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Abstract—Attributed network embedding aims to learn rep-
resentations of nodes and their attributes in a low-dimensional
space that preserves their semantics. The existing embedding
models, however, consider node connectivity and node attributes
only while ignoring external knowledge that can enhance node
representations for downstream applications. In this paper, we
propose a set of new VAE-based embedding models called
External Knowledge-Aware Co-Embedding Attributed Network
(ECAN) Embeddings to incorporate associations among at-
tributes from relevant external knowledge. Such external knowl-
edge can be extracted from text corpus and knowledge graphs.
We use multi-VAE structures to model the attribute associations.
To cope with joint encoding of attribute semantics from different
sources, we introduce a mixed model variant which has a two-
layer encoder structure. Our experiments on three real-world
datasets show that ECAN out-performs previous approaches in
both node classification and link prediction tasks.

Index Terms—Attributed Networks, Network Embedding,
Knowledge Graph

I. INTRODUCTION

Motivation. Network embedding has been an important
research topic in recent years due to the existence of massive
amount of web and social network data as well as many
applications on these networks, e.g., link prediction, recom-
mendation, node classification, etc.. Many of these networks
are attributed networks, a type of networks consisting of
both nodes and their attributes. For example, in a citation
network, nodes are publications and node attributes include
paper title, author, and abstract. The node attributes themselves
may also be semantically associated with one another. E.g.,
two keywords (e.g., “AI” and “deep learning”) in abstract can
be semantically related if one has the background research
knowledge. There are several efforts to incorporate node
attributes into network embeddings such as [1] and [2] but
they have not considered external attribute semantics in their
models.

Increasingly, attribute semantics can be found in publicly
available external knowledge sources. Examples of such ex-
ternal knowledge sources include Wikipedia, text corpuses,
WordNet, etc.. From those sources, we can derive attribute
semantics that come in the form of associations between words

and entities for learning better embedding representations of
both nodes and attributes.

Consider attributed network example with publications as
nodes where v1 and v2 are two publication nodes with title at-
tributes, “Mining Authority Nodes from Hyperlinks in WWW”
and “The PageRank Citation Ranking: Bringing Order to the
Web”. The two publications share similar topic but they have
little overlap between their titles. We consider both entities and
words in these publication titles. With external knowledge, we
can determine that the entities that “Web” and “WWW” in the
titles are highly similar, and another two entities “Authority”
and “Pagerank” are similar. At the word level, “hyperlinks”
and “web” are semantically similar. These semantic knowledge
should bring the embeddings of v1 and v2 closer to each other.
Research Objectives. In this paper, we therefore focus on
incorporating external attribute knowledge into attributed net-
work embedding. We specifically study this for the varia-
tional autoencoder-based (VAE-based) models which has seen
much development in recent research. One has to overcome
a few technical challenges in considering attribute knowl-
edge, namely: (a) extracting attribute semantics from external
knowledge sources; (b) designing new VAE architecture(s) to
incorporate different attribute semantics into both node and
attribute embeddings; and (c) evaluation of the proposed VAE.
Contribution. We propose a novel framework and several
variants of External Knowledge-Aware Co-Embedding At-
tribute Network (ECAN) embedding models that incorporate
external attribute semantics. We introduce two ways to mea-
sure the strength of attribute associations, i.e., (i) contextual
distance between words in a text corpus, and (ii) similar-
ity between entities in a knowledge graph. Our proposed
ECAN models learn both entity and attribute representations
in the same embedding space with a multi-VAE architecture.
Specifically, we introduce a mixed model variant to merge
the encoding of attribute semantics from different knowledge
sources. Finally, We conduct extensive experiments on three
real-world datasets and show that ECAN models, especially
the mixed model variants, significantly outperform the state-
of-the-art model.

II. RELATED WORK

Heterogeneous Information Network (HINs) embeddings
aim to learn low-dimensional representations of nodes that978-1-7281-6251-5/20/$31.00 ©2020 IEEE



preserve the network structure [3], [4]. Beyond network struc-
tures, one can improve the node embeddings by consider-
ing node attributes, node labels and text content associated
with the nodes [1], [5]–[7]. For example, TriDNR considers
both node content and node label in the learning of node
embeddings [8]. It jointly optimizes a skip-gram model for
network structure, and a coupled neural network which maps
the node content and node representation from skip-gram
to the node label. ANRL utilizes an auto-encoder to learn
node embedding that preserves both the network structure
and node attribute proximity [9]. Nevertheless, even when
auxiliary node information (e.g., label and attributes) are
modeled by the above embedding approaches, they have yet
considered: (1) uncertainty of node representation, and (2)
attribute representations. These two properties are important as
the former avoids over-fitting and enables generative process,
while the latter provides a common representation to compare
nodes and attributes. In this paper, we utilize variational auto-
encoder to address these shortcomings.

VAE, a popular representation learning for text/image gener-
ation [10]–[12], has shown to outperform several other tradi-
tional network embedding approaches [10]. Semi-supervised
VAEs that incorporate partial label information [13]–[15],
and VAEs that support interpretability using disentangled
representation [16], [17] are among the works showing that
VAE can be easy extended for different problem settings.
The learned VAE representations are often used in node
classification or network completion tasks [18], [19], [20],
[21]. For example, there are works that aim to learn multi-
modal network embedding using VAE as it can capture the
correlation between different data modalities [18]–[20]. To
co-embed the nodes and the auxiliary attributes in the same
representation space, NetVAE employs a shared encoder to
learn a unified representation for a nodes and its attribute, and
separate decoders to decode them separately [21]. Another
work that utilizes VAE to learn embeddings for nodes and
attributes is CAN. It uses a double-VAE structure to jointly
learn node and attribute representations [2]. Both NetVAE and
CAN, however, do not consider external attribute semantics to
improve node and attribute representations.

We compare six selected network embedding works in
Table I. VGAE is a baseline model that learn the embedding
based solely on node adjacency matrix, whereas the others
utilize attribute or label association in the learning process.
While TriDNR and ANRL learn the node representations with
the help of attributes, the attribute representations are not
included in the learned embedding models. On the contrary,
CAN, NetVAE, and our proposed ECAN model both node
and attribute representations at the same time. Furthermore,
ECAN is the only model that considers attribute association
and attribute semantics from external knowledge sources.

III. CO-EMBEDDING WITH EXTERNAL KNOWLEDGE

A. Framework Overview

To provide a common embedding solution approach, we
propose a Co-embedding Attributed Networks with Exter-

TABLE I: Summary of Related Works

Model A Rep.
Encoding of

N
Adj

N-L
Assoc.

N-A
Assoc.

A
Adj

Ext. A
Semantics

TriDNR [8] ×
√ √ √

× ×
ANRL [9] ×

√
×

√
× ×

VGAE [10] ×
√

× × × ×
CAN [2]

√ √
×

√
× ×

NetVAE [21]
√ √

×
√

× ×
ECAN

√ √
×

√ √ √

N: Node. A: Attribute. L: Label.

nal Knowledge (CANE) framework. As a framework, CANE
allows different methods to be used in each step to realise
different co-embedding attributed network models including
ECAN. As illustrated in Figure 1, the CANE framework takes
an attributed network G as input where each node is linked to
one or more attributes. From G, we extract useful information
that serves as input to the learning of co-embedding model.
The NV × NV adjacency matrix A, and the NV × NA
node attribute matrix X are derived from G directly, while
attribute association matrix S is extracted from some external
text corpus or knowledge graph. Our proposed extraction of
attribute associations from text corpora and knowledge graphs
will be described in Section III-B. Here, we assume that
the external knowledge sources should be relevant to the
given attributed network. With the derived attribute-to-attribute
associations, the framework constructs the input matrices and
learns the network and attribute embeddings as outlined in
Sections III-C and III-D.

B. Attribute-to-Attribute Associations

Attribute Definition. The definition of attribute is important
in our proposed framework as it determines how we extract
attribute-to-attribute associations. Instead of defining attribute
at the type-level, where different types of nodes are treated
separately, our framework adopts an instance-level attribute
definition. In other words, a node attribute is a concatenation of
attribute type and attribute label(s). Using citation network as
an example, a paper node can have (author, “John Smith”) as
an attribute, (keyword, “search engine”), and (keyword, “data
mining”) as two other attributes.

Depending on the attribute type, we derive the attribute-to-
attribute associations differently. In this paper, we categorize
attributes into 4 main types: (a) numeric, (b) categorical, (c)
set, and (d) multiset. The attribute-attribute associations of
numeric attributes (e.g., age, salary, etc.) are directly derived
from their values. Hence, we focus on non-numeric attribute
types in the following discussion.

Categorical attribute is a singleton set, and set is a special
case of multiset. Without loss of generality, we only consider
multiset attribute, and a node with multiset attribute is mapped
to node-attribute associations, one for each value of the
multiset. For example, a paper node vi with this sentence
in the abstract, “Social networks have long tails.”, will be
represented as a set of associations between vi and (abstract,



Fig. 1: Co-embedding Attributed Networks with External
Knowledge

“social”), (abstract, “networks”), · · · , (abstract, “tails”). In the
following, we present two kinds of attribute values: (a) word,
and (b) entity.
Word as Attribute. For attributes that are textual, words are
the attribute values. As not all words are important, one can
keep only the informative words and use them as attribute
values. For example, we may select only words with high TF-
IDF values.
Entity as Attribute. When the attribute has a category label
or multiset of labels, each label is treated as an entity. Even
when the attribute is textual, it is possible to extract entities
from the textual content to be used as attribute values. Such
an approach will be illustrated in our experiment datasets (see
Section V-A).

With word and entity attributes defined, we now define
measures for the association between two attributes. In this
framework, we consider two types of external knowledge
sources, (a) text corpus, and (b) knowledge graph.
(a) Text Corpus as External Knowledge. A text corpus
consists of many text documents. The word-word associations
can be derived from word co-occurrences, say, the number of
time one word appears with another word in the same context.
This is the same intuition behind popular word embedding
approaches such as Skip-gram.
(b) Knowledge Graph as External Knowledge. Knowledge
graphs are networks of entities connected by one or more
semantic relation. From a knowledge graph, we could measure
the association of two entities using the graph structure, the
association between two words using their co-occurrences in
knowledge graph’s text data, and the association between a
pair of entity and word using their co-occurrence. For instance,
Milne and Witten proposed to measure the similarity of two
entities by their in-link edges originating from same entities
[22]. If two entities share very similar set of in-links, they are
highly associated. Knowledge graphs, in many cases, have text
data describing their entities. For example, Wikipedia has one
article for each entity, and these entity articles can serve as a
text corpus to derive entity-to-entity associations.

C. Input Matrices Construction

Next, we construct three set of input matrices for repre-
senting network and attribute-attribute associations before co-
embedding learning.

1) Node-to-Node Association Matrix (A)
The Node-to-Node Association Matrix captures the network

structure of the attributed network using an NV×NV adjacency
matrix. In the case of unweighted network, Aij = 1 if
(Vi,Vj) ∈ EV , and 0 otherwise. If the attributed network is
weighted, Aij will simply be the weight of edge.

2) Node-to-Attribute Association Matrix (X)
The Node-to-Attribute Association Matrix is constructed

for an unweighted attributed network by setting Xia = 1 if
(Vi,Aa) ∈ EA, and 0 otherwise.

3) Attribute-to-Attribute Association Matrix (S)
There are three possible Attribute-to-Attribute Association

Matrices, denoted by S(a), S(b), and S(c) as shown in Figure 1.
(a) Word-to-word associations learned from text corpus

(S(a)). In this setting, we extract contextual closeness between
two attributes which are words from a text corpus D. The text
corpus could be relevant to the attributed network (e.g., the
abstracts of the papers in a citation attributed network) or a
text collection that provides meaningful word co-occurrence
information. We derive the contextual closeness from distance
between the two words ai and aj within a context window. For
a window size w in a document d, the contextual closeness of
one occurrence between ai and aj is scx

ijd = w−dij where dij
denotes the distance between ai and aj . This closeness score
is symmetric. For example, given a sentence “Discriminative
learning for differing training and test distributions” and a
window size 4, the contextual closeness between the words
“learning” and “training” in this context window is 4−2 = 2.
The closeness between “learning” and “distribution” would be
0 as “distribution” does not appear within “learning”’s context
window. For all pairs of words found in the attributed-network,
we construct a NA×NA matrix S(a) as S(a)

ij =
∑
d∈D s

cx
ijdfor

all pairs of words ai and aj .

(b) Entity-to-entity associations learned from text corpus
of knowledge graph (S(b)). Similar to (a), from the text
corpus D that covers entities in a knowledge graph (e.g.,
Wikipedia pages), we construct a NA×NA matrix S(b) using
context closeness score scx

ij between two entities ai and aj .
S
(b)
ij =

∑
d∈D s

cx
ijd

(c) Entity-to-entity associations learned from knowledge
graph (S(c)). The corresponding NA×NA matrix S(c) matrix
has each entry measuring the relatedness between two entities.
In this work, we define two entity relatedness functions giving
rise to two different matrices:

(c.1) In-link similarity from knowledge graph: We adopt the
Wikipedia Link-based Measurement (WLM) proposed in [22]
to measure entity relatedness. Entities sharing similar in-link
neighbors will have higher similarity, S

(c1)
ij . WLM between

two entities ai and aj is defined as follows, S
(c1)
ij = 1 −



Fig. 2: ECAN (Non-Mixed Model)

logmax (|Cai |,|Caj |)−log (|Cai∩Caj |)
log |E|−logmin (|Cai |,|Caj |)

where E is the set of entities
(attributes) in the attributed network, Cai is the set of entities
having a link to ai in the knowledge graph.

(c.2) Cosine similarity from pre-trained knowledge graph
embeddings: This leverages on knowledge graph embedding
methods such as Wikipedia2vec [23] to determine entity relat-
edness. Such embedding methods align entities and words in
the knowledge graph in the same vector space. The association
between two entities is this the relatedness between their
vector representation. With a pre-trained knowledge graph em-
bedding, we therefore define the association between entities
ai and aj as S

(c2)
ij = cos(akg

i ,a
kg
j ). where akg

i denotes the
vector representation of entity ai in the pre-trained knowledge
graph embeddings, and cos(·) is the cosine similarity.

D. Co-Embedding Learning

The last step of our proposed framework is co-embedding
learning. The co-embedding algorithm learns low-dimensional
representation of nodes and attributes from the three afore-
mentioned association matrices. After the embedding model
is learned, we then use it in the subsequent downstream tasks.
Our framework can accommodate any embedding learning
algorithm that utilizes the same set of input matrices (i.e.,
node-node matrix, node-attribute matrix and attribute-attribute
matrix) . In the remaining sections, we will use variational
auto-encoders (VAE) as the embedding algorithm as illustrated
in Section IV.

IV. CO-EMBEDDING LEARNING USING VAE

A. ECAN Models

Our proposed model External Knowledge-Aware Co-
Embedding Attributes Network (ECAN) extends CAN with
multiple VAEs used to encode and decode network edges
A, network attributes X and the new attribute semantics S.
This generalizes the two-VAE structure in CAN. As shown
in Figure 2, besides a VAE for encoding/decoding network
structure and network attributes, a new VAE is constructed to
learn attribute information from attribute-to-attribute associa-
tion matrix S. The nodes are encoded by a two-layer GCN
defined as:

H
(1)
V = ReLU

(
ÃXSW(0)

V

)
[µV , σ

2
V ] = ÃH(1)

V W(1)
V

(1)

where RELU(·) is the layer-1 non-linear mapping from
ÃXS to a hidden layer, and another layer of mapping to a
set of distribution parameters µV and σV . Ã represents the
normalized version of A.

To encode the attributes, we encodes X and S separately in
two VAEs, and concatenate the learned latent variables µA and
σA as attribute representation. The dimension size of these two
VAEs are set to be D

2 so as to ensure the node and attribute
representations could have the same length.

H
X(1)
A = tanh

(
XTWX(0)

A + bX(0)
)

H
S(1)
A = tanh

(
SWS(0)
A + bS(0)

)
[µXA , σ

X
A

2
] = H

X(1)
A WX(1)

A + bX(1)

[µSA, σ
S
A
2
] = H

S(1)
A WS(1)

A + bS(1)

µA = [µXA , µ
S
A], σA

2 = [σXA
2
, σSA

2
]

(2)

In decoding, Aij is generated from the product of ZVi and
ZVj . Attribute-wise, the node i’s attribute a, Xia, is derived
from the product of ZVi and ZAX

a , and the association between
attributes a and b, Sab, is derived from the product of ZAS

a

and ZAS
b . With three VAEs in our model, the loss function

minimizes the reconstruction errors of A, X, and S as well
as KL-divergence of the three approximated/true priors:

logp(A,X, S) ≥ Eqφ
∑
i,j∈V

logpθ (Aij | Z
V
i , Z

V
j )

+ Eqφ
∑

i∈V,a∈A
logpθ (Xia | ZVi , ZAX

a )

+ Eqφ
∑
a,b∈A

logpθ (Sab | Z
AS
a , ZAS

b )

− DKL

(
qφ(Z

V |A,X) ‖ p(ZV)
)

− DKL

(
qφ(Z

AX|X) ‖ p(ZAX)
)

− DKL

(
qφ(Z

AC|S) ‖ p(ZAS)
)

, L(θ, φ;A,X, S)

(3)

where

ZVi = µVi + σ2
Vi � ε, with ε ∼ N (0, I)

ZAX
a = µXAa + σXAa

2 � ε, with ε ∼ N (0, I)

ZAS
a = µSAa + σSAa

2 � ε, with ε ∼ N (0, I)

ZAS
b = µSAb + σSAb

2 � ε, with ε ∼ N (0, I)

(4)

The encoding process of ECAN makes use of both internal
(network structure) and external (text corpuses/knowledge
graph) knowledge. However, the correlation between X and
S is neglected in such VAE structure. Therefore, we propose
a mixed model inspired by AMVAE to cope with the joint
encoding of different sources [20].



Fig. 3: ECAN (Mixed Model)

B. Mixed Model

When there are multiple inputs to the learning of represen-
tations, one intuitive approach is to concatenate the two input
matrices as one input. Nevertheless, when one of the input
matrices (say, S) has much larger dimension size than another
(say, X), the encoding process might be dominated by the
matrix with higher dimensions. To avoid this, the mixed model
was proposed to jointly learn embedding from multimodal
sources providing input data with different dimension sizes
[20]. In the mixed mode, a two-encoder structure is deployed
to balance the impact from different input.

We adopt the mixed model in our ECAN, and obtain a new
ECAN structure called ECAN(mixed) (see Figure 3) which has
an additional second-layer encoder that takes the concatenation
of X and S’s representations from the first-layer encoders as
input. The second-layer encoder outputs the latent variables
[µXAa , σ

X
Aa

2
] and [µSAa , σ

S
Aa

2
]. Finally, we concatenate zX and

zS derived from the latent variables to be the final attribute
representation. The loss function of ECAN(mixed) is almost
identical to ECAN except for the KL-divergence terms. Since
the encoding of ZAX and ZAS is through a shared encoder, the
approximated prior qφ for the two latent variables should be
derived from both X and S. That is, the last two terms of Eq. 3
should be modified to DKL

(
qφ(Z

AX|X,S) ‖ p(ZAX)
)

and
DKL

(
qφ(Z

AC|X,S) ‖ p(ZAC)
)

respectively. In this way,
the correlation among input matrices is kept, and the learning
is no longer dominated by the larger matrices.

V. EXPERIMENTS

We conduct experiments on three datasets to evaluate the
performance of our proposed ECAN model against CAN. In
the earlier paper [2], CAN has been shown to outperform other
state-of-the-art network embedding models including AANE
[5], ANRL [24] and GAE [10] in both link prediction and
node classification tasks on seven real datasets. In this section,
we thus focus on evaluating ECAN against CAN in similar
tasks. Our goal is to determine: (a) if external knowledge
about attribute semantics can improve the embedding for
achieving more accurate downstream task results (i.e., node

TABLE II: Dataset Statistics

Datasets #Nodes #Edges #Attrib
(Words)

#Attrib
(Entities) #Labels

Citation 2,010 7,465 4,319 1,003 6
O*NET 974 11,342 18,119 1,174 6
IMDB 7,313 21,939 50,323 3,127 10

classification and link prediction); (b) if the mixed model can
yield better performance than non-mixed model; and (c) if
there are evidence that better attribute and node embeddings
are learned with the help of external knowledge sources.

A. Datasets

Our experiments require attributed network datasets with
words and entities as attributes. Associated with these datasets
are suitable external knowledge sources covering associations
between entities and between words. To the best of our
knowledge, such datasets are not available and we decided
to construct three new datasets specially for this research.
While our models can handle multiple attributes, we keep the
experiments simple and somewhat comparable to results in
previous works by considering only one type of attribute. The
dataset statistics are shown in Table II. Note that the node
labels are only used in node classification task.
• Citation Network Dataset [25]. This is a subset of

the citation network dataset from ArnetMiner which
has papers as nodes, and title combined with abstract
as an attribute type. Two papers are connected if one
cites another. The papers are classified into six domains
based on the publication venues: database, AI, hardware,
system, theory, and programming languages. A text cor-
pus is constructed as an external knowledge source by
combining every paper’s title and abstract together to
form a text document.

• O*NET Occupation Dataset. The Occupational Infor-
mation Network (O*NET) (www.onetonline.org) is a free
online occupation network created by the US government.
Every occupation in O*NET is a node in the attributed
network. Each occupation node has word attributes de-
rived from its fields, namely: description, tasks and skills.
An edge exists between two occupations in O*NET if
they are related. In O*NET, every occupation is assigned
a career preference profile according to the Holland Occu-
pational Codes, also known as RIASEC [26]. There are
six different RIASEC labels: Realistic (R), Investigative
(I), Artistic (A), Social (S), Enterprising (E), and Conven-
tional (C). Each occupation’s profile consists of two to
four of the above labels. A text corpus is constructed by
combining the description, task and skill requirements of
every occupation into a document.

• IMDB Movie Dataset. We constructed an attributed
network by extracting a subset of movies from Internet
Movie Database (IMDB). In this network, each node
represents a movie, and movies are linked to one another
by “related movies”. Attributes are extracted from the
movie synopsis. Every movie node is assigned one or



more movie genre: adventure, action, comedy, animation,
family, fantasy, drama, sci-fi, romance, and mystery.

For each dataset, we construct both word attributes and en-
tity attributes using their associated text corpora as follows. We
extract word attributes from the text document associated with
each network node (i.e., paper/occupation/movie node). For
Citation dataset, we keep only the top 20 words with highest
TF-IDF of each node as its word attributes. For both O*NET
and IMDB datasets, we keep the top 30 words by TF-IDF
as the node’s word attributes. We next use spaCy to recognize
entities in the text document associated with a node and match
them with Wikipedia entities using Wikipedia2Vec [23] fol-
lowed by manual judgement. The recognized entities include
computing concepts and algorithm names for Citation dataset,
and celebrity names and movie titles for IMDB dataset. For
O*NET dataset, we link the skill entities in the text data
of each occupations with Wikipedia entities by simple string
matching. To select more important entities as attributes, we
remove entities that appear in the text data of ≤ 10 nodes
as we empirically found the choice of importance criteria not
affecting the performance much.

B. Baseline and Model Settings

We compare several variants of the ECAN model using
different attribute associations and mixed/non-mixed encoder
model components, as enumerated below.
• CAN [2]: This double-VAE model learns the latent

representations of nodes and attributes using A and
X without external knowledge. CAN has been shown
to outperform other state-of-the-art network embedding
models including AANE [5] and ANRL [24] in link
prediction and node classification tasks. Therefore, we
use it as the baseline model for comparison.

• ECAN(a): ECAN using A, X, and S(a).
• ECAN(b): ECAN using A, X, and S(b).
• ECAN(c1): ECAN using A, X, and S(c1).
• ECAN(c2): ECAN using A, X, and S(c2).
• ECAN(b+c): ECAN using A, X, S(b), and S(c2).
We show the result using mixed model structure and non-

mixed model structure for all ECANs. Our ECANs are im-
plemented using Tensorflow [27]. Adam optimizer is used
for optimization with learning rate = 0.01 [28]. For the
optimization of VAEs, we use the same parameter settings
as CAN to allow these model to be comparable. D is set to
be 32 for all datasets and all methods while the dimension
size for the hidden layers is 64.

VI. RESULTS

A. Node Classification

In this task, we train logistic regression models to predict
node labels using the node representation as input. We use
OneVsRest classifier for Citation Network Dataset as each
node belongs to one class. For O*NET and IMDB datasets, we
train 6 and 10 binary classifiers respectively as each node could
have more than one class label. We report Macro-F1 using 10-
fold cross validation following the previous works [5], [9]. As

TABLE III: Node Classification Result (Macro-F1)

CAN ECAN (Non-Mixed Model)
(a) (b) (c1) (c2) (b+c)

Citation 0.817 0.818 0.820 0.828 0.828 0.841
O*NET 0.801 0.813 0.832 0.839 0.841 0.851
IMDB 0.732 0.758 0.767 0.781 0.783 0.789

ECAN (Mixed Model)
(a) (b) (c1) (c2) (b+c)

Citation 0.817 0.821 0.820 0.833 0.837 0.849
O*NET 0.801 0.819 0.832 0.841 0.850 0.867
IMDB 0.732 0.766 0.770 0.785 0.785 0.804

TABLE IV: Link Prediction Result (AUC)

CAN ECAN (Non-Mixed Model)
(a) (b) (c1) (c2) (b+c)

Citation 0.941 0.941 0.945 0.951 0.955 0.960
O*NET 0.897 0.903 0.911 0.915 0.916 0.923
IMDB 0.903 0.905 0.913 0.917 0.921 0.924

ECAN (Mixed Model)
(a) (b) (c1) (c2) (b+c)

Citation 0.941 0.941 0.947 0.953 0.961 0.964
O*NET 0.897 0.909 0.912 0.919 0.919 0.931
IMDB 0.903 0.905 0.918 0.925 0.930 0.937

shown in Table III, our ECAN models outperform CAN which
does not consider external knowledge sources. Among the
ECAN models using different inputs, it is generally the case
that (b+c) > (c2) ≥ (c1) > (b) > (a). The result matches the
intuition that (1) more attribute association information results
in better performance; and (2) more clearly defined association
(i.e., entity relatedness from knowledge graph) outperforms
simple methods (e.g., contextual closeness among words).
Finally, mixed models mostly outperform non-mixed ones.
In particular, ECAN (Non-Mixed Model) can achieve 3% to
7.8% better macro-F1 than CAN, while ECAN (Mixed Model)
can achieve 4% to 10% better macro-F1 than CAN. The
improvement over the already quite accurate CAN highlights
the importance of learning the mixed model that balances the
correlation among different inputs.

B. Link Prediction

Link prediction seeks to predict whether an edge exists
between two given nodes. For each dataset, we train a binary
Logistic Regression model that takes the Hadamard product
of the two nodes’ embeddings as input. Following the same
procedure of positive/negative instances sampling as in the
previous papers [2], [10], [29], we divide the existing node-
node edges (i.e., positive instances) into three subsets: training
set (85%), validation set (5%), and testing set (10%). We then
randomly sample same amount of non-existed edges as the
negative instances. As shown in Table IV, we report the Area
under ROC curve (AUC) which has been used in most previous
works. The result is consistent with that of node classification.
ECAN(c2) is the best model among ECAN models using one
type of attribute association. ECAN(b+c), again, outperforms
all other ECAN and CAN models. In particular, ECAN(b+c)
mixed model outperforms CAN by 2.4% to 3.8%, which is
non-trivial given the little room for improvement.



TABLE V: Node Classification Performance (Macro-F1) of
Different Dimension Size

Dataset / #dim 16 32 64 128

Citation 0.794 0.849 0.872 0.873
O*NET 0.8 0.867 0.87 0.871
IMDB 0.752 0.804 0.839 0.851

C. Impact of Varying Dimension Size

The dimension size, D, is important in VAEs as it could
heavily affect the performance of downstream tasks in some
cases. Hence, we conduct an experiment to examine how sensi-
tive ECAN is to D. Here, we focus only on node classification
tasks with ECAN(b+c). As shown in Table V, among all three
datasets, as D gets larger, the node classification performance
improves. We also observe that the improvement quantum
diminishes as the dimension size increases. However, the
diminishing improvement quantum varies with datasets. For
instance, the improvement quantum of Macro-F1 from D = 32
and D = 64 is significant for both Citation and IMDB, while
the Macro-F1 only improves by 0.3% for O*NET. When D
reaches 128, the performance cannot improve further for both
Citation and O*NET datasets, but there is still a 1.2% increase
in Macro-F1 for IMDB dataset. Hence, one has to choose a
suitable D setting for each dataset. O*NET dataset consists of
a small number of nodes, thus we could represent all nodes
with relatively small size of D (i.e., D = 32) and achieve
good performance. As Citation and IMDB datasets are large,
they need larger D values. In particular, IMDB dataset has the
largest sets of nodes, attributes, and node labels. Therefore,
even when the dimension size is large (i.e.,D = 128), the
performance is yet to converge. In other words, there is a room
for ECAN(b+c) to achieve better node classification accuracy
if D is set to be larger.
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VIII. CONCLUSION

In this paper, we propose a framework that incorporates
external knowledge sources, word and entity associations
from external knowledge sources, to improve the quality of
attributed network embedding learning. Based on the frame-
work, we propose different multi-VAE co-embedding models
with different encoder structures to incorporate these different
association semantics. The experiment results show promising
results of ECAN and its variants. This work represents an
early effort to incorporate external knowledge in attributed net-
work embedding. More combinations of external knowledge
sources and attribute types can be considered in the future
work. One can explore other alternative word embedding and
knowledge graph embedding models to extract the association

among attributes. Semi-supervised co-embedding models that
can generate attributes of a node with some given class
labels can also be explored. Finally, we can also improve the
interpretability of ECAN by incorporating attention.
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