1(1270) 5.5 � 2.1

Bu(d) ! K1(1400) 7.2 � 2.6

Bu(d) ! K�(1410) 6.7 � 2.6

Bu(d) ! K�

2 (1430) 20.6 � 7.5

Bu(d) ! K(n�) 22.0 � 19.9

) 75.6

Bs ! �(1020) 2.0 � 0.8

Bs ! h1(1380) 0.8 � 0.3

Bs ! f1(1420) 1.1 � 0.4

Bs ! �(1680) 1.0 � 0.4

Bs ! f 02(1525) 3.0 � 1.1

Bs ! KK(n�) 3.3 � 3.0

) 11.2

�b ! �(1116) 13.2 � 4.1

Table 1: The composition of the inclusive b! s Monte Carlo sample.

4 Inclusive reconstruction of b! s decays

The event hemisphere opposite to a b ! s decay contains a typical b-hadron decay and is

used to `b-tag' events in a largely unbiased way. The b ! s hemisphere, in contrast, has low

multiplicity, a single displaced decay vertex, and contains a high energy photon. A dedicated

inclusive b! s reconstruction algorithm is used to assemble the hadronic system accompanying

the photon by distinguishing between objects from the b-hadron decay from those produced by

hadronisation at the primary vertex.

In each hemisphere containing a candidate photon, �0 and K0
S mesons are searched for.

The �0 mesons are reconstructed from two candidate photons when the  invariant mass is

compatible with the �0 mass. K0
S mesons are reconstructed similarly from any two oppositely

signed charged tracks which form a vertex and have an invariant mass (assuming both charged

tracks are pions) consistent with the K0
S mass. Each hemisphere then consists of reconstructed

�0 and K0
S mesons and the remaining charged tracks and neutral electromagnetic and hadronic

clusters. Any neutral hadronic cluster is assumed to be a K0
L and given the kaon mass. All

charged tracks are given the pion mass and, depending on the length of the major axis of its

shower ellipse, �l, a neutral electromagnetic cluster is given either zero mass (photon) or the

pion mass (unresolved �0).

The b ! s probability for each object is calculated as a function of its momentum, its

rapidity with respect to the b-hadron direction, and, if the object is a charged track with

VDET hits, its three-dimensional impact parameter signi�cance. The probability functions

were produced using signal Monte Carlo events. Plots (a) and (b) of Figure 1 show the

momentum-rapidity and impact parameter signi�cance distributions for charged tracks from

the b! s decay. Plots (c) and (d) of Figure 1 show the corresponding hadronisation charged

track distributions. The b ! s decay objects have a much harder momentum spectrum than

the hadronisation objects and possess larger rapidities. Similarly, due to the long lifetime of the

b-hadron, the signal objects have more signi�cant impact parameters than the hadronisation

objects, where the spectrum is dominated by the impact parameter resolution. In a given

3



momentum bin the b! s probability, Pmom, is de�ned as :

Pmom =
No: of b! s decay objects

No: of b! s decay objects + No: of hadronisation objects

If the object is a charged track with VDET hits, the independent impact parameter signi�cance

probability is calculated in the same way as Pmom and the two probabilities, Pmom and Pip, are

combined to give a �nal probability, P :

P =
Pmom � Pip

Pmom � Pip + (1� Pmom) � (1� Pip) � r

where r is the average ratio of the total number of signal decay charged tracks with VDET hits

to the total number of hadronisation charged tracks with VDET hits in a b ! s hemisphere

(r=0.298). Figure 1(e) shows the momentum probability distribution in the rapidity bin,

2.5 < Rapidity < 2.75, and Figure 1(f) shows the charged track impact parameter signi�cance

probability distribution.
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Figure 1: The momentum-rapidity (a) and impact parameter signi�cance (b) distributions for

signal charged tracks and the corresponding hadronisation charged track distributions (c) and (d).

Plot (e) shows the momentum probability distribution in the rapidity bin, 2.5 < rapidity < 2.75,

and (f) shows the total charged track impact parameter signi�cance probability distribution. The

curves in (e) and (f) are the �tted parameterisations.

The momentum probability functions are constructed for ten di�erent rapidity bins which

are used to interpolate to the probability corresponding to any value of rapidity and momentum.
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The probabilities are calculated separately for identi�edK0
L andK

0
S mesons and all other objects,

since kaons from the b ! s decay have a harder momentum spectrum than other Xs decay

products and can therefore be separated from hadronisation kaons more easily.

These probability functions are used in the jet reconstruction algorithm now described.

The reconstruction of an assumed b ! s decay begins with the candidate signal photon onto

which objects (K0
S and �0 mesons, charged tracks and neutral calorimeter objects) in the same

hemisphere as the photon are added in order of decreasing b! s probability. The addition of

objects stops if, by adding the next highest probability object, the mass of the reconstructed jet

is further from the mean B meson mass of 5.28 GeV/c2 than it would be if the object had not

been added. This reconstruction is performed in two stages, as follows :

1. An initial estimate of the b-hadron ight direction is obtained by using only those objects

with rapidity with respect to the thrust axis greater than 1.0 and then calculating the

probabilities as a function of momentum and impact parameter signi�cance only.

2. The 4-momenta of the candidate photon and its accompanying high rapidity objects are

then summed and used as a new estimate of the b-hadron ight direction with which a

better estimate of the object rapidities can be made. The above process is then repeated

but with the rapidity cut removed and the momentum probability function replaced by a

2-dimensional momentum-rapidity probability function.

The resulting jets are accepted as possible b! s decays if the jet mass is within 0.7 GeV/c2

of the mean B meson mass of 5.28 GeV/c2; the mass of the hadronic system, Xs, is less than

4.0 GeV/c2; and the Xs object multiplicity (K0
S and �0 mesons, charged tracks and neutral

calorimeter objects) is greater than one and less than eight. After this procedure, studies of

the signal Monte Carlo show that b ! s decays are well reconstructed with a resolution in

momentum of 1.5 GeV/c and angle of 0.3� [17].

5 Event selection and data analysis

A sample of 4.06 million hadronic Z decays is preselected according to the standard ALEPH

hadronic event selection [10]. To ensure the event is well contained within the detector volume,

the cosine of the polar angle of the thrust axis is required to be less than 0.9, where the thrust

axis is determined using all energy ow objects. To allow the calculation of variables used to tag

b events, jets are reconstructed using the JADE algorithm [18] with a ycut of 0.02, where each

event must have at least one track with VDET hits and a minimum of two jets with momentum

greater than 10 GeV/c and polar angle greater than 5.7� [19].

A set of cuts is used to produce a data sample enriched in b ! s events. To reduce

the background from �0 decays, events are selected with at least one electromagnetic cluster

containing a single candidate photon of energy more than 10 GeV that cannot be combined with

another candidate photon to make an invariant mass of less than 0.2 GeV/c2. The hemisphere

opposite to the candidate photon is required to be b-like with P
opp
hem less than 0.1, where P

opp
hem is

the probability that all charged tracks in the hemisphere are consistent with having originated

from the reconstructed primary vertex [19]. In the Monte Carlo the hemisphere probabilities

are corrected using the impact parameter smearing algorithm described in [20] which improves

the agreement between data and Monte Carlo. In the remaining events, jets are reconstructed

and selected as described in section 4, and the decay objects | including the photon | are

transformed into the rest frame of their parent jet. The angle of the photon, �? , in this frame

relative to the jet direction, is required to have cos �? less than 0.55 since cos �
?
 peaks at unity for

background processes whereas photons are emitted isotropically in b! s decays. Furthermore,

the boosted sphericity, Sb, in the jet's rest frame [21] is required to be less than 0.16, because
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this quantity is peaked at zero for two-body b ! s decays but has a broad distribution for

background processes.

The expected e�ciencies for the various exclusive b ! s channels after all these cuts are

shown in Table 2 along with the means and standard deviations of their reconstructed E�



spectra. From the original data sample, 1560 hadronic Z decays remain, each containing only

one candidate photon (two events with more than one candidate photon were rejected). The

expectation from the background Monte Carlo is 1443 events with a single candidate photon

of which 34% are �0 mesons from b ! c decays; 30% are �0 mesons from non-b decays; 13%

are prompt photons from (q ! q) �nal state radiation (FSR) of which 23% are from light

(uds) quarks, 53% are from c quarks and 24% are from b quarks; 17% are photons from other

(non-FSR) sources, half of which are from � decays; 4% are �0 mesons from b! u decays; and

the remaining 2% are of undetermined origin (because there is no one-to-one correspondence

between the reconstructed objects and \true" simulated particles).

Decay channel E�ciency (%) < E�

 > (GeV) � (GeV)

Bu(d) ! K�(892) 14.5 � 0.5 2.49 0.19

Bu(d) ! K1(1270) 15.0 � 0.6 2.42 0.17

Bu(d) ! K1(1400) 13.5 � 0.5 2.39 0.18

Bu(d) ! K�(1410) 13.0 � 0.5 2.38 0.18

Bu(d) ! K�

2 (1430) 13.8 � 0.5 2.39 0.18

Bu(d) ! K(n�) 12.4 � 0.4 2.37 0.21

Bs ! �(1020) 17.7 � 1.7 2.52 0.15

Bs ! h1(1380) 14.7 � 1.5 2.40 0.19

Bs ! f1(1420) 14.0 � 1.5 2.38 0.19

Bs ! �(1680) 13.0 � 1.7 2.36 0.21

Bs ! f 02(1525) 12.1 � 1.4 2.41 0.15

Bs ! KK(n�) 13.5 � 1.1 2.34 0.21

�b ! �(1116) 7.4 � 0.4 2.45 0.23

b! s 12.8 � 0.3 2.41 0.20

Table 2: Predicted e�ciencies for each of the exclusive b ! s decay channels after the

background rejection cuts. The uncertainties are the Monte Carlo statistical uncertainties. The

b! s e�ciency is the average of the exclusive channels weighted by their production rates, as

given in Table 1. The �nal two columns give the means and standard deviations of the exclusive

E�

 spectra, after all the cuts described in section 5.

The �nal sample of 1560 hadronic events is split into eight sub-samples, de�ned in Table 3.

The b! s decay populates mainly sub-sample 4. Dividing the data up in this way allows the

relative normalisations of the remaining background processes to be measured outside the signal

region.

The �rst four sub-samples have �l < 2.3 cm and hence have candidate photons resembling

prompt photons while the second set of sub-samples have �l > 2.3 cm and are �0-like, see

Figure 2 (a). The data are further divided into sub-samples of relatively high or low b-purity,

containing jets of relatively high or low energy, by binning in � logP
opp
hem and Ejet respectively.

This is done to separate signal photons from FSR photons and to distinguish between �0 mesons

produced in b hadron decays and other (non-b) �0 mesons, see Figure 2 (b,c).

The E?
 distributions for the eight subsamples are shown in Figure 3 together with the

background Monte Carlo (dashed curve) which is absolutely normalised.
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Sub-sample Ejet(GeV) � logP
opp
hem �l(cm) fb!s(%)

1 < 32 1.2 { 2.2 < 2.3 8.4

2 32 { 50 1.2 { 2.2 < 2.3 19.2 low b-purity

3 < 32 > 2.2 < 2.3 17.1 -like |||||||

4 32 { 50 > 2.2 < 2.3 47.0 high b-purity

5 < 32 1.2 { 2.2 > 2.3 0.7

6 32 { 50 1.2 { 2.2 > 2.3 2.8 low b-purity

7 < 32 > 2.2 > 2.3 1.1 �0-like |||||||

8 32 { 50 > 2.2 > 2.3 3.7 high b-purity

Table 3: De�ning the sub-samples, where fb!s in column 5 is the fraction of b ! s decays

populating each sub-sample and Ejet is the energy of the reconstructed b! s candidates.
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Figure 2: Monte Carlo distributions for the quantities used to de�ne the sub-samples. The

vertical lines at �l = 2.3 cm, Ejet = 32 GeV and � logP
opp
hem = 2.2 de�ne the eight event sub-

samples, as in Table 3.
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Figure 3: The E?
 distributions in data (error bars) and the Monte Carlo (histograms) before

and after the �t for the eight sub-samples. The dashed histogram is the standard Monte Carlo

(no b! s) before the �t. The solid histogram is the Monte Carlo (including b! s) after the

�t. The shaded histogram is the b! s contribution from the �tted Monte Carlo.
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The background Monte Carlo gives a reasonable representation of the data, but there is an

excess where the b! s signal is expected (sub-sample 4 in the range 2.2 GeV < E�

 < 2.8 GeV).

Due to the b! s reconstruction algorithm, background events in which the jet contains a FSR

photon tend to produce peaks in the E?
 spectrum in the vicinity of the b ! s signal region.

From Monte Carlo studies it is found that the residual FSR E?
 peaks are most prominent in sub-

samples 1 and 3, and are almost absent in sub-samples 2 and 4 where the signal is greatest. Thus,

uncertainty in the FSR rate does not cause signi�cant uncertainty in the number of background

events in the b! s signal region. To measure the uncertainties in the background levels, and

improve the agreement of the Monte Carlo and the data, a multivariate �t is performed where

the normalisation of the four major backgrounds and the b ! s signal rate are allowed to be

free parameters.

A binned log-likelihood �t of the E?
 data distributions is performed for the eight sub-samples

using the corresponding distributions for the signal and background simulations, and the HMCMML

�tting package [22] which correctly incorporates uncertainties due to the �nite Monte Carlo

statistics in each bin. The �ve parameters in the �t are Nb!s , NFSR, N(b!c)�0 , N(non�b)�0

and Nother, which are, respectively, the total number of signal, FSR, (b! c)�0, (non�b)�0, and

`other' background events which make up the remaining data. The shapes of the E?
 distributions

are taken from the standard Monte Carlo. The sensitivity of the �t to b ! s enters mainly

through sub-sample 4 where there is little FSR expected and, according to Monte Carlo the b

purity is 96.6%.

6 Results

6.1 Extraction of the b! s signal

The results of the multivariate �t are shown in Table 4. A signi�cant amount of b ! s is

required to �t the data while the adjustments of the background normalisations lead to an

improved agreement between data and the background Monte Carlo. These adjustments are

within the accuracy of the �t for Nother, NFSR and N(non�b)�0 as would be expected from

previous ALEPH measurements [12, 23]. However, signi�cant modi�cation is required to the

(b ! c) �0 normalisation. This is not unexpected since there is a 50% uncertainty in the

branching ratio for such decays [16]. The correlation matrix for the �t is shown in Table 5.

Fit parameter Standard (normalised) MC value Fitted value Change in value (%)

Nother 336.8 � 11.7 390.7 � 66.0 +16 � 20

NFSR 223.0 � 10.5 239.6 � 36.5 +7 � 16

N(non�b)�0 431.8 � 13.3 507.7 � 78.6 +18 � 18

N(b!c)�0 482.0 � 14.0 352.7 � 59.1 {27 � 12

Nb!s 0 69.4 � 19.7 {

Table 4: Results of the �ve parameter �t to the data.

The E?
 plots for the sub-samples are shown in Figure 3 for data and Monte Carlo before

and after the �t. Before the �t, the �2 is 87.1 for 68 degrees of freedom and after the �t the

�2 is 66.6 for 63 degrees of freedom | where, in both cases, only bins with at least four entries

are included in the �2 calculation. Figure 4 shows the improved agreement between data and

Monte Carlo after the �t in each of the main variables used in the analysis, both in the event

selection and the �t itself. These distributions are dominated by background processes and this

agreement indicates that the shapes of the backgrounds are well modelled in the Monte Carlo,

in the selected range.
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Nother NFSR N(non�b)�0 N(b!c)�0 Nb!s

Nother 1 -0.20 -0.45 -0.23 -0.03

NFSR { 1 -0.27 0.27 -0.37

N(non�b)�0 { { 1 -0.54 0.12

N(b!c)�0 { { { 1 -0.18

Nb!s { { { { 1

Table 5: Correlation matrix for the �ve parameter �t.
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Figure 4: Comparing data and Monte Carlo events before (standard MC) and after (corrected

MC) the �t in each cut variable and �t variable.

Figure 5 (a) shows the E�

 distribution for sub-sample 4 in data and Monte Carlo after

the normalisations of the background processes have been corrected for. The remaining excess

after subtraction of the background is seen in Figure 5 (b) with the �tted signal distribution

superimposed. The shape of this distribution is consistent with the observed excess within

statistical uncertainties indicating a signal for b ! s. If the �t is repeated with Nb!s

constrained to zero, the excess distribution shown in Figure 5 (b) remains almost the same.

The reason for this is that the background is mainly constrained by the data outside the signal
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region (2.2 GeV < E�

 < 2.8 GeV in sub-sample 4) and is hardly inuenced by the data in the

signal region. The excess in Figure 5 (b) is thus demonstrated to be insensitive to the details of

the �t.
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Figure 5: The energy of the photon in the rest frame of the reconstructed jet. The top �gure shows

the data and Monte Carlo background events in sub-sample 4 (see section 5), after the correction

of the background processes' relative normalisations. The bottom �gure shows the excess in data

after subtraction of the corrected Monte Carlo background and the signal distribution resulting

from the multivariate �t. Also shown is the excess remaining in the data when a �t is performed

without b! s.

6.2 Consistency checks of the b! s hypothesis

For the purest sample of b ! s events (sub-sample 4) and in the signal region (2.2 GeV

< E?
 < 2.8 GeV) there is evidence in the remaining data events, after subtraction of the

corrected background, of lifetime in the same hemisphere as the photon. This is consistent with

that expected from b! s, see Figure 6(a,b).

In the signal region of sub-sample 4 there is seen to be an excess of high momentum kaons,

that is strangeness, in the data which is again consistent with b ! s, see Figure 6(c,d).

Charged kaons are required to have ionisation in the TPC within one standard deviation of the

kaon hypothesis and greater than two standard deviations away from either the electron or pion

hypothesis while the identi�cation of K0
L and K0

S mesons was described in section 4. The data

distribution contains 38 kaon candidates (20 K0
L mesons, 11 K0

S mesons and 7 charged kaons).

After the �t the Monte Carlo predicts a background of 20 kaons (9.9 K0
L mesons, 3.4 K0

S mesons

and 6.8 charged kaons) and a signal of 16.2 kaons (5.4 K0
L mesons, 5.0 K0

S mesons, and 5.8

charged kaons).

Finally, on combining sub-samples 4 and 8 for the E?
 signal region, the excess �l distribution

(Figure 6(e)) peaks at about 2 cm which is characteristic of single photons (which have

< �l > = 1.991 � 0.007 cm) rather than �0 mesons (which have < �l > = 2.251 � 0.034 cm).

11



This is well modelled by the �tted signal Monte Carlo, as shown in Figure 6(f). The mean �l
for data (2.062 � 0.033 cm) tends to be photon-like, and is 3.0 standard deviations less than

the mean �l for the background Monte Carlo (2.187 � 0.026 cm) which consists mainly of �0

decays. Hence the excess is not consistent with a uctuation of the �0 background.
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Figure 6: Supporting evidence for the b ! s signal: (a) displays the impact parameter

hemisphere probability in the same hemisphere as the candidate photon for data and the corrected

background Monte Carlo, while the excess of data above the background, along with the �tted

signal distribution, are shown in (b); (c) and (d) show the leading kaon momentum distributions

for data, background Monte Carlo and signal Monte Carlo; (e) and (f) show the shower major

axis length distributions for data, background Monte Carlo and signal Monte Carlo. The events

are selected as described in the text.

6.3 The inclusive b! s branching ratio.

These observations show that the excess in Figure 5 is photon-like and tends to have a lifetime

distribution and a strangeness content consistent with the b ! s process. This evidence

supports the hypothesis that the excess is due to b! s decays. The inclusive b! s branching

ratio is then evaluated as follows:

Br(b! s) =
Nb!s

"b!s

�
1

2Nhad Rb
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where "b!s is the e�ciency with which inclusive b ! s decays pass the event selection and

is given in Table 2; Nhad is the number of hadronic Z decays in the data after the standard

ALEPH hadronic event selection; and Rb is the Z! b�b hadronic branching fraction which is set

to its Standard Model value of 0.2158 [25]. The resulting branching ratio and its total statistical

uncertainty is :

Br(b! s) = (3:11 � 0:88) � 10�4:

7 Statistical and systematic uncertainties

Table 6 gives a breakdown of the statistical and systematic uncertainties on the branching ratio

measurement. The methods used to evaluate these uncertainties are described below, where

each uncertainty is referred to by its label in the table.

Source of uncertainty Uncertainty (�10�4)

�1 Signal Monte Carlo statistics 0.065

�2 Background Monte Carlo statistics 0.376

�3 Background Monte Carlo composition 0.185

�4 Background shapes 0.462

�5 Energy calibration uncertainties 0.182

�6 K0
L detection e�ciency 0.031

�7 �l scale 0.097

�8 b! u decay rate 0.076

�9 Exclusive b! s branching fractions 0.169

�10 Fraction of baryonic b! s decays 0.200

�11 B meson production fractions 0.012

�12 b quark Fermi momentum 0.028

�13 Assumption for Bs ! Xs�s exclusive branching fractions 0.014

�stat Data statistics | �stat =
q
�2

fit �
P2

i=1�
2
i 0.80

�sys Total systematic uncertainty =
qP13

i=1�
2
i 0.72

�tot Total uncertainty =
q
�2

stat +�2
sys 1.08

Table 6: Uncertainties on the Br(b ! s) measurement. Note that �fit is the total statistical

uncertainty which comes from the multivariate �t.

The total Br(b ! s) �t uncertainty (�fit) has a small contribution, �1, from the b! s

Monte Carlo statistics. The covariance matrix produced in the �t is used to extract the

uncertainties in the branching ratio for b! s due to uncertainties in the four other parameters

in the �t by adopting the method described in [24], giving a combined systematic uncertainty

of �2. The background normalisation uncertainty (�2) is added in quadrature to the signal

Monte Carlo statistical uncertainty (�1), and the remaining uncertainty in �fit is assumed to

be the statistical uncertainty on Br(b! s) due to the �nite data statistics (�stat). As the �t

results give a background Monte Carlo composition which is di�erent from the standard ALEPH

Monte Carlo, a conservative systematic uncertainty (�3) is evaluated as follows. The b ! s

branching ratio is recalculated using the standard Monte Carlo prediction for the background

normalisations and allowing only Nb!s to vary in the �t; then �3 is taken to be the di�erence

between this branching ratio and the value derived in section 6. The �2 for this one parameter

�t is 72.4 for 67 degrees of freedom.

The accuracy of the �t depends on how well the Monte Carlo represents the shape of the
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data in E?
 and on the relative proportion of each background source in each sub-sample. The

systematic uncertainty due to a possible imprecision of the Monte Carlo in this regard is assessed

by observing the change in the measured branching ratio as the boundaries between the eight sub-

samples are varied. In this way it is possible to vary the background in the signal region leaving

the signal itself approximately unchanged. For example, as the Ejet boundary is decreased it

is possible to increase the FSR background by up to a factor 3 and the other backgrounds

by a factor 2 leaving the signal approximately constant in sub-samples 2 and 4. Similarly

increasing the �l boundary allows the other backgrounds to increase by up to a factor of 1.7

leaving the FSR and the signal in regions 2 and 4 almost unchanged. As these changes are

made the branching ratio changes by �4 and this is taken as a systematic uncertainty, although

such changes are compatible with statistical uctuations. The branching ratio measurement is

found to be insensitive to variation of the cut values in the other variables, cos �? , Sb, E and

� logP
opp
hem [17].

The total jet energy (Ejet) for candidate b hadrons is obtained by adding the energies

contributing to the jet of the charged tracks (�30% of the total energy on average); all neutral

hadronic clusters which are assumed to be K0
L (� 4% on average); and electromagnetic clusters

(�66% on average). For those jets (1% of the total) which lie between cos � of 0.9 and 0.95

relative to the beam axis, where there are uncertain energy losses due to imperfections in the

detector coverage at these small angles, the calibration uncertainty is taken to be 10%. For

the remaining jets, the calibration uncertainty of the energy scale is taken to be 1.0% and

is obtained by weighting the calibration uncertainty of the ECAL (1.5%), the HCAL (4%) and

charged tracks (0.2%) by the average fraction of the energy in each, as given above. Varying Ejet

within these uncertainties, for the appropriate events, results in a shift in the �tted branching

ratio of �5. The uncertainty in the HCAL detection e�ciency for K0
L mesons in HCAL is taken

to be 4% and since this a�ects a quarter of b ! s decays it corresponds to a 1% systematic

uncertainty on the branching ratio (�6).

A �t to the �l data distribution using Monte Carlo background �0 mesons and photons, for

which the mean �l values are allowed to vary in the �t, results in a negligible shift in the mean

�l for photons but a (+1.6 � 0.8)% shift for �0 mesons. The change in the b ! s branching

ratio measurement when the �l scale is increased by 1.6% for Monte Carlo �0 mesons is �7.

The remaining systematic uncertainties are evaluated by reweighting signal and background

Monte Carlo events to take into account modelling uncertainties, repeating the �t, and measuring

the resultant changes in the branching ratio measurement. The b ! u decay rate used in the

�t (1.5%) is varied over the range of its uncertainty (� 50%), giving a shift in the measurement

of �8. The systematic uncertainty due to theoretical uncertainty in the relative fractions of

exclusive penguin decays in the inclusive b ! s model (�9) is calculated by repeating the �t

with two extreme signal Monte Carlo compositions. Firstly the fractions of resonant penguins

are all increased to their upper limits | as shown in Table 1 | while the numbers of non-

resonant penguins are reduced to compensate; then the fractions of resonant penguins are all

decreased to their lower limits while the numbers of non-resonant penguins are increased to

compensate. The �t is also repeated with the fraction of baryonic b ! s decays set to zero,

giving a shift of �10. The production fractions of B mesons are varied within their experimental

limits [16] to give a combined uncertainty of �11. The central Fermi momentum value used in the

simulation of B ! K(n�), 265 MeV, is changed by its uncertainty, �25 MeV [15], which gives a

maximum shift of �12. Finally, a systematic uncertainty of �13 is evaluated to account for the

assumption that the exclusive Bs penguin decays are produced in the same relative fractions as

the exclusive Bu(d) penguin decays by measuring the e�ect of weighting the Bs penguin decay

branching fractions according to their spin multiplicity [26] instead of those given in table 1.
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8 Conclusions

The inclusive b! s branching ratio is measured to be:

(3:11 � 0:80stat � 0:72syst)� 10�4:

This could include a small contribution from b ! d. The result is consistent with both the

Standard Model prediction of (3:76 � 0:30) � 10�4 [2] and the only previous measurement of

(2:32� 0:57� 0:35)� 10�4 by CLEO [14]. The L3 [27] and DELPHI [28] collaborations at LEP

have previously performed searches for radiative charmless b decays and placed 90% con�dence

level upper limits of 1:2 � 10�3 and 5:4� 10�4, respectively, on the branching ratio.
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