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ABSTRACT
Through their normal operation, cellular networks are a repository
of continuous location information from their subscribed devices.
Such information, however, comes at a coarse granularity both in
terms of space, as well as time. For otherwise inactive devices,
location information can be obtained at the granularity of the as-
sociated cellular sector, and at infrequent points in time, that are
sensitive to the structure of the network itself, and the level of mo-
bility of the device. In this paper, we are asking the question of
whether such sparse information can help to identify the paths fol-
lowed by mobile connected devices throughout the day. If such a
task is possible, then we would not only enable continuous mobility
path estimation for smartphones, but also for the millions of future
connected “things”.

The challenge we face is that cellular data has one to two orders
of magnitude less spatial and temporal resolution than typical GPS
traces. Our contribution is to devise path segmentation, de-noising,
and inference procedures to estimate the device stationary location,
as well as its mobility path between stationary positions. We call
our technique Cell*. We complement the lack of spatio-temporal
granularity with information on the cellular network topology, and
GIS (Geographic Information System).

We collect more than 3,000 mobility trajectories over 8 months
and show that Cell* achieves a median error of 230m for the sta-
tionary location estimation, while mobility paths are estimated with
a median accuracy of 70m. We show that mobility path accuracy
improves with its length and speed, and counter to our intuition,
accuracy appears to improve in suburban areas. Cell* is the first
technology, we are aware of, that allows location services for the
new generation of connected mobile devices, that may feature no
GPS, due to cost, size, or battery constraints.
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1. INTRODUCTION
Mobile devices are increasingly being seen as a unique sensor to

individuals and humanity as a whole. Pocket-sized devices tend to
follow us throughout our lives, capturing our day to day routines
and providing us with valuable services, that exploit our context
and preferences. A significant amount of research has gone into
developing technologies that allow such devices to enable novel
computing interactions, based on an increasingly greater number
of sensors on board. The fundamental obstacle that needs to then
be overcome is that of limited battery power. During the past 5-10
years, the research community has focused on ways to improve bat-
tery consumption for smartphones and define techniques for energy
efficient location acquisition, through sophisticated energy efficient
sensor hubs, WiFi, or the careful duty cycling of GPS; see [17] and
references therein.

While smartphones are reaching nearly ubiquitous penetration in
developed regions, a whole new array of connected devices emerges
and is projected to reach billions by the year 2020. These devices
tend to be connected to the cellular network (through 2G/3G or 4G),
and are oftentimes mobile (see sim-watch.com or the array of de-
vices supporting fleet management). However, due to cost, size or
battery constraints, rarely do such devices feature GPS capabilities
or sophisticated sensor architectures. The question we are address-
ing with this work is whether there is a way of enabling this whole
new set of devices with precise location path information by uti-
lizing the fact that these devices are continuously connected to the
cellular network.

Mobility management is a fundamental function of the cellular
infrastructure. However, unlike recent public belief, in normal op-
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eration a cellular network is not in a position to accurately localize
every single subscriber in space. In most cellular infrastructures to-
day, mobile subscribers leave a trace of their associated tower, only
when making/receiving calls, sending/receiving SMS, crossing Lo-
cation Area Codes (LACs) or are routinely polled by the network
due to stale information that exceeds a preconfigured duration (on
the order of a few hours). Full handover information 1 is further ac-
cessible through RNC-level monitoring. In this paper we approach
the problem of localizing subscribers from such sparse and noisy
data available to the cellular operator.

We develop Cell*, an algorithm that is able to parse the continu-
ous sector observations and identify the segments corresponding to
a stationary position, and the segments corresponding to actual mo-
bility. We use the stationary segments, that typically feature mul-
tiple sector observations, to derive more accurate estimations for
the stationary position. Using those enhanced locations that go be-
yond the sector coverage area, we develop an algorithm that is able
to extract mobility paths between stationary points. Our path esti-
mation algorithm uses cellular topology information to identify the
areas on the map that are consistent with the observed sector asso-
ciations, and weighs them according to the likelihood for a mobile
subscriber to have connected with a tower from different locations
within the respective sector coverage area. It then biases the route
selection to pass through high probability areas while respecting
the underlying road network.

To understand the accuracy and the limitations of Cell* we study
continuous mobility patterns for more than 30 individuals, while
recording their ground truth GPS locations, and their associated
cellular sectors (for every single handover). Our measurements
cover more than 3000 unique trajectories in a European country.

Cell* is able to identify the stationary position of the connected
device with a median error of 230 meters which is comparable to
the GSM triangulation technologies that actively probe the sub-
scribers’ signal strength [22]. In case of mobile paths, Cell* has
even lower median error of 70 meters due to the de-noising and
GIS information that enrich the path inference. Somewhat intu-
itively, we show that the accuracy of our algorithm improves with
the speed of the connected device and its length. Counter to our
intuition, we further see that estimating mobility paths in suburban
areas is more accurate. We speculate that this is due to the fact that
sparser cellular network deployments occur in areas with sparser
road infrastructure, thus limiting the number of possible roads that
could have been taken by the connected device. In summary, we
find Cell* able to provide sufficient accuracy in path estimation for
the billions of connected mobile devices that will be seen in the
future.

The remainder of this work is structured as follows: we first
present the problem formulation and an overview of our method-
ology that is composed of five steps. In Section 3, we present the
details concerning each of these steps. In the following section
((§ 4)), we describe the probe that we implemented and the datasets
that we collected whereas in Section 5 we evaluate the quality of
the paths that are produced by Cell*. A detailed discussion about
the implications of Cell* is given at Section 6. Finally, in Section 7
we compare with existing related work.

2. PROBLEM AND APPROACH
We begin with a definition of the problem we explore and an

overview of the proposed solution.

1Notice that handovers are typically associated with an active com-
munication. In our case we loosely use the term to indicate that the
user switched between two sectors.
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Figure 1: Overview of GSM hierarchy.

2.1 Formulation
We formulate the problem of estimating mobile paths from oper-

ational cellular data as follows. For each mobile device m or sub-
scriber in the network, we have a sequence of time-stamped sector
associations:

Cm = [(tm[0], Sm[0]), (tm[1], Sm[1]), . . . ] (1)

Each element Sm[i] is the sector the mobile m is associated with
at the time tm[i]. A graphical representation of such a sequence
of observed sectors is shown on Figure 2a. This sequence repre-
sents what can be collected from the cellular infrastructure at the
BSC/RNC as part of normal operation. We note that cellular net-
works do not presently log data at this granularity because of its
significant volume over time and the network overhead that might
be imposed. Information may only be kept when a device switches
across different RNCs or even LACs (Figure 1). However, it is
technically and economically feasible to keep information at the
BTS level if it proves useful.

The sequence Cm is a proxy for the true location of the mobile
m over time, which we call the ground truth. Ideal ground truth
is continuous and accurate. However, to collect or evaluate it in
practice, ground truth must be sampled at discrete times by using
another localization method. Thus we model ground truth in the
form we will use it in our experiments as:

Lm = [(tm[0], lm[0]), (tm[1], lm[1]), . . . ] (2)

where lm[i] is the location of the mobile devicem at the time tm[i].
Later, we will collect ground truth location using GPS as it is the
most accurate sensor that is available to us.

Our goal is to use the cellular observations Cm for each sub-
scriber m to construct an estimate of the path of the mobile device
P̂m that is close to its actual path represented by Lm. Observe
that we have simplified our formulation for convenience. Both Cm

and Lm are discrete trajectories that give a sequence of mobile po-
sitions at given times. We estimate the continous path P̂m of the
subscriber that gives its range of positions but not the exact times
at which it progressed along the path.

This subtle change from trajectories to paths both meets our
needs, since often we simply care about the street-level path, and
makes it more straightforward to assess whether our estimates are
close to the ground truth. We formally define what it means for
estimated paths to be “close” to ground truth later on.
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(a) Sequence of observed sectors. (b) Extracting start/end points
and intermediate street probabil-
ities

(c) Cell* through the weighted
streets

(d) Comparison with GPS
ground-truth

Figure 2: Cell* Steps [Best viewed in Color].

2.2 Challenges
There is much work on localization, yet the problem we explore

is significantly more difficult than traditional formulations because
the input data is much more limited.

Firstly, The spatial granularity of the location information is at
best that of a sector/BTS (Figure 1), which is often quite large (es-
pecially in rural areas). Most significantly, there is no information
on the set of cell sectors that are within range of a subscriber and
there is no measurement of the signal strength (i.e., RSSI) with
which a mobile can hear its associated cell sector or vice versa.
While some of this information does reach the BSC/RNC when
there is an active communication (i.e., data exchange), logging it
would be a major departure from current operational practices such
that we do not consider it a possibility in this paper. Given these
restrictions, we cannot use popular localization methods that use
WiFi signal fingerprinting or cell tower signal attenuation models.

Furthermore, the sequence of associations is logged at a lower
granularity. Firstly, the mobile terminals may switch between BTSs
of the same RNC without even notifying the network (Figure 1),
making this an undetectable operation by the network. While mod-
ern smartphones frequently exchange frames with the associated
towers (e.g., periodic e-mail checking), in practice, in most cel-
lular deployments it is only viable to log information at the SGCN
level: tower associations may only be recorded when a user is mak-
ing/receiving calls, sending/receiving SMS, crossing Location Area
Codes (LACs) or when polled by the network (usually every 2-3
hours).

Finally, even if the associated BTS is known, deriving the ex-
act location of the mobile terminal is still challenging. Often, to
balance load the BSC/RNCs may not associate mobiles to the near-
est sector. Moreover, a mobile terminal itself may not necessarily
switch to the nearest sector, even when it would provide a better
signal, as long as it maintains a good connection with the previ-
ously associated tower. Therefore, the associated sector is partly
a function of the connection history, as well as the current load,
the topology and the availability of certain technologies in the area
(2G/3G/4G).

As a consequence, our problem is significantly more challeng-
ing, due to the inherent sparse nature of the data under considera-
tion.

2.3 Solution Overview
We divide our mobile path estimation procedure into five steps.

We briefly explain the goal of each step and why it is appropriate.

The next sections describe the methodology of each step in more
detail.
• STEP 1: Model the coverage area of the sectors.

To interpret mobile associations with cell sectors, we first need
to model where a subscriber is likely to be while associated. That
is, we need to understand the coverage of the cell sectors. For
each sector, we build a model for the expected coverage based on
the information that is available to the network operator. This in-
formation includes the sector location, orientation, beam width,
and the intended spatial extent of the installation (i.e., macro,
micro, or femto cell). A visualization of these characteristics
(location, beam width, orientation and power) for an observed
set of sectors Cm is shown in Figure 2a. The coverage models
can be combined to identify the overlap between two sectors Si

and Sj to understand likely handover locations.

• STEP 2: Identify stationary and mobile segments.
We model mobile subscribers as alternating between stationary
and mobile states. Since different estimation procedures are ap-
propriate for the different states, we split the cellular observa-
tions Cm into stationary and mobile sub-sequences. A station-
ary sequence is defined as the sequence of cell sectors S a mobile
device sees while in the same logical location (e.g., building) for
more than τ=15 minutes. A mobile sequence is defined as the
sequence between two stationary sequences (Figure 2b).

Separating stationary and mobile segments is not trivial because
devices may typically connect to multiple towers even when they
are stationary. By using the coverage maps, we can understand
when handovers are consistent with a single underlying location
and when handovers imply significant motion as the more likely
behavior.

• STEP 3: Estimate location for a stationary sequence.
To generate a path P̂m we need to identify the two end-point lo-
cations. During each stationary sequence (derived from step 2),
a number of sectors may be observed: the median is four unique
sectors. Therefore, we can use the whole set of observed sec-
tors over time to derive a more accurate estimate of the device’s
fixed location than using the whole coverage area of a single
sector. Our procedure uses the coverage area of each tower (step
1) plus the duration the mobile was associated with each sector.
Figure 2b shows this estimated location for the two endpoints
(stationary periods) of a path. In this example, at each endpoint
3 unique sectors where used to approximate the device’s station-
ary location.
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• STEP 4: Identify high-probability areas of the path.
For each mobile sequence (given from step 2), a number of in-
termediate sectors are observed (median is 12 unique sectors)
between the stationary sequences that serve as endpoints (Fig-
ure 2a). The coverage of the observed sectors indicates the areas
that the mobile device traveled through with high probability.
An illustration of these inferred coverage areas of the interme-
diate sectors is shown in Figure 2b. We find that these areas
typically constrain the path of the mobile subscriber, as shown
in Figure 2c. Note that there are tradeoffs between accuracy
and completeness. We find it more useful to estimate incom-
plete but high-probability areas such as handovers at the inter-
section between adjacent sectors rather than estimate complete
but lower-probability areas such as the entire coverage area of
all associated cell sectors.

• STEP 5: Estimate the path with map information.
The previous steps give us estimates of the starting and ending
locations of the path of a mobile subscriber (step 3), plus high-
probability intermediate areas (step 4). We also know that hu-
mans typically move on streets or public transport routes and
take fairly direct trips. Thus we use the high-probability areas to
bias route search over mapping (GIS) information. More specif-
ically, we apply the A* [16] street-routing algorithm over a map
where the streets have adjusted weights based on the inferred
coverage (Figure 2b). Figure 2c shows the inferred path through
these high probability areas. The combination tends to work
well. People typically take short paths but frequently do not take
the exact shortest path, so a straightforward map lookup does not
work well. Using the high-probability area as a bias factor cap-
tures the idiosyncratic deviations that people make from shortest
paths. Figure 2d shows an example where the user did not take
the shortest path.
Notice that in the above process there is no use of the timestamp

tm[i] information. These can be potentially used to estimate the av-
erage speed of the device (e.g., to differentiate between highways
and secondary roads) and the means of transport (e.g., walking v.s.
driving). This information may be provided to the A* algorithm to
improve its accuracy. However, the way that the associations are
logged exhibits significant temporal noise, especially for shorter
trips. More specifically, we cannot be certain about the exact time
that the user departed and arrived to a certain destination: this can
be only detected when there is network activity and it can happen
minutes or even hours before the departure or after the arrival. Fur-
thermore, given the large coverage area of a tower we do not know
the exact location where an association took place and, therefore,
calculating an average speed between events is challenging. As
such, Cell* is not making use of timestamp information.

3. SOLUTION DETAILS
We present our solution by detailing each of the five steps (§3)

in turn.

3.1 Model the coverage of sectors
We build a coverage map to estimate the likelihood that a mo-

bile subscriber m is at a particular position given the fact that it is
associated with sector S. It is convenient to use a polar coordinate
model for positions. The likelihood is then a function of three pa-
rameters: the power P of the sector; the distance d between the
mobile and the cell tower; and the angle factor φ of the mobile rel-
ative to the sector. The angle factor is defined as the ratio of the
polar angle of the mobile relative to the major axis of the sector
and the beam-width of the sector. Thus φ = 0 represents the major
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Figure 3: Projections of the coverage PDF for a macro-sectored
tower on (a) distance of connection and (b) angle factor of connec-
tion.

Figure 4: Coverage PDF for sectors having beam width of 60 de-
grees (left) and 120 degrees (right).

axis of the sector while φ = 1 represents the nominal extent of the
antenna beam.

Rather than compute the coverage map analytically, we use ground
truth data of associations at different locations to approximate it
empirically. We find this to be simple and effective. (We describe
how this data was collected and cleaned in §4.) The result is the
coverage probabilities as a PDF that we denote by WP (d, φ), us-
ing the same notation for parameters as explained above.

To get a sense of coverage, the projection of WP (d, φ) on both
dimensions for a macro-sectored tower is shown in Figure 3. It
shows how the association probability falls off roughly exponen-
tially with distance d (left side) and more linearly with angle factor
φ (right side). We treat the coverage map as fixed even though the
probability of associating to a particular sector changes with RF
conditions, as this works sufficiently well in practice2.

Figure 4 shows the coverage PDF directly for sectors with beam-
widths of 60 and 120 degrees. For the efficient computation, we
discretize space into 15m × 15m grid squares over the entire map.
For every square g in the grid we derive the probability of connect-
ing to the sector S by integrating the coverage PDF WP (d, φ) over
all points x in the square g.

Q(g, S) =

∫
x∈g

WP (dx, φx)

We call Q(g, S) the probability grid. In the steps that follow, we
work with these squares as the most convenient form of the cover-
age map.

Recall that we have as input a discrete trajectory in the form of
a sequence of time-stamped cell sector associations. We want to
split this sequence into stationary and mobile segments. To do so,
we build on the coverage PDF in the form of the probability grid
Q(g, S).

2For example, weather condition changes will affect the probability
of attachment of the mobile to different sectors.
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3.2 Identification of stationary and mobile seg-
ments

We call two sectors S1 and S2 adjacent if there is a square g
in the grid such that Q(g, S1) > 0 and Q(g, S2) > 0. That is,
a mobile can connect to both sectors without moving. We say a
sequence of sectors S1, . . . , Sn is stationary if every two sectors
are adjacent and the duration of the sequence as determined by its
timestamps is greater than τ . That is, the mobile can connect to all
sectors without moving and this situation persists for long enough
that non-adjacent handovers would likely have occured if it was
actually moving.

Finally, we extend stationary periods as far along the sequence
as possible. Then we define the sequence of sectors between two
stationary periods (which cannot itself be stationary) to be a mobile
period. In our data (see §4), we find that many subscribers connect
to a single sector for long periods of time in a stationary period.
The median number of connected sectors in a stationary period is
4. In contrast, in mobile periods the subscriber tends to associate to
multiple non-adjacent sectors with frequent handovers. The median
is 12 sectors per mobile period.

3.3 Finding the location while stationary
We use all information in the stationary period to estimate the

stationary location because an accurate endpoint is instrumental in
inferring an accurate route for the mobile segment.

If a stationary segment consists of only one sector S, the most
likely position is simply the square g that maximizesQ(g, S). There
is little we can do to improve the accuracy of the estimate. How-
ever, when the stationary period contains several sectors S1, . . . , Sn

then we can use all of the sectors to refine our location estimate. To
do so, we find the point g that maximizes the sum of probabilities
Q(g, Si) over the sectors weighted by the amount of time τi the
subscriber was connected to the sector Si. That is:

g∗ = arg max
g

n∑
i=1

Q(g, Si)τi.

For a complete path consisting of a starting stationary period,
mobile period, and ending stationary period, this procedure gives us
an estimated location for the start and end points. We note that the
end point for one path forms the start period for the next path with
no discontinuities because they share the same stationary period.

3.4 Likelihood of crossing a square in the grid
While we have an estimate for the stationary locations, we have

not yet used the information in the mobile period. As a final input
to our path estimation procedure, we mine the mobile sequence for
locations that the subscriber passes through with high-probability.
In the next step, we will bias our estimated path to follow the high-
probability locations.

Recall that for a square g, Q(g, S) is the probability that a sub-
scriber in g is connected to S. For each square g we denote the
score ρ(g) of the mobile segment S1, . . . , Sn as:

ρ(g) =

n∑
i=1

Q(g, Si). (3)

That is, we compute the union of the coverage PDF for all sectors
in the mobile segment. This score is no longer a probability, but the
higher the score for a square g the more likely that the path of the
subscriber passed through that square. Observe that summing the
coverage PDFs also increases the weight on locations that overlap

between sectors by “double counting” them. These are precisely
the most likely handover locations.

3.5 From mobile segment to a path
Our early efforts at path estimation showed us that purely ge-

ometric approaches based on cell tower locations were unlikely to
yield good accuracy. (We evaluate this in §5.) The location problem
is simply too under-constrained. To improve accuracy, we observe
that real paths are consistent with the underlying road infrastruc-
ture. We can use the road network to constrain the path between
the stationary endpoints.

An obvious question is whether, given the use of GIS maps, we
need to use the mobile segment at all – we do not if people simply
follow the shortest (or fastest) path on the road network between
two locations. Zhu and Levinson [23] demonstrate that humans do
tend to follow short paths when traveling between two locations,
but with variations on the shortest route owing to many attributes
such as how they value their time, willingness to pay tolls and fuel,
time budgets, behavioral preferences, habituation, and experience
of a given route. They show that 60% of the users take the ex-
act shortest path as their route, and in almost 90% of cases people
choose routes that have small deviations, of at most 5 minutes away
from the optimal one.

Our approach is to use the scores of the squares ρ(g) to bias
routing on the road network. By using the scores, we preferentially
search for a route in the “corridor” formed by the coverage areas of
all sectors in the mobile segment. High scores close to the shortest
path represent likely deviations.

Our implementation uses OpenStreetMaps (OSM) [10], a commu-
nity-driven repository that contains data about roads, POIs, railway
connections, etc. OSM is designed to be used for navigation pur-
poses as it includes information for routing by many modes includ-
ing car, foot and bicycle. The OSM data can be thought of as a
graph G = (V, E) of the road network. Nodes V represent the
geographical locations of intersections or points along curved road
segments, while each edge represents a directional road-segment
between two nodes. In the rest of the paper, we use the car OSM
mode, and leave the problem of also inferring the mode of transport
for future work. We proceed as follows.

Initial edge weights: For each edge e ∈ E an initial weight,
W(e) ∈ R is assigned that represents the expected time that is
required to traverse it. This weight depends on: i) the length of
the road segment; ii) the type of the road segment (e.g., motorway,
primary, secondary, footpath); and iii) the mode of transport (e.g.,
walking, driving). The required information and the default values
of these weights for each mode of transport are calculated based
on the OSM recommendations [10]. Notice that for some means of
transport certain roads might be restricted (e.g., motorways cannot
be used for walking routes).

Modifying the weights based on mobile segment sectors
S1, . . . , Sm: After calculating the default weights for every road
segment, we adjust them based on the scores of squares in the grid.
Each road segment e crosses several square grids g1, . . . , gl. We
want to up-weigh roads with high scores and down-weigh roads
with low scores to prefer locations that the subscriber crossed with
high probability. We adjust the weight of the segment e heuristi-
cally as:

W̄ (e) =
W (e)

1
l

∑l
i=1 ρ(gi) + εmax ρ(g)
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The use of ε allows the route to gracefully handle gaps in cover-
age due to low (zero) scores rather than require a major diversion.
It basically allows to balance the tradeoff between the short/best
routes and the routes that are close to the observed sectors. We ex-
periment with various ε values and observe that as long as ε ≤ 0.1
the expected errors reported in the evaluation section are insensitive
of the choice of ε.

Routing: After adjusting the weights, we use the standard A*
algorithm to search the graph for a shortest weighted path between
the start and end points. We use A* for pathfinding because running
Dijkstra on the entire network graph is computationally expensive;
A* is much faster and performs well in our setting. The resulting
path in the graph is our final estimate for the path taken by the
mobile subscriber, i.e P̂m. An example is shown in Figure 2d.

4. EXPERIMENTAL DATASET
To evaluate Cell*, we need a dataset that contains cellular-side

observations and the corresponding ground truth for the paths taken
by mobile subscribers. While our algorithm is designed to work
solely with cellular-side data, we find it expedient to collect match-
ing trajectories for cellular data and location ground truth using a
smartphone. We describe the collection method and dataset in this
section.

4.1 Probe Application
We implemented a probe application for Android and used mo-

bile phones to collect a dataset for evaluation. The probe runs as a
background service collecting either event-driven or periodic mea-
surements. Measured samples are stored locally at the device as
a collection of geographically-annotated, time-stamped GeoJSON
objects. They are periodically uploaded to our servers. The most
important types of measurements are summarized below.

Location: A location sample is generated whenever there is any
change to the network-based (WiFi or GSM trilateration) location
of the device as reported by the Android API. In addition, we peri-
odically collect GPS samples. To avoid depleting the user’s battery,
one GPS sample per minute is collected and the GPS sampling is
paused while the user is connected to a WiFi network and associ-
ated to the same cell (e.g., when stationary at work/home).

Cellular Information: A sample is generated every time there
is a handover from one sector to another. The collected informa-
tion includes the IDs of the sector, RNC, and LAC (see §2). This
information can be used to identify the tower in the database of the
cellular operator. Notice that additional information, such as peri-
odic collection of the full lists of received towers and the RSSI to
each one of them, is also collected by the probe, but it is not used
for this study because this information cannot readily be logged by
the cellular operator. Finally, any connectivity changes or switches
between types of connectivity (2G/3G/4G) are also logged.

Wi-Fi Information: Events concerning the Wi-Fi connectivity
changes (e.g., connections and disconnections) are logged. This
information can help us to further geo-locate the mobile in post-
processing when the accuracy reported by Android is not adequate
(e.g., due to a lack of connectivity to query Google servers) and to
understand if the user was in the same indoor location.

4.2 Dataset and Cleaning
The probe was installed by 30 users and used over a period of 8

months3. All users live within a single country but multiple cities

3Some users did not run the probe for the full duration of the ex-
periment.

Type Number

Total number of Cell samples 1,718,504
Total number of Hand-overs 433,031

Number of Distinct Sectors observed 15,455
Sectors in the operator’s database > 100,000

Number of Location samples (Netw. and GPS) 673,468
Number of GPS samples 259,032

Total time logged (all devices) 19,438 hours
Total time stationary 18,335 hours

Total time moving 1,102 hours
Number of trajectories (trips) 3,216

Total distance traveled 19,840 km

Table 1: The collected dataset. Each sample is a record of a sector
association, handover, GPS/network location update, etc.

are covered. To increase diversity we selected users that cover a
variety of age groups (20-60), who live in both urban and suburban
areas, and who exhibit different commute patterns (bus, walking,
cycling, driving, underground). In total, we logged more than 4.6
million samples over 19,000 hours of collection. A break-down of
these samples is shown in Table 1.

Before using the dataset for experiments, we had to clean it to
remove outliers. We proceeded as follows.

Inaccurate GPS: GPS or network-based location is used as the
ground truth in our study but it does have its own accuracy errors.
Android reports location information along with an estimate of its
error Lerror . In our samples, we observe a 90th-percentile error of
86 meters for GPS (median is 19 meters). This compares to 142
meters for indoor network-based locations (median is 65 meters).
To limit problems, we discard any location measurements with re-
ported error Lerror ≥ 100 meters. These inaccurate samples make
up 8% of the 673,468 location samples.

Stale sector database: We have access to a database for all
the sectors of a major cellular operator that contains the exact lo-
cation, orientation, beam-width, power characteristics and type of
installation of more than 100,000 sectors within a country. The
database is updated continually. For instance, we notice that more
than 100 sectors are re-located monthly whereas more than 3000
cells are added or removed. To protect against stale data, we re-
move any associations to sectors that have moved or are obviously
misplaced (e.g., more than 20km away from the GPS location of the
user). This cleaning process removed only 0.06% of the 433,031
observed associations.

Gaps in collection: Gaps in data collection may happen occa-
sionally because smartphones might run out of battery or terminate
the probe application. The difficulty with gaps is that they can lead
to unrealistic trajectories without a normal start or end. We mark
these gaps so that we can filter out any trajectory that includes them.

Subway usage: In the country that we collected the data, metro
(underground) stations have cellular coverage through a radiating
cable that runs along the whole metro line. This means that while a
user is traveling within a single metro line, she is always associated
to the same sector. Thus different methods are required for estimat-
ing trajectories that include metro usage. Since the metro is not our
focus, we identify and remove any sectors that cover metro lines.
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Figure 5: Ground-truth statistic.

4.3 Ground-Truth Trajectories
We need ground-truth trajectories to evaluate how well Cell* es-

timates the paths. Notice that even when a user is stationary, the
reported GPS or network (WiFi-based) locations can exhibit small
variations over time. An example is given in Figure 6. Therefore,
to identify when the user is stationary and to find the actual fixed
location we follow the Leader-based Clustering methodology de-
scribed in [14]. In essence we merge nearby location samples: for
every location sample, we determine if it belongs to any of the al-
ready generated clusters by computing its distance to the cluster
leader’s location. If this radius is below a threshold Rcluster the
point is added to the cluster and the most central point (median) is
the new leader. At the end of this process each cluster contains all
the location samples that are within Rcluster of the center of the
cluster.

To determine the threshold (the cluster radius) we used the WiFi
connectivity and the distribution of Lerror . We considered a user
stationary when they stayed connected to a specific WiFi BSSID
(e.g., at home or work). We determined thatRcluster = 100m pro-
duced clusters that correctly contain such intervals. This value is
also consistent with the Lerror that we used for GPS data-cleaning.

To find trajectories, we consider the user in a stationary period,
that represents an endpoint, if the time that the user stayed in the
cluster is larger than τ . For consistency, we use the same τ = 15
minutes as with Cell*. Users are in mobile periods between sta-
tionary periods. This procedure identifies 3,216 distinct trajectories
from our dataset.

Figure 5a shows the distribution of the time that a user was in
stationary and mobile states using the ground-truth. Mobile tra-
jectories are much shorter in duration than stationary periods. The
median duration for a mobility segment is 23 minutes, and the ma-
jority of all recorded trajectories do not exceed one hour. In Fig-
ure 5b we observe that most mobile trajectories are shorter than 10

Figure 6: GPS ground-truth locations and estimated path

kilometers. On the other hand, stationary periods have a median
duration of 132 minutes, while 22% of them last for more than 8
hours. Such a result is expected because most stationary segments
correspond to the user being at work during the day or at home
during the night.

5. EVALUATION
In this section, we use our experimental dataset to evaluate the

quality of the paths that are produced by Cell*.

5.1 Methodology
We want to know how closely the paths P̂m, output by Cell*,

match the true paths of mobile subscribers. Recall our situation as
shown for an example trajectory in Figure 6.

The subscriber follows a true path that is not shown in the figure
or known to us. What is known is the measured GPS trajectory
Lm. The GPS samples of this trajectory are shown in green (near
the ends) for stationary periods and red (in the middle) for mobile
periods. We use Lm as ground truth for our evaluation since it is
the best estimate of the true path that we can gather.

However, note that the GPS samples are not true locations. They
have an accuracy of Lerror meters that is collected as part of GPS
sampling. Even if the user is stationary the recorded location may
slightly vary over time (especially when the user is indoors). The
median reported accuracy is 19 m. This implies that, even if Cell*
estimates the mobile path perfectly, a comparison with GPS-based
ground truth will show a residual inaccuracy.

The cellular trajectory Cm is denoted in the figure by the cell
towers used for each handover. Cell* uses these observations to
produce the estimated path of the subscriber P̂m that is shown as
the solid blue line. While there are many ways that we might mea-
sure the accuracy of estimated paths, we use a simple method that
we found to be sufficient. For each GPS sample, we can compute
the shortest distance between the GPS location and the estimated
path. We denote this error sample ei. It represents how close the
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Figure 7: Accuracy of detecting stationary/mobile periods.

path goes to the GPS location, and we look at the distribution of
error samples across all estimated paths. We also compute the er-
ror samples for a complete estimated path so that we can look at
accuracy at the level of individual paths. We denote this sequence
of error samples for an estimated path Em.

In the next subsections, we evaluate the steps of our procedure.
We begin by seeing how well Cell* identifies the stationary and mo-
bile segments of the trajectories (§3.2). Then we compute the accu-
racy of the stationary locations compared to GPS locations (§ 3.3).
Finally, we look at the accuracy of the estimated paths (§5.5).

To help understand why the steps in our procedure lead to high
accuracy, we contrast Cell* with two methods that estimate paths
with less information: a method that incorporates the most likely
location of the mobile while associated with the recorded sectors,
but that does not use any GIS information (just connects the points);
and a pure map method that finds a route between the endpoints
while ignoring all intermediate sector information. These compar-
isons indicate that a combination of methods is needed. Finally, we
characterize the conditions under which Cell* operates well.

5.2 Accuracy of static and mobile segments
In §3.2, we separate the sequence of sector observations into sta-

tionary and mobile periods to form trajectories. We use the ground-
truth GPS trajectories Lm to evaluate the accuracy of this process.
We use three measures: i) the time that is misclassified; ii) the per-
centage of a ground-truth stationary/mobile period that is misclassi-
fied; and iii) the number of trajectories that could not be identified.

Figure 7a shows the distribution of time (in minutes) that is mis-
classified per ground-truth stationary/mobile period. The median
error is 2 minutes and the 80th-percentile of errors is less than 5
minutes. These results are quite good given that we are limited by
coarse-grained cellular-side data that only captures user movement
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Figure 8: Accuracy of estimating stationary location.

when a handover occurs. As we will see later, most of these errors
occur during the beginning and the end of a mobile period when
the user is still connected to the same sectors as in the stationary
periods.

In Figure 7b we plot the distribution of the percentage of the
ground-truth period that was correctly identified. We observe that
we accurately identify a large percentage of the stationary and mo-
bile periods. For each of 80% of static periods and 70% of mobile
ones, we achieve more than 90% of accuracy.

Finally, only 3.1% of the mobile trajectories are not identified
at all by using cellular-side data. Further investigation showed that
these are short trips within the same coverage area; we cannot iden-
tify trajectories without handovers.

5.3 Accuracy of stationary locations
Next, we evaluate the accuracy with which we estimate the sta-

tionary location of a subscriber. These locations are important be-
cause they form the endpoints of the estimated path. In §3.3, we de-
scribe how we exploit multiple sector observations to narrow down
our estimate of the stationary position of the subscriber. Figure 8
shows the distribution of number of unique towers observed during
a stationary period. In most of the cases (98%) a user is associated
to 2 or more sectors while the median is 4 sectors. This confirms
that we do stand to improve accuracy by combining multiple cellu-
lar observations for the stationary location.

We define the error in stationary location as the geodesic dis-
tance between the Cell* estimated location and the median of GPS
locations during a stationary period. The CDF of errors is plot-
ted in Figure 8b. About 50% of estimated locations have an error
smaller than 230m, and 80% of the estimated locations have an er-
ror less than 500m. These results are significantly more accurate
than the median distance of 480m at which a mobile subscriber is
associated to a tower.

128



0 200 400 600 800 1000 1200 1400

Error [meters]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Cell*
No Intermediate Towers
No Map Information
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Figure 10: Per-path error statistics.

5.4 Accuracy of estimated paths
Now we evaluate the quality of complete paths produced by Cell*.

To get an overall sense of accuracy, we compute the error samples
ei that are the shortest geodesic distance from each GPS location
associated with a trajectory to the estimated path. Figure 9 shows
the distribution of the error samples across all trajectories. We ob-
serve that 75% of the errors fall below 180m, and the median error
is only 70m. This positive result shows that Cell* can accurately
estimate paths given only the set of cellular handovers and without
the assistance of GPS. For comparison, the median GPS accuracy
for the same data is 19m.

To understand how the different steps of our method contribute
to the accuracy of paths, we make two comparisons. First, we run
the street-routing algorithm on the road network between the sta-
tionary endpoints with basic weights of the roads according to their
types. This process is equivalent to asking directions on Google
maps or any other navigation system; no intermediate points due
to handovers are considered. As we observe in Figure 9, while the
median error is doubled to 150m, many of the errors are reasonably
low. This implies that street-routing provides valuable semantic in-
formation for finding real paths. However, 10% of the errors have
large deviations of more than 1km. Street-routing is not sufficient
by itself – it can go very wrong which is why it is important to use
intermediate handovers.

Second, to see the value of using the intermediate handovers
alone, we compare Cell* paths to a path that simply connects the
observed trajectory sectors with a straight line. The errors for this
simple path are also shown in Figure 9. We see that they are signif-
icantly larger than Cell* or even street-routing. The median error
is 298 meters and in 10% of the cases we find deviations of more
than 2.5km. We conclude that street-routing is essential.
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Figure 11: Median error per route.

We can also look at error samples on a per path basis. For each
estimated path, we compute the 5th, median, and 95th percentile of
the sequence of errors for the path Em. In Figure 10 we see that
50% of the estimated paths have a median error of just 54m, and
a 95th percentile error of 200m. If we consider that the average
block size of a city is approximately 200 meters, we are able to
estimate paths plus or minus one block 95% of the time.

5.5 Accuracy by Type of Path
Finally, we look into path properties that may make their estima-

tion easier or harder. One such property could be the speed. High
speed paths are likely to generate a larger number of handovers,
and be constrained in a smaller area of the road network like ar-
terial roads. Another related factor is distance, since longer paths
generate a larger number of handovers.

Figure 11a shows the distribution of median errors per path when
the paths are clustered according to their average speed. We ob-
serve it is harder to infer low-speed paths, as these are typically
more chaotic walking routes in dense, urban environments. (They
may also require the use of a different mode of OSM). For instance,
some of these routes do not have specific destinations as they are
random city walks, searching to shop etc. In contrast, we can accu-
rately estimate high-speed paths as these typically include highway
segments that are easier to predict.

Much the same behavior is observed when we look into how dis-
tance affects the error (Figure 11b). We are less accurate to estimate
short paths as these include very few sector handovers, and the se-
lection of route may deviate even farther from the absolute shortest
path.
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Figure 12: Median error per path (meters).

It is also evident to us that the errors in path estimation are im-
pacted by the density of the cellular deployment in the vicinity of
travel. For example, suburban areas are expected to be covered with
far fewer sectors than densely populated urban areas, and to cover
a far greater distance with one sector. Indeed, the highest errors
in our static location estimation come from suburban areas. To see
density effects for the whole path, we define sector density for a
path as the number of sectors available throughout the path divided
by the path length.

Figure 12a shows the relationship between the path median error
and its sector density. Contrary to our original intuition, we have
more accurate path estimates in less dense tower installations (e.g.,
suburban areas with less than 0-2 towers per km). We conjecture
that this happens because suburban areas tend to have sparser road
networks as well, and their inhabitants tend to use cars more than
in urban areas. We leave an exploration of the correlation between
road density and cell infrastructure density for future work.

Finally, in Figure 12b we plot the accuracy of the estimated path
as a function of the normalized elapsed time from the beginning of
the path. Interestingly, Cell* is more accurate during the initial and
final 10% of the route. This happens due to the fact that we have
a good estimation for the start and ending points. Furthermore, the
accuracy is also good for the middle part of the trip as most people
use primary roads (e.g., highways). It is slightly worse transitioning
between these situations, likely due to less predictable secondary
roads.

6. DISCUSSION
Cell* enables mobility path estimation for connected devices that

feature no GPS nor WiFi due to size, cost, or energy constraints. It
can further be used on anomymized cellular network data in order
to get information about the mobility patterns of the millions of
subscribed devices, that could span both the “things” of the future,

Figure 13: Path estimation can sometimes be one block off from
actual taken path

but also smartphone users. One possible implementation could be
through a network API, that given the IMEI could return the esti-
mated path for a predefined period of time.

Our results demonstrate a median accuracy of less than 70 me-
ters, that falls within an average size city block, i.e. in 50% of the
cases, our path estimation may take the road parallel to the one ac-
tually taken by the device. Figure 13 shows an example of such a
case in our evaluation data - a part of the estimated path deviates
from the actual path by one single block. As a result, Cell* could
enable a number of novel services for mobile connected devices,
but may not be able to estimate the exact path taken under all con-
ditions.

We find that the applications of mobility paths with such a level
of accuracy could still be numerous. Examples could span city
transportation planning, traffic monitoring at the macro level, or
fleet management tracking in a computation and energy free fash-
ion through an opt-in service, where the cellular network acts as a
repository of mobility information.

Despite the fact that mobility path accuracy is not always to the
exact street level, we find that higher order metrics computed on the
extracted trajectories could still allow different operations with suf-
ficient accuracy. For instance, we have computed the total length of
the extracted mobility paths and compared it with the ground truth,
as computed from GPS data. We find that despite the slight devi-
ations in the derived paths, the total distance is just within 4.1%
of the actual path on average. One could envision services where
the estimation of the total distance may be more important than
the precise path taken (for instance within a car insurance context,
where the insurance company assigns risk based on the total dis-
tance driven).

Another point of discussion has to do with the granularity of data
considered. While collection of handover events from all mobile
subscribers is technically feasible today, in practice it comes at a
cost with respect to the required network infrastructure (although
with the adoption of LTE, logging information at high granularity
might become economically viable). Our data captures device GPS
location, along with BTS/RNC/LAC cellular information. In what
follows we quantify the loss in accuracy in Cell* if it is provided
with even sparser data, that may be accessible at the RNC level or
at the LAC (Figure 1). To do that we sub-sample the location infor-
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Figure 14: Path accuracy as a function of the cellular layer where
location information is collected.

mation collected by our Android probe to only include handovers
that are visible at the i) RNC or ii) LAC level 4. We find that sparser
observations for the mobile device lead to increased inaccuracy of
129 meters in the median case (up from 69.7 meters), while the 75th
percentile error is now 340 meters (up from 200 meters). The entire
distribution of errors for cellular location information collected at
the different layers of the cellular infrastructure is shown in Figure
14. We were actually quite surprised that Cell* still behaves well
under such loss of information. We intend to look deeper into this
in future work.

Finally, we note that the results presented in this paper capture
the properties of the studied cellular provider network and the road
network of the studied city. As mentioned previously, we specu-
late that geographic areas with dense road networks are very likely
candidates for denser cellular network deployments. The tendency
in the telecommunications area is that of reducing the radius of cell
towers, going to micro- or femto-cell deployments. A decrease in
the coverage area of cell towers and sectors will only improve the
accuracy of Cell*.

7. RELATED WORK
Along with the advance of tools to monitor fine-grained human

mobility through mobile devices, our understanding on human mo-
bility has been expanded in recent years. Researchers have found
not only a basic law of governing human mobility [7] but also a lim-
itation of predictability [21] based on the unprecedented volume of
mobility traces. One of the important discoveries is a high degree
of spatial and temporal regularities of human mobility [7]. It offers
a strong foundation for a wide range of research challenges, such
as important places identification [11], next location prediction [5]
and frequent trajectory extraction [6].

Research on human mobility becomes important for urban plan-
ning, land use identification, population movement monitoring, traf-
fic forecasting, transportation system management, travel demand
prediction, and even infection control. Among many data sources
for those studies, Call Detail Records (CDRs) play a prominent
role due to their scalability. CDRs inherently have low spatial and
temporal resolution, but a tremendous advantage - that of observ-
ing the mobility patterns of millions of cellular subscribers with no
support required on the cellular device. Given the sparsity of data,
most approaches working on route or location mining on CDRs

4Given space constraints we omit the details for cellular network
infrastructure.

are based on probabilistic approaches. Görnerup proposes a scal-
able probabilistic method based on locality-sensitive hashing and
graph clustering for inferring common routes from sequences of
sectors [8]. Saravanan et al. propose to aggregate CDRs to find
people’s daily routes by constructing a Gaussian model that ex-
plains the probability of people being around specific towers [19].
Also, Isaacman et al. present how to model people’s movements
in metropolitan-scale areas using spatial and temporal probability
distributions extracted from CDRs [12]. All such approaches do
not consider the geographic information but take the resolution of
cell towers. By contrast, Cell* enables to estimate the street-level
path by incorporating the geographic information.

Building origin-destination (OD) matrices, which usually esti-
mate the number of vehicles commuting between residence and
workplace, is one of the popular applications [11]. In contrast to
conventional methods to acquire OD matrices mainly depending
on household surveys or road monitoring, using a GSM network is
much more cost-effective [3, 4]. It shows the potential of huge vol-
ume of CDRs for urban planning and transportation engineering.
Beyond OD matrices, that reveal endpoints of trajectories, there
have been a few studies to infer a street-level path by using cellular-
side information. Becker et al. use cellular hand-off patterns to
identify commuting routes [1]. They generate a collection of hand-
off patterns, as observed through fingerprinting by previously test
driving the target area. The proposed method achieves high accu-
racy but the dictionary of hand-off patterns for every route is essen-
tial in advance, limiting the areas where such an approach can help.

Looking at client-side solutions, Paek et al. propose a lightweight
positioning system using a mapping between GPS locations and as-
sociated cells for regular and relatively long routes [17]. In their
system, each device records GPS locations and associated towers
regularly. Then, a sequence of passed cells and the elapsed time
can refine the current locations based on history. As this system es-
sentially requires GPS readings as input, it does not directly com-
pare to Cell*.

Schlaich et al. propose a method to generate all the possible
routes by using a multi-path route generation algorithm based on
cellular-side location-area update messages [20]. They propose
heuristics, such as taking road type into account, to restrict the
selection of routes, but they do not have well defined criteria to
choose the most probable route among many candidates. Cell*
neither collects specific data for each road, historical data, nor pro-
poses all possible options. It suggests the most probable path by
combining sector characteristics and GIS information.

With the near ubiquity of GPS-enabled devices, map matching
becomes a core component of a wide range of applications, such
as car navigation, route prediction, and activity recognition. Qud-
dus et al. [18] conduct a comprehensive review of the map match-
ing algorithms, from simple point-to-point mapping [2], to topo-
logical analysis of the spatial map [9], probabilistic approaches
dealing with error regions [15], and sophisticated fuzzy modeling
ones [13]. Cellular-side data is coarse-grained at the resolution of
sectors. Thus, there are clear analogies between inferring a trajec-
tory based on such low-resolution observations and identifying the
most relevant road segment based on inaccurate GPS positioning
data, although errors in distance can be quite different. Cell* uses
the probabilistic approach to refine locations and paths.
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8. SUMMARY
Through their normal operation, cellular networks are a repos-

itory of continuous location information from its subscribed de-
vices. Such information, however, comes at a coarse granularity
both in terms of space, as well as time. For otherwise inactive
devices location information can be obtained at the granularity of a
BTS, and at infrequent points in time, that are sensitive to the struc-
ture of the network itself, and the level of mobility of the device.
Cell* enables the extraction of mobility paths from sparse spatio-
temporal cellular location information. Using more than 3,000 mo-
bility trajectories, we show that we are able to estimate the sta-
tionary locations with a median accuracy of 230 meters. When the
device is mobile, we can estimate its mobility path with a median
error of 70 meters. To achieve such accuracy, we are taking into
account the cellular network topology, as well as geographic in-
formation. We show that mobility path accuracy improves with its
length and speed, and counter to our intuition, accuracy appears to
improve in suburban areas. Cell* is the first technology, we are
aware of, that allows location services for the new generation of
connected mobile devices, that may feature no GPS, due to cost,
size, or battery constraints.
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