
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2020

Is using deep learning frameworks free?: Characterizing technical Is using deep learning frameworks free?: Characterizing technical

debt in deep learning frameworks debt in deep learning frameworks

Jiakun LIU
Zhejiang University

Qiao HUANG
Zhejiang University

Xin XIA
Monash University

Emad SHIHAB
Concordia University, Montreal, Quebec, Canada

David LO
Singapore Management University, davidlo@smu.edu.sg

See next page for additional authors Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
LIU, Jiakun; HUANG, Qiao; XIA, Xin; SHIHAB, Emad; LO, David; and LI, Shanping. Is using deep learning
frameworks free?: Characterizing technical debt in deep learning frameworks. (2020). ICSE-SEIS '20:
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Software
Engineering in Society: 6-11 July, Seoul. 1-10.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5645

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5645&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Jiakun LIU, Qiao HUANG, Xin XIA, Emad SHIHAB, David LO, and Shanping LI

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/5645

https://ink.library.smu.edu.sg/sis_research/5645

Is Using Deep Learning Frameworks Free?
Characterizing Technical Debt in Deep Learning Frameworks

Jiakun Liu∗†
Zhejiang University

College of Computer Science and
Technology

Hangzhou, Zhejiang, China
jkliu@zju.edu.cn

Qiao Huang
Zhejiang University

College of Computer Science and
Technology

Hangzhou, Zhejiang, China
tkdsheep@zju.edu.cn

Xin Xia‡
Monash University

Faculty of Information Technology
Melbourne, Victoria, Australia

Xin.Xia@monash.edu

Emad Shihab
Concordia University

Department of Computer Science and
Software Engineering
Montreal, Canada

eshihab@encs.concordia.ca

David Lo
Singapore Management University

School of Information System
Singapore

davidlo@smu.edu.sg

Shanping Li
Zhejiang University

College of Computer Science and
Technology

Hangzhou, Zhejiang, China
shan@zju.edu.cn

ABSTRACT
Developers of deep learning applications (shortened as applica-
tion developers) commonly use deep learning frameworks in their
projects. However, due to time pressure, market competition, and
cost reduction, developers of deep learning frameworks (shortened
as framework developers) often have to sacrifice software quality
to satisfy a shorter completion time. This practice leads to technical
debt in deep learning frameworks, which results in the increas-
ing burden to both the application developers and the framework
developers in future development.

In this paper, we analyze the comments indicating technical debt
(self-admitted technical debt) in 7 of the most popular open-source
deep learning frameworks. Although framework developers are
aware of such technical debt, typically the application developers
are not. We find that: 1) there is a significant number of technical
debt in all the studied deep learning frameworks. 2) there is design
debt, defect debt, documentation debt, test debt, requirement debt,
compatibility debt, and algorithm debt in deep learning frameworks.
3) the majority of the technical debt in deep learning framework is
design debt (24.07% - 65.27%), followed by requirement debt (7.09%
- 31.48%) and algorithm debt (5.62% - 20.67%). In some projects,
compatibility debt accounts for more than 10%. These findings illus-
trate that technical debt is common in deep learning frameworks,
and many types of technical debt also impact the deep learning

∗Also with Zhejiang University, Ningbo Research Institute.
†Also with PengCheng Laboratory.
‡Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIS’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7125-4/20/05. . . $15.00
https://doi.org/10.1145/3377815.3381377

applications. Based on our findings, we highlight future research
directions and provide recommendations for practitioners.

CCS CONCEPTS
• Software and its engineering → Software evolution;Main-
taining software.

KEYWORDS
Self-admitted Technical Debt, Deep Learning, Categorization, Em-
pirical Study
ACM Reference Format:
Jiakun Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping Li.
2020. Is Using Deep Learning Frameworks Free? Characterizing Technical
Debt in Deep Learning Frameworks. In Software Engineering in Society
(ICSE-SEIS’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3377815.3381377

1 INTRODUCTION
Developers of deep learning applications (shortened as applica-
tion developers) usually use deep learning frameworks, such as
TensorFlow1, Keras2 and Deeplearning4j (shortened as DL4J)3, to
implement their deep learning models in their projects. By using
deep learning frameworks, application developers are freed from
the concrete implementation of task scheduling (such as control
flow and data transfer between tasks), specific algorithms (such
as Batch Normalization4, Max Pooling5), and so on, and pay more
attention to their application development.

Developers of deep learning framework projects (shortened as
framework developers) are expected to deliver high-quality prod-
ucts or services continuously. However, due to time pressure, mar-
ket competition and cost reduction [16], framework developers
are often confronted with a dilemma: a shorter completion time
1https://github.com/tensorflow/tensorflow
2https://github.com/keras-team/keras
3https://github.com/deeplearning4j/deeplearning4j
4https://docs.microsoft.com/en-us/cognitive-toolkit/batchnormalization
5https://keras.io/layers/pooling/

https://doi.org/10.1145/3377815.3381377
https://doi.org/10.1145/3377815.3381377

ICSE-SEIS’20, May 23–29, 2020, Seoul, Republic of Korea J. Liu et al.

or better software quality. Compromised decisions lead to the in-
creasing burden in the future development life cycle. The metaphor,
technical debt, first proposed by Cunningham in 1993 [4], describes
such decisions. Previous research found that technical debt is detri-
mental, e.g., increasing the cost, negatively impacting the product
quality [31], [33], [6]. However, it is still unclear if technical debt
exists in deep learning frameworks and what is its impact.

To help framework developers manage projects and application
developers use deep learning frameworks, in this paper, we inves-
tigate the technical debt in deep learning frameworks. Previous
research found that most of the developers do not consider tech-
nical debt as the result of sloppy programming or poor developer
discipline. Instead, they consider it as a result of intentional de-
cisions to trade off competing concerns during development [12].
Therefore, to identify technical debt in deep learning frameworks,
we employ the self-admitted technical debt (i.e., SATD) as an in-
dicator of technical debt. Such technical debt is the comment that
is intentionally introduced by developers to alert the inadequacy
of the solution [23]. For example, in the open-source project Ten-
sorFlow, a comment saying TODO (b/26910386): Identify why this
infrequently causes timeouts, indicates that the corresponding code
is problematic and needs further investigation. Framework devel-
opers are aware of such technical debt, but application developers
may not be. This practice may cause applications to be negatively
impacted or limit their compatibilities.

We mine the SATD in 7 of the most popular open-source deep
learning frameworks bymanually identifying and classifying 234,260
comments in the latest stable version. With these data, we explore
several questions:
(1) Is technical debt prevalent in deep learning frameworks?
We find that all these 7 deep learning frameworks have technical
debt. More specifically, TensorFlow has the largest amount of tech-
nical debt (3,775 instances) while Keras has the smallest amount of
technical debt (54 instances).
(2)What types of technical debt exist in deep learning frame-
works?
We find that besides the five categories, i.e., design debt, defect debt,
documentation debt, requirement debt and test debt, which have
been observed in non-deep learning projects, compatibility debt
and algorithm debt are also discovered in deep learning frameworks.
This indicates that compared with developers in non-deep learning
projects, developers in deep learning frameworks are confronted
to new challenges.
(3) What is the distribution of different types of technical
debt in deep learning frameworks?
We find that the majority of technical debt is the design debt (24.07%
- 65.27%), followed by requirement debt (7.09% - 31.48%) and algo-
rithm debt (5.62%–20.67%). In some projects, compatibility debt
accounts for more than 10%, which cannot be ignored.

Based on our findings, we provide actionable suggestions for
practitioners and researchers. For example, if the deep learning
application needs to use the out-of-box implementation of the
cutting-edge deep learning algorithms provided by deep learning
frameworks, we suggest the application developers not to use the
frameworks with more requirement debt, such as DL4J, where

many algorithms remained un-implemented. For deep learning re-
searchers, to mitigate the risks introduced by deep learning frame-
works, we suggest they should evaluate their algorithms on more
deep learning frameworks rather than only based on the out-of-box
implementation provided by one deep learning framework.

2 RELATEDWORK
We divide our related work into two parts: the research works on
technical debt and the research works on software engineering for
deep learning.

2.1 Technical Debt
Cunningham [4] introduced the metaphor, technical debt, to de-
scribe the consequences of poor software development. After the
proposal of the metaphor, many researchers focus on how technical
debt has been used to communicate the issues that developers find
in the code in a way that managers can understand [26], [14] [3].

Potdar and Shihab [23]’s work used comments to identify tech-
nical debt and nominates such technical debt as self-admitted
technical debt (i.e., SATD). They find that SATD is common cross
projects and 2.4-31% of the files in four non-deep learning projects
contain such debt. Bavota and Russo [2] replicate the study of Potdar
and Shihab [23]’s work on a large set of non-deep learning projects,
i.e., Apache and Eclipse projects and find that approximately 57%
of SATDs get removed and around 63% of SATD are self-removed.
Maldonado et al. [17]’s work inspects the introduction and removal
of SATD in five open source non-deep learning projects and find
that the majority of SATD is removed (74.4% on average) in 82 -
613.2 days on average.

Many previous works also study the negative impact of techni-
cal debt during the development of projects. Zazworka et al. [34]’s
work conducts a study to measure the impact of technical debt
on software quality. They find that god classes are more likely to
change, and therefore, have a higher impact in software quality.
Fontana et al. [6]’s work investigates design technical debt appear-
ing in the form of code smells, namely god classes, data classes
and duplicated code. They propose an approach to classify which
one of the different code smells should be addressed first, based
on a risk scale. Wehaibi et al. [32]’s work finds that SATD leads to
more complex changes in the future development process. Kamei
et al. [10]’s work proposes a method to measure technical debt
interest using SATD in the source code. They find that around 42%
of the technical debt in the studied projects incurs more burdens
on developers.

Moreover, there have been many studies on the categories of
SATD as well. Alves et al. [1]’s work proposes an ontology on tech-
nical debt terms. They gather definitions and indicators of technical
debt that were scattered across the literature and find several differ-
ent categories of technical debt, e.g., architecture debt, build debt,
code debt, design debt, defect debt, etc. Besides, Zazworka et al.
[35]’s work and Li et al. [15]’s work also illustrate the categories of
technical debt which are found in their studied projects. The work
most relevant to us is Maldonado and Shihab [18]’s work, where
they manually analyze the comments of 5 open source non-deep
learning projects. They find that there are five categories of techni-
cal debt that are admitted in comments: design debt, defect debt,
documentation debt, requirement debt and test debt.

Is Using Deep Learning Frameworks Free?
Characterizing Technical Debt in Deep Learning Frameworks ICSE-SEIS’20, May 23–29, 2020, Seoul, Republic of Korea

Compared with these research works, our research identifies and
investigates technical debt in a specific set of projects: deep learning
frameworks, which not only have distinct characteristics, but also
have widespread impacts on various deep learning applications
that use them.

2.2 Software Engineering for Deep Learning
Former researchers focus on the test of deep learning projects. Pei
et al. [22] propose DeepXplore to systematically test DL systems
and automatically identify erroneous behaviors without manual
labels. Tian et al. [30] propose DeepTest to automatically test DNN-
driven autonomous cars, which can use test images that generated
by different realistic transformations like rain, fog and lighting
conditions.

Besides works focusing on testing of deep learning projects,
Zhang et al. [36]’s work studies the characteristics of deep learning
defects. They study TensorFlow application bugs from StackOver-
flow and Github, and find the root causes of the defects, e.g., in-
correct model parameter or structure. Moreover, Sculley et al. [25]
empirically summarize the technical debt in machine learning sys-
tems during their development. They explore several ML-specific
risk factors in deep learning project design, including boundary ero-
sion, entanglement, hidden feedback loops, undeclared consumers,
data dependencies, and so on.

Different from the prior research works, our work inspects deep
learning frameworks from another perspective: the comments indi-
cating technical debt. As we indicate in Section 2.1, such technical
debt is detrimental. Although framework developers are aware of
such technical debt, typically the application developers are not.

3 CASE STUDY SETUP
In this section, we describe the steps that we took for project selec-
tion, project data extraction, comments extraction, manual classifi-
cation of the comments in the latest stable version.

3.1 Project Selection
We focus on open-source deep learning frameworks hosted on
Github. We exclude deep learning systems that build upon such
frameworks, or general-purpose mathematical libraries that those
deep learning frameworks build upon.

To do so, we first search repositories labeled as deeplearning and
deep learning topics6 in GitHub. Then, we identify the deep learning
framework projects by reading the readme file of the projects. As
a result, we include 7 deep learning frameworks with the largest
number of stars that are written in 3 programming languages (C++,
Python and Java) as subject frameworks for our study. They include:
TensorFlow, Keras, Deeplearning4j (shortened as DL4J), Caffe7,
PyTorch8, MXNet9 and Microsoft Cognitive Toolkit (known as
CNTK)10. Table 1 provides statistics about each framework in our
study, including the release we used, the total number of lines of
code, and the main programming languages. Following the previous

6https://blog.github.com/2017-01-31-introducing-topics/
7https://github.com/BVLC/caffe
8https://github.com/pytorch/pytorch
9https://github.com/apache/incubator-mxnet
10https://github.com/Microsoft/CNTK

study by Maldonado and Shihab [18], we calculate the total number
of code lines using SLOCCount11.

Table 1: Summary of the Studied Projects. For each frame-
work, we present the release we used, the total number of
lines of code, and the main programming languages.

Framework Release #Lines of Code Languages
TensorFlow v1.9.0 1,821,016 Python, C++
Keras 2.2.2 42,182 Python
Caffe 1.0 76,322 C++
PyTorch v0.4.0 617,255 Python, C++
MXNet 1.2.1 305,755 Python, C++
CNTK v2.5.1 324,472 Python, C++
DL4J 0.9.1 361,366 Java

3.2 Comment Extraction
We need the comments in the latest stable version. To discrimi-
nate between source code and comment lines, we use the srcML
Toolkit12, which is capable of parsing source files which are coded
by C++, Java and so on except Python, into XML files. Then, we
develop a Java-based tool which parses the XML files produced by
srcML and records the file name, class name, method name, and
comment content while traversing the DOM tree. For Python files
which is not supported by srcML, we utilize the tokenize module13
in the Python standard library, which provides a lexical scanner for
Python source code to identify all comments. Finally, we extract a
total of 234,260 comments in the latest stable version.

3.3 Manual Classification of the Comments in
the Latest Stable Version

We have two goals in the process of manual classification: find
comments indicating technical debt from all comments in the latest
stable version, and classify the identified technical debt instances
into different categories. We utilize the categories which are found
inMaldonado and Shihab [18]’s work as a starting point, where they
analyze the comments of 5 non-deep-learning open source projects
and find that the technical debt in non-deep learning projects can
be classified into five categories: design debt, defect debt, documen-
tation debt, requirement debt, and test debt.

In practice, we perform three iterations of a card sorting ap-
proach [29] to classify the 234,260 deep learning frameworks com-
ments in the latest stable version. Concretely, in the first iteration
of classification, we try to ensure that our classification standard
is consistent with previous work. To do so, we first randomly pick
100 comments from the dataset provided by Maldonado and Shi-
hab [18]’s work, then the first two authors manually classify these
sentences according to Maldonado and Shihab [18]’s work. A dis-
cussion on the disagreements with Maldonado and Shihab [18]’s
work is performed after the classification process. To validate our
classification standard, the first author selected another 500 com-
ments from the dataset provided by Maldonado and Shihab [18]’s
work and manually classified them. Then, we calculate the Cohen’s
kappa coefficient [20] and obtain a result of +0.85, which indicates
11https://dwheeler.com/sloccount/
12https://www.srcml.org/
13https://docs.python.org/3/library/tokenize.html

ICSE-SEIS’20, May 23–29, 2020, Seoul, Republic of Korea J. Liu et al.

a high level of agreement with the classification given by the first
author and Maldonado and Shihab [18]’s work.

In the second classification iteration, we first randomly pick
2,000 comments from all the 234,260 comments in the latest stable
version of these 7 deep learning frameworks. The first two authors
separately manually classify these comments into six categories, i.e.,
the “NON-technical debt” category and the five categories which are
found in Maldonado and Shihab [18]’s work. If an author considers
the sentence could not be classified into any of the six categories,
it is set aside for further discussion. Then, the first two authors
discuss the disagreements in the classification process and the cases
that could not be categorized into any one of five categories. As a
result, we have the following two findings:
(1) A large amount of comments in our selected dataset express
that the current algorithm of deep learning model, neural network
module and computation function are sub-optimal, which impacts
the performance of the system. However, the categories proposed
in earlier work cannot cover this kind of technical debt. To better
understand this case, we propose algorithm debt to enrich the
technical debt categories proposed in earlier work.
(2) A large amount of comments in our selected dataset express
that the implementation which is based on the current external de-
pendencies is a workaround. However, though the current external
dependencies are still immature or buggy, there is no better choice
temporarily. However, this kind of technical debt cannot be found
in Maldonado and Shihab [18]’s work. To better apperceive this
case, we propose compatibility debt to enhance the technical debt
categories proposed in earlier work.

In the third classification iteration, the first author classifies the
remaining comments. Then, we select another 2,000 comments from
the 234,260 comments and invite an independent Ph.D. student,
who is not an author of this paper, to manually classify them. A
high level of agreement between the classification given by the
two different students is reported with Cohen’s kappa coefficient
of +0.79, which is considered to be high agreement [5].

4 TECHNICAL DEBT IN DEEP LEARNING
FRAMEWORKS

In this section, we present the result of our experiments in the fol-
lowing subsections. Concretely, we present the number of technical
debt at different granularities, the categories of technical debt in
deep learning frameworks, and their corresponding proportions.

4.1 RQ1: Is technical debt prevalent in deep
learning frameworks?

Motivation: As the first work on technical debt in deep learn-
ing frameworks, identification and quantification of technical debt
instances in the latest stable version enables us to have basic knowl-
edge of how common technical debt is in deep learning framework
projects. To better understand the prevalence of technical debt in
deep learning frameworks, we also would like to quantify the num-
ber of files/ classes/ methods that contain technical debt instances.
Approach:Wefirst quantify the number of technical debt instances
that are found in Section 3.3. Then, we use the meta information
of the technical debt instances, e.g., the file/ class/ method that

contain the technical debt instance, which are obtained in Section
3.2, to find the SATD related entity at different granularities. As is
indicated in Section 3.1, the size of different projects are different.
We normalize the result by the number of total files, classes or
methods that the project has respectively.

Table 2: SATD Distribution at Different Granularities. For
each project, we present the total number of comments/
methods/ classes/ files, the number of comments/ methods/
classes/ files that indicate or contain technical debt, and
their corresponding proportion.

Granularity Project Name #Total #SATD %

Comment

TensorFlow 131,238 3,775 2.87%
Keras 2,986 54 1.80%
Caffe 5,901 201 3.40%
PyTorch 24,449 976 3.99%
MXNet 20,178 236 1.16%
CNTK 34,150 1,443 4.22%
DL4J 15,358 474 3.08%

Method

TensorFlow 64,066 1,392 2.17%
Keras 2,388 32 1.34%
Caffe 2,104 39 1.85%
PyTorch 17,380 435 2.50%
MXNet 7,552 101 1.33%
CNTK 9,095 246 2.70%
DL4J 12,068 108 0.89%

Class

TensorFlow 7,285 647 8.88%
Keras 198 8 4.04%
Caffe 305 13 4.26%
PyTorch 1,684 122 7.24%
MXNet 712 24 3.37%
CNTK 341 49 14.36%
DL4J 1,842 127 6.89%

File

TensorFlow 7,600 1,608 21.15%
Keras 178 28 15.73%
Caffe 354 56 15.81%
PyTorch 2,861 482 16.84%
MXNet 1,149 153 13.31%
CNTK 1,238 345 27.86%
DL4J 1,588 212 13.35%

Result: Table 2 shows the prevalence of technical debt in deep
learning frameworks at different levels of granularity. As a result,
in terms of the number of the technical debt instances, we find that
there are a total of 7,159 comments that indicate technical debt,
which corresponds to 2.93% of all comments. Concretely, Tensor-
Flow has the largest amount of technical debt instances (3,775) that
are admitted by developers, while there are only 54 technical debt
instances that are admitted by developers in Keras. CNTK has the
largest proportion (4.22%) among all studied projects while only
1.16% comments indicate technical debt in MXNet.

Moreover, 13.35–27.86% of files, 3.37%–14.36% of classes, 0.89–
2.70% of methods/functions contain one or more instances of SATD.
More specifically, there is a sharp percentage drop from file level to
class level. One reason is some comments that are used as class/file
declaration lie out of the range of class. Besides, in deep learning
framework projects, thewidespread use of scripting languages (such
as Python), which are not class based also intensifies to this case.

Is Using Deep Learning Frameworks Free?
Characterizing Technical Debt in Deep Learning Frameworks ICSE-SEIS’20, May 23–29, 2020, Seoul, Republic of Korea

In fact, at any granularities, CNTK contains the most percentage of
SATD instances while MXNet contains the least.

This result reveals that technical debt is common in deep learning
frameworks, especially in Tensorflow and CNTK. We will compare
the technical debt in deep learning frameworks with that in non-
deep learning projects in Section 5.1. During the development of
deep learning frameworks, framework developers also have un-
resolved technical problems in their projects. They are aware of
these technical problems and write down them in the comments as
admitted technical debt. However, the application developers do not
know the existence of the technical debt and use these frameworks
with risks.

We find that technical debt is prevalent in deep learning framework
projects. Concretely, 13.35 - 27.86% of files, 3.37% - 14.36% of classes,
0.89 - 2.70% of methods/functions contain SATD.

4.2 RQ2: What types of technical debt exist in
deep learning frameworks?

Motivation: Although we have identified technical debt instances
in deep learning frameworks, it is still unclear that what types of
technical debt exist in deep learning frameworks. Considering that
different categories of admitted technical debt indicate different
types of problems that are faced by framework developers, different
categories of technical debt can also have different impacts on both
framework developers and application developers. Therefore, we
wish to clarify the categories of technical debt in deep learning
frameworks and their possible impact on the development of deep
learning frameworks and applications.
Approach:We present the results of the manual classification pro-
cess presented in Section 3.3. To better illustrate different categories
of technical debt, we also present several examples for each tech-
nical debt category, as well as its possible impacts on framework
developers and application developers
Result: We find that the following categories of technical debt in
deep learning frameworks:

1. Design debt indicates sub-optimal design, e.g., misplaced code,
lack of abstraction, longmethods, poor implementation, workarounds,
or temporary solutions on the usage of other internal functions.

We find that in deep learning frameworks, some of design debt in-
stances happen because design details of the framework have
not been determined yet when the code is implemented. For
example:

“TODO: this option should be abstracted, if we decide to generalize
this trainingmaster” - [from DL4J]14
“TODO: make it public?” - [from Keras]15

Such comments illustrate that although the current implementa-
tion has satisfied the functionalities that are explicit in the require-
ment, the design of the code is sub-optimal. Usually, framework
developers report their doubts or provide suggestions about the
design of code in such comments that indicate technical debt. We

14deeplearning4j/deeplearning4j-scaleout/spark/dl4j-spark-parameterserver/src/ma-
in/java/org/deeplearning4j/spark/parameterserver/training/SharedTrainingMaster.java
15keras/keras/preprocessing/sequence.py

suggest that the project manager of the frameworks should deter-
mine or respond to the details of the code design as quickly as
possible.

Moreover, we observe that poor implementation of code is
one of the reasons that lead to design debt, which represents a
compromise between code quality and specific functional or non-
functional requirements. For example:

“TODO(kenton@google.com): There are other ways to get the time
on Windows, like GetTickCount() or GetSystemTimeAsFileTime().
MinGW supports these. consider using them instead.” - [from
Caffe]16

Usually, such technical debt is because the developers who im-
plement related code are not familiar with the code. We expect the
developers with more experience in deep learning frameworks to
update the poor implementation.

We also observe that the violation of object-oriented design
principles is another reason that leads to design debt, which can
lead to more changes on related classes [34]. For example:

“TODO(b/32239616): This kernel should be moved into Eigen and
vectorized.” - [from TensorFlow]17

The TensorFlow developer admits there is a misplaced code. This
practice leads to the responsibilities of the Eigen to be spread across
more than one class. When there are new requirements to change
the behaviors of Eigen, all classes related to class Eigen have to be
changed, which leads to the instability of the framework. This is a
violation of the Single Responsibility Principle18.

We observe that duplicated code is a reason that leads to design
debt as well, which can cause an increase inmaintenance costs
[8], [7]. For example:

“TODO(andydavis) Remove some of the code duplicated between
this module and that in ’common_runtime/function.cc’. A few
string constant used throughout this module.” - [from Tensor-
Flow]19
“TODO(shelhamer) loss normalization should be pulled up into
LossLayer, instead of duplicated here and in SoftMaxWithLoss-
Layer” - [from Caffe]20

These developers admit that there is duplicated code. Duplicated
code is detrimental because (1) the update of code have to be per-
formed in multiple places [13], [24] and, (2) inconsistent changes to
cloned code can create faults and, hence, lead to incorrect program
behavior [9]. The existence of duplicated code in deep learning
frameworks indicates that copy and paste activity is common dur-
ing its development, and framework developers are aware of such
activity.

2. Defect debt corresponds to code that behaves in unintended
ways, and developers postpone repair because of additional factors
(e.g., the complexity of repair or time pressure).

We observe that the use of widely adopted probability and
statistics-based algorithm can often lead to defect debt. For ex-
ample:

16caffe/src/gtest/gtest-all.cpp
17tensorflow/tensorflow/core/kernels/cwise_ops.h
18https://en.wikipedia.org/wiki/Single_responsibility_principle
19tensorflow/tensorflow/core/graph/gradients.cc
20caffe/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp

ICSE-SEIS’20, May 23–29, 2020, Seoul, Republic of Korea J. Liu et al.

“Linear weights do not follow the column name. But this is a rare
use case, and fixing it would add too much complexity to the code.”
- [from Tensorflow]21
‘TODO(phawkins): too small a maximum tensor size could lead to
an infinite loop here.” - [from Tensorflow]22

The probability and statistics-based algorithms are sensitive to
input data [28], [21]. These algorithms lead to the deep learning
frameworks to solve problems non-deterministically and make the
defects of deep learning frameworks difficult to reproduce. Frame-
work developers usually postpone to repair the defect because it
is usually a rare case, and the fix of the bug requires extra code
complexity.

We also observe that the delay caused by the need to col-
laborate other development teams to resolve the defects is
another reason that leads to defect debt. For example:

“TODO(Patric): lrn_within_channel will cause core dump inMKLDNN
backward. Need to confirm with MKLDNN team and fix later” -
[from MXNet]23

Defect debt can lead to unstable data dependencies in ap-
plications. The accumulation of the defect debt leads the frame-
work developers to have to process their further development based
on problematic code, which negatively impacts the quality of the
frameworks. Moreover, for application developers, they usually
train, validate and test their model with the data processed by
the deep learning frameworks. They acknowledge the bugs of the
frameworks by checking issue tracking systems, such as Issue24 in
Github. However, some defects are only known to the framework
developers, and they postpone the fix and leave these defects in
frameworks as defect debt. When application developers use these
flawed frameworks and trigger these bugs, defect debt can cause
unexpected results in their applications. If the application develop-
ers are not aware that the incorrect behaviors are caused by the
frameworks rather than their algorithmic logic, they may modify
their original deep learning algorithms and expect to get the correct
results based on the frameworks with defect debt. In the future,
when the defect debt in frameworks is resolved, or they move to
a new framework without defect debt, the models they trained
with defect debt before would fail, which leads to the unstable data
dependencies. In fact, many application developers complain about
unstable data dependencies in deep learning frameworks during
their development25,26. This finding suggests researchers and de-
velopers should not only notice the bugs that are reported to the
issue tracking systems but also the defect debt that is identified by
developers themselves and admitted in comments.

3. Documentation debt indicates missing, inadequate or incom-
plete documentation that explains the corresponding part of the
program.

21tensorflow/tensorflow/python/feature_column/feature_column_test.py
22tensorflow/tensorflow/compiler/tests/randomized_tests.cc
23incubator-mxnet/src/operator/nn/mkldnn/mkldnn_lrn-inl.h
24https://help.github.com/en/articles/about-issues
25https://hackernoon.com/how-tensorflows-tf-image-resize-stole-60-days-of-my-
life-aba5eb093f35
26https://www.twosigma.com/insights/article/a-workaround-for-non-determinism-
in-tensorflow/

We observe that one of the reasons that lead to documentation
debt is that some framework developers expect other developers or
experts to provide a clear description of the code. For example:

“TODO(sibyl-vie3Poto): Write up a doc with concrete derivation
and point to it from here." - [from TensorFlow]27
“Given a numerical function “f”, returns another numerical func-
tion “g”, such that if “f” takes N inputs and produces M outputs, “g”
takes N +M inputs and produces N outputs. I.e., if (y1,y2, ...,yM) =
f (x1, x2, ..., xN), g is a function which is (dL/dx1,dL/dx2, ...,dL−
/dxN) = д(x1, x2, ..., xN ,dL/dy1,dL/dy2, ...,dL/dyM), where L
is a scalar-value function of (...xi ...). TODO(zhifengc): Asks math
expert to say the comment again.” - [from TensorFlow]28

In the above examples, a TensorFlow developer expects the de-
tailed mathematical derivation of the ComputeUpdatedDual method
in HingeLossUpdater class, and another TensorFlow developer ex-
pects an expert’s confirmation on the documentation of a specific
algorithm. One possible reason is that it is difficult for framework
developers not only to master the project but also to understand a di-
verse set of knowledge, such as the basic neural network structures
and high-performance computation algorithms.

Documentation debt can lead to framework developers
not fully understand collaborator’s work. Documentation acts
as the communication medium between members of the develop-
ment team and probably the application developers. Documentation
debt increases the difficulties for maintenance [11].

4. Requirement debt indicates incompleteness of the method, class
or program at a particular time, which may mean that the original
planned completion of the task exceeds the development schedule. It
can also correspond to cases when new requirements are identified
during the development of existing requirements but cannot be
considered due to time pressure or other constraints. For example:

“TODO setup for RNN” - [from DL4J]29
“TODO: extend this method to handle bidirection LSTMs.” - [from
CNTK]30

Requirement debt can lead the application developers to
have to implement concrete functions by themselves. The re-
search of deep learning algorithms progresses at a rapid pace. Many
new algorithms are still proposed nowadays, which can be applied
to many areas and play an important role. Application developers
expect the deep learning frameworks to provide the out-of-box
implementation of these cutting-edge algorithms. However, many
frameworks do not implement these algorithms in time, which
makes them at a disadvantage in the fiercely competitive market.
Requirement debt can lead the application developers to not be
aware of the incompleteness of the methods, and they use these
methods as normal and result in unexpected result31,32. To deal
with requirement debt, application developers have to implement
these algorithms by themselves.

27tensorflow/tensorflow/core/kernels/hinge-loss.h
28tensorflow/tensorflow/core/common_runtime/function.h
29deeplearning4j/deeplearning4j-nn/src/main/java/org/dee-
plearning4j/nn/params/BatchNormalizationParamInitializer.java
30CNTK/Source/CNTKv2LibraryDll/proto/onnx/CNTKToONNX.cpp
31https://discuss.mxnet.io/t/not-implemented-for-use-with-gpus/1093
32https://github.com/Microsoft/CNTK/issues/2441

Is Using Deep Learning Frameworks Free?
Characterizing Technical Debt in Deep Learning Frameworks ICSE-SEIS’20, May 23–29, 2020, Seoul, Republic of Korea

5. Test debt indicates the need for improvements to address defi-
ciencies in the test suite. We observe that some of test debt indicate
that there is insufficient test in deep learning frameworks, which
can lead to the un-covered defects. For example:

“TODO(fchollet): insufficiently tested.” - [from TensorFlow]33

For the above example, the TensorFlow developers admits that
the current test is insufficient, which may cause bugs to remain
hidden. This practice can downgrade the project quality.

We also observe that there is dead test case in deep learning
frameworks. Below is another example of the test debt, where the
TensorFlow developer admits there is dead test:

“TODO: these flags no longer exist, this test probably no longer
applies” - [from CNTK]34

Sufficient testing is good for the project, but the dead tests can
lead to static analysis tools (Clover35, IntelliJ36) to be unable to find
abandoned source code. The legacy of abandoned source code can
lead to catastrophic consequences. One example is that Knight Cap-
ital lost $465 million in 45 minutes because of unexpected behavior
from dead code [25], [27]. In deep learning projects, developers
usually implement new algorithms with higher accuracy. If there is
dead code which is the implementation of an abandoned algorithm
and is called by developers accidentally, the loss of precision could
cause catastrophic consequences. For example, for self-driving sys-
tems, a sudden decrease in the accuracy can lead to an accident,
and the failure of the facial recognition systems used in the bank
may lead to unauthorized access to bank accounts.

6. Compatibility debt refers to debt related to a project’s im-
mature dependencies on other projects, which cannot supply all
qualified services, and the current implementation is a temporary
workaround.

Compatibility debt can lead to more code changes. For ex-
ample:

“Moved to common.cpp instead of including boost/thread.hpp to
avoid a boost/NVCC issues (#1009, #1010) on OSX. Also fails on
Linux with CUDA 7.0.18.” - [from Caffe]37
“TODO(wan): report the reason of the failure. We don’t do it for now
as: 1. There is no urgent need for it. 2. It’s a bit involved to make the
errno variable thread-safe on all three operating systems (Linux,
Windows, and Mac OS). 3. To interpret the meaning of errno in a
thread-safe way, we need the strerror_r() function, which is not
available on Windows.” - [from Caffe]38

In the above examples, the first Caffe developer complains about
a boost/NVCC issue (#1009, #1010) on OSX, the second Caffe devel-
oper writes down his explanation on the postponed repairment of
defect debt. The underlying dependency, i.e., CUDA 7.0.18, and oper-
ating systems, i.e., Linux, Windows, and Mac OS, in the above exam-
ple, cannot provide qualified services, which leads to a workaround.
This indicates that developers admit that deep learning frameworks
bind themselves tightly with other open-source packages, libraries,

33tensorflow/tensorflow/python/keras/backend_test.py
34CNTK/Tests/UnitTests/MathTests/TensorTestsHelper.h
35https://www.atlassian.com/software/clover
36https://www.jetbrains.com/help/idea/code-coverage.html
37caffe/include/caffe/common.hpp
38caffe/src/gtest/gtest-all.cpp

and platforms, and freeze the project to the specific version of the
dependencies. If framework developers use too many dependen-
cies, they are also exposed to the risks brought by these dependen-
cies39,40.

Moreover, framework developers have to pay additional atten-
tion to the update of the dependencies in their future work. When-
ever there is an updated version of the package, it needs to be
re-integrated into the internal code-base. If additional custom mod-
ifications need to be made, someone needs to maintain this package
internally, and they often need to be committed back to the open-
source (to maintain future compatibility). This practice may require
jumping through administrative hoops.

7. Algorithm debt corresponds to sub-optimal implementations
of algorithm logic in the deep learning framework.

Algorithm debt can pull down the performance of the sys-
tems. Below are two examples of algorithm debt, where the Caffe
developer expects a faster way to do pooling in the channel-first
case and the TensorFlow developer admits that the kCostPerUnit
needs to be optimized:

“TODO(Yangqing): Is there a faster way to do pooling in the channel-
first case?” - [from Caffe]41
“TODO(zakaria): optimize kCostPerUnit” - [from TensorFlow]42

It is often the case that, the computation task of deep learning
projects is quite heavy and for such cases sub-optimal implementa-
tion corresponding to algorithm debt can have an adverse impact.

Besides the five categories, i.e., design debt, defect debt, documenta-
tion debt, requirement debt and test debt, which have been observed
in non-deep learning projects, compatibility debt and algorithm debt
are also discovered in deep learning frameworks.

4.3 RQ3: What is the distribution of different
types of technical debt in deep learning
frameworks?

Motivation: Although we have identified different categories of
technical debt in deep learning frameworks, it is still unclear that
which categories of technical debt are the most common. By doing
so, we can acknowledge which categories of technical debt are most
confronted with the frameworks developers and can cause larger
impact on application developers.
Approach: We count the number of different categories of tech-
nical debt, which is identified in Section 3.3. Table 3 presents the
distribution of different categories of technical debt in different
frameworks, as well as the total number of introduced SATD in-
stances for each project. To better view the differences between
different categories of technical debt, we highlight the top three
categories in term of the proportion in each project in bold.
Result: As a result, we find that in most projects except Keras,
design debt is the most common debt, ranging from 24.07% (in
Keras) to 65.27% (in CNTK). This finding indicates that developers
in deep learning frameworks show their explicit dissatisfactions
39https://github.com/keras-team/keras/issues/3431
40https://stackoverflow.com/q/45984253/
41caffe/src/caffe/layers/pooling_layer.cpp
42tensorflow/tensorflow/contrib/layers/kernels/sparse_feature_c-ross_kernel.cc

ICSE-SEIS’20, May 23–29, 2020, Seoul, Republic of Korea J. Liu et al.

Table 3: Category Distribution of Identified Technical Debt per Framework. We highlight the top 3 most common categories
of each project in bold.

TensorFlow Keras Caffe PyTorch MXNet CNTK DL4J
%design 57.03% 24.07% 48.75% 59.73% 63.13% 65.27% 55.90%

%requirement 17.56% 7.40% 5.62% 12.80% 11.01% 7.41% 20.67%
%algorithm 7.09% 31.48% 10.00% 10.45% 10.16% 10.53% 13.92%

%compatibility 3.78% 35.18% 11.87% 7.37% 2.96% 3.95% 0.21%
%documentation 1.27% 0.00% 15.62% 0.81% 0.42% 0.83% 0.42%

%test 7.70% 0.00% 3.12% 4.61% 3.81% 4.50% 0.63%
%defect 5.53% 1.85% 5.00% 4.20% 8.47% 7.48% 8.22%

on the design of current implementation the most, and they record
them and expect improvement.

And following that, for most projects, either requirement debt
(5.62% - 20.67%) or algorithm debt (7.09% - 31.48%) takes the second
place. This finding indicates that with the rapid advancement of
the cutting-edge deep learning algorithms, developers have not
implemented these algorithms in time or implemented with the
performance issue.

In Keras and Caffe, compatibility debt accounts for more than
10%; thus, it deserves attention too. Keras does not implement
code that handles low-level operations such as tensor products,
convolutions, and so on. Instead, it relies on a specialized, well-
optimized tensor manipulation library, such as Theano (which is not
maintained anymore43), to do so; it serves as the backend engine of
Keras44. Hence, Keras enjoys the convenience provided by backend
projects at the cost of the maintenance of dependencies.

The majority of the SATD comments in deep learning framework
are design debt (24.07% - 65.27%), requirement debt (7.09% - 31.48%)
and algorithm debt (5.62% - 20.67%). In some projects, compatibility
debt accounts for more than 10%.

5 DISCUSSION
In this section, we present our discussion on the comparison be-
tween the technical debt in deep learning frameworks with that
in non-deep learning projects, implications for developers and re-
searchers, and the threats to validity.

5.1 Comparison with Non-Deep Learning
Projects

Our research investigates technical debt in deep learning frame-
works by quantifying the number of technical debt instances at
different granularities, classifying identified technical debt into dif-
ferent technical debt categories. However, prior researches have
investigated the SATD in non-deep learning projects from these
perspectives as well [19], [18], [17]. In this section, we inspect the
similarities and differences of the technical debt between the deep
learning frameworks and non-deep learning projects.

Table 4 presents the comparison results between our study and
former researches. On average, 2.93% of all the comments are SATD
comments in deep learning frameworks. This indicates that similar

43https://www.quora.com/Is-Theano-deep-learning-library-dying
44https://keras.io/

Table 4: Comparison between our findings and prior studies

Topic Prior Study Our Study
Proportion of SATD
comments

1.86% of all the
comments. [19].

2.93% of all the
comments.

Proportion of the
files that contain
one or more SATD
instances

10.4% on average.
[23] 17.27% on average.

Proportion of the
classes that contain
one or more SATD
instances

1.6% on average.
[23] 7.01% on average.

Proportion of the
methods that
contain one or more
SATD instances

0.98% on average.
[23] 1.82% on average.

SATD category

design debt, defect
debt, requirement
debt, test debt, and
documentation debt
[18].

design debt, defect debt,
requirement debt, test
debt, documentation
debt, algorithm debt and
compatibility debt.

SATD category
distribution

the majority of
SATD are design
debt(42% - 84%),
followed by
requirement debt(5%
- 45%.). Maldonado
and Shihab [18]

the majority of the
SATD in deep learning
frameworks are design
debt (24.07% - 65.27%),
followed by
requirement debt (7.09%
- 31.48%) and algorithm
debt (5.62%–20.67%).

to the development process in non-deep learning projects, develop-
ers involved in deep learning frameworks write down comments to
record their temporary implementation of the sub-optimal solution
as well. However, the proportions of the comments that indicate
technical debt among all the comments in deep learning frame-
works are 57.5% larger than those in non-deep learning projects,
and at any level of granularity, the proportions of files/ classes/
methods in deep learning frameworks that contain one or more
SATD instances are 65.4%, 338.1%, and 85.7% larger than those in
non-deep learning frameworks. This indicates that the SATD is
more common in deep learning frameworks compared to non-deep
learning projects.

Moreover, comparedwith developers in non-deep learning projects,
developers in deep learning frameworks are confronted with new
challenges. As is indicated in Section 4.3, besides the technical
debt that is discovered in non-deep learning projects, there is algo-
rithm debt and compatibility debt in deep learning frameworks as

Is Using Deep Learning Frameworks Free?
Characterizing Technical Debt in Deep Learning Frameworks ICSE-SEIS’20, May 23–29, 2020, Seoul, Republic of Korea

well. Furthermore, as for the categories of technical debt that are
common to non-deep learning projects, they also have additional
deep learning characteristics. For example, many deep learning
algorithms are probability and statistics-based algorithms. Such
algorithms are sensitive to the input data. This leads to defects
in deep learning projects that are hard to reproduce. Developers
write down the defects that are postponed repairing and leave such
defects as defect debt in deep learning frameworks. Besides, deep
learning algorithms cover a wide range of knowledge. And it is
difficult for a developer to master a wide range of knowledge and
have a good understanding of the project. Therefore, many require-
ments remain uncomplished, and many developers expect other
developers or experts to professionally write the documentation
of the code. Moreover, deep learning algorithms are still rapidly
advancing. Developers have to sacrifice the quality of projects to
speed up the development time in order to introduce these new
algorithms to win in the fierce competition.

5.2 Implications
For application developers, our research finds that there are many
instances of technical debt in deep learning frameworks.We provide
the following suggestions for application developers:
(1) We suggest application developers be careful about the frame-
works with more defect debt, such as CNTK. The defect debt can
lead to the unstable data dependencies in applications.
(2) If the deep learning application needs to use the out-of-box
implementation of the cutting-edge deep learning algorithms pro-
vided by deep learning frameworks, we suggest the application
developers not to use the frameworks with more requirement debt,
such as DL4J, where many algorithms remained un-implemented.
(3) When application developers employ Keras in their projects,
they should be careful about the compatibility of the Keras on the
dependencies. This is because the compatibility debt leads to more
changes on related files, which is prone to introduce defects.
(4) If the deep learning application requires a high performance, we
suggest application developers not to employ the frameworks with
more algorithm debt, such as Keras and DL4J.

For framework developers, our research finds that there is tech-
nical debt in deep learning frameworks, and many of them re-
mained un-removed. Due to the negative impact of technical debt,
we suggest framework developers resolve technical debt in
time. We provide the possible solutions to remove or minimize the
impact of technical debt:
(1) For design debt, framework developers can refactor the code,
detect duplicated code, and ask expert developers to re-implement
the poor implementation.
(2) For documentation debt, framework developers can (1) provide
qualified documentation in time, (2) ask the experts how to express
the derivation of the algorithm, or (3) provide a reference to a paper.
(3) For defect debt, framework developers can (1) resolve the defects
and (2) post the unsolved defects in the issue tracking system to
inform other developers.
(4) For requirement debt, framework developers can (1) implement
the requirements in time and (2) notify the incompleteness of the
task in release note.
(5) For test debt, framework developers can (1) add sufficient test

cases, and (2) remove dead tests.
(6) For compatibility debt, Sculley et al. [25] suggest developers
re-implement specific functions within the broader system archi-
tecture, which makes the framework not bind themselves tightly
with other dependencies.
(7) For algorithm debt, since it is difficult for developers to both
master the project and the complex algorithms, we suggest devel-
opers can (1) collaborate with one another, or (2) ask experts for
help.

For researchers in software engineering, our findings illustrate
that there are compatibility debt and algorithm debt in deep learn-
ing framework projects. However, compatibility debts might be
prevalent in projects that heavily rely on upstream libraries. With
the growth of open-source libraries, more developers would em-
ploy open-source libraries in their projects. This practice would
lead to the prevalence of compatibility debt in the future. Besides,
algorithm debt would also be widespread in performance-critical
and algorithm intensive projects, e.g., game engine. We suggest
researchers could investigate the generality of the algorithm debt
and compatibility debt.

Furthermore, our findings illustrate the distribution of differ-
ent types of technical debt in deep learning framework projects.
However, it is still unclear how the distribution evolves along the
development process. By doing so, we could better understand
the trade-off performed by developers. Therefore, we encourage
researchers to investigate how framework developers deal with
different categories of technical debt in the future, e.g., which cate-
gories of technical debt are removed the most or the fastest.

For researchers in deep learning, we suggest deep learning re-
searchers try to test their algorithms based on more deep learning
frameworks, rather than only based on the interfaces provided by
one deep learning framework.

5.3 Limitation
To identify technical debt in a project, we use source code com-
ments that describe part of the source code containing technical
debt. One threat of using source code comments is the consistency
of changes between the comments and the code, i.e., in some cases
the comment may change but not the code and vice versa. However,
previous work showed that between 72-91% of the code and com-
ment changes are consistent, i.e., code and comments co-change
together [23].

To classify the detected source code comments into different
categories, we heavily depended on manual process. Like any hu-
man activity, our manual classification is subject to personal bias
and subjectivity. To reduce personal bias in manual classification
of code comments, as we indicate in Section 4.3, the first author
selects another 2,000 comments from the 234,260 comments and
invite an independent Ph.D. student, who is not an author of this
paper, to manually classify them. Then, a high level of agreement
between the classification given by the Ph.D. student and the first
author is reported with Cohen’s kappa coefficient of +0.79. This
gives us high confidence in the dataset used in our paper.

Threats to external validity concern the generalization of our
findings. Our study is conducted on seven large open source deep
learning frameworks. That said, our findingsmay not be generalized

ICSE-SEIS’20, May 23–29, 2020, Seoul, Republic of Korea J. Liu et al.

to other open source or commercial projects. In the future, we will
analysis technical debt in other systems.

6 CONCLUSION
In this paper, we investigate the technical debt in deep learning
frameworks.We find that technical debt is common in deep learning
frameworks, which indicates the use of deep learning frameworks
is not free. TensorFlow has 3,775 technical debt, which is the most
among the studied frameworks. Themajority of the technical debt is
design debt (24.07% - 65.27%), followed by requirement debt (7.09%
- 31.48%) and algorithm debt (5.62%–20.67%). This suggests that the
rapid advancement of the cutting-edge deep learning algorithms
may have caused framework developers to not have implemented
these algorithms in time or implemented them with a number of
issues. There are defect debt, documentation debt, test debt, and
compatibility debt as well. The majority of technical debt is design
debt (24.07% - 65.27%), followed by requirement debt (7.09% - 31.48%)
and algorithm debt (5.62%–20.67%). In some projects, compatibility
debt accounts for more than 10%, which cannot be ignored. Based on
our findings, we provide suggestions for application developers and
the possible methods to resolve the technical debt for framework
developers.

In the future, we will investigate the generality of the algorithm
debt in performance-critical and algorithm intensive projects, and
the generality of the compatibility debt in projects that heavily
relies on upstream libraries.

ACKNOWLEDGMENTS
This research was partially supported by the National Key Research
and Development Program of China (2018YFB1003904), NSFC Pro-
gram (No. 61972339), and the Australian Research Council’s Dis-
covery Early Career Researcher Award (DECRA) funding scheme
(DE200100021).

REFERENCES
[1] Nicolli SR Alves, Leilane F Ribeiro, Vivyane Caires, Thiago S Mendes, and Ro-

drigo O Spínola. 2014. Towards an ontology of terms on technical debt. In
Managing Technical Debt (MTD), 2014 Sixth International Workshop on. IEEE, 1–7.

[2] Gabriele Bavota and Barbara Russo. 2016. A large-scale empirical study on self-
admitted technical debt. In Mining Software Repositories (MSR), 2016 IEEE/ACM
13th Working Conference on. IEEE, 315–326.

[3] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe
Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, et al. 2010.
Managing technical debt in software-reliant systems. In Proceedings of the FSE/SDP
workshop on Future of software engineering research. ACM, 47–52.

[4] Ward Cunningham. 1993. The WyCash portfolio management system. ACM
SIGPLAN OOPS Messenger 4, 2 (1993), 29–30.

[5] Joseph L Fleiss and Jacob Cohen. 1973. The equivalence of weighted kappa and
the intraclass correlation coefficient as measures of reliability. Educational and
psychological measurement 33, 3 (1973), 613–619.

[6] Francesca Arcelli Fontana, Vincenzo Ferme, and Stefano Spinelli. 2012. Investigat-
ing the impact of code smells debt on quality code evaluation. In Proceedings of
the Third International Workshop on Managing Technical Debt. IEEE Press, 15–22.

[7] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[8] Elmar Juergens, Florian Deissenboeck, and Benjamin Hummel. 2010. Code
similarities beyond copy & paste. In 2010 14th European Conference on Software
Maintenance and Reengineering. IEEE, 78–87.

[9] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner.
2009. Do code clones matter?. In 2009 IEEE 31st International Conference on
Software Engineering. IEEE, 485–495.

[10] Yasutaka Kamei, Everton da S Maldonado, Emad Shihab, and Naoyasu Ubayashi.
2016. Using Analytics to Quantify Interest of Self-Admitted Technical Debt.. In
QuASoQ/TDA@ APSEC. 68–71.

[11] Noela Jemutai Kipyegen and William P K Korir. 2013. Importance of Software
Documentation. International Journal of Computer Science Issues 10, 5 (2013), 6.

[12] Tim Klinger, Peri Tarr, Patrick Wagstrom, and Clay Williams. 2011. An enterprise
perspective on technical debt. In Proceedings of the 2nd Workshop on managing
technical debt. ACM, 35–38.

[13] Rainer Koschke. 2007. Survey of research on software clones. In Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[14] Philippe Kruchten, Robert L Nord, Ipek Ozkaya, and Davide Falessi. 2013. Tech-
nical debt: towards a crisper definition report on the 4th international workshop
on managing technical debt. ACM SIGSOFT Software Engineering Notes 38, 5
(2013), 51–54.

[15] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study
on technical debt and its management. Journal of Systems and Software 101 (2015),
193–220.

[16] Erin Lim, Nitin Taksande, and Carolyn Seaman. 2012. A balancing act: What
software practitioners have to say about technical debt. IEEE software 29, 6 (2012),
22–27.

[17] Everton Maldonado, Rabe Abdalkareem, Emad Shihab, and Alexander Serebrenik.
2017. An Empirical Study On the Removal of Self-Admitted Technical Debt. In
Proceedings of the 33rd International Conference on Software Maintenance and
Evolution (ICSME’17). IEEE.

[18] Everton Maldonado and Emad Shihab. 2015. Detecting and quantifying different
types of self-admitted technical Debt. In Proceedings of the 7th IEEE International
Workshop on Managing Technical Debt (MTD’15). 9–15.

[19] Everton Maldonado, Emad Shihab, and Nikolaos Tsantalis. 2017. Using natural
language processing to automatically detect self-admitted technical debt. IEEE
Transactions on Software Engineering 43, 11 (2017), 1044–1062.

[20] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
medica: Biochemia medica 22, 3 (2012), 276–282.

[21] Roman Novak, Yasaman Bahri, Dan Abolafia, Jeffrey Pennington, and Jascha
Sohl-dickstein. 2018. Sensitivity and Generalization in Neural Networks: an
Empirical Study. https://openreview.net/pdf?id=HJC2SzZCW

[22] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Au-
tomated whitebox testing of deep learning systems. In Proceedings of the 26th
Symposium on Operating Systems Principles. ACM, 1–18.

[23] Aniket Potdar and Emad Shihab. 2014. An Exploratory Study on Self-Admitted
Technical Debt. In Proceedings of the 30th IEEE International Conference on Software
Maintenance and Evolution (ICSME’14). 91–100.

[24] Chanchal Kumar Roy and James R Cordy. 2007. A survey on software clone
detection research. Queen’s School of Computing TR 541, 115 (2007), 64–68.

[25] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan
Dennison. 2015. Hidden technical debt in machine learning systems. In Advances
in neural information processing systems. 2503–2511.

[26] Carolyn Seaman and Yuepu Guo. 2011. Measuring and monitoring technical debt.
In Advances in Computers. Vol. 82. Elsevier, 25–46.

[27] Securities and E. Commission. [n. d.]. SEC Charges Knight CapitalWith Violations
ofMarket Access Rule. https://www.sec.gov/news/press-release/2013-222. 2013.

[28] Hai Shu and Hongtu Zhu. 2019. Sensitivity Analysis of Deep Neural Networks.
(01 2019).

[29] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.
[30] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated

testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th International Conference on Software Engineering. ACM, 303–314.

[31] SultanWehaibi, Emad Shihab, and Latifa Guerrouj. 2016. Examining the impact of
self-admitted technical debt on software quality. In Software Analysis, Evolution,
and Reengineering (SANER), 2016 IEEE 23rd International Conference on, Vol. 1.
IEEE, 179–188.

[32] Sultan Wehaibi, Emad Shihab, and Latifa Guerrouj. 2016. Examining the Impact
of Self-admitted Technical Debt on Software Quality. In Proceedings of the 23rd
IEEE International Conference on Software Analysis, Evolution, and Reengineering
(SANER’16). 11.

[33] Nico Zazworka, Michele A Shaw, Forrest Shull, and Carolyn Seaman. 2011. In-
vestigating the impact of design debt on software quality. In Proceedings of the
2nd Workshop on Managing Technical Debt. ACM, 17–23.

[34] Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn Seaman. 2011.
Investigating the Impact of Design Debt on Software Quality. In Proceedings of
the 2Nd Workshop on Managing Technical Debt (MTD ’11). ACM, New York, NY,
USA, 17–23. https://doi.org/10.1145/1985362.1985366

[35] Nico Zazworka, Rodrigo O. Spínola, Antonio Vetro’, Forrest Shull, and Car-
olyn Seaman. 2013. A Case Study on Effectively Identifying Technical Debt.
In Proceedings of the 17th International Conference on Evaluation and Assess-
ment in Software Engineering (EASE ’13). ACM, New York, NY, USA, 42–47.
https://doi.org/10.1145/2460999.2461005

[36] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.
An Empirical Study on TensorFlow Program Bugs. International Symposium on
Software Testing and Analysis (2018).

https://openreview.net/pdf?id=HJC2SzZCW
https://www.sec.gov/news/press-release/2013-222
https://doi.org/10.1145/1985362.1985366
https://doi.org/10.1145/2460999.2461005

	Is using deep learning frameworks free?: Characterizing technical debt in deep learning frameworks
	Citation
	Author

	Abstract
	1 Introduction
	2 Related Work
	2.1 Technical Debt
	2.2 Software Engineering for Deep Learning

	3 Case Study Setup
	3.1 Project Selection
	3.2 Comment Extraction
	3.3 Manual Classification of the Comments in the Latest Stable Version

	4 Technical Debt in Deep Learning Frameworks
	4.1 RQ1: Is technical debt prevalent in deep learning frameworks?
	4.2 RQ2: What types of technical debt exist in deep learning frameworks?
	4.3 RQ3: What is the distribution of different types of technical debt in deep learning frameworks?

	5 Discussion
	5.1 Comparison with Non-Deep Learning Projects
	5.2 Implications
	5.3 Limitation

	6 Conclusion
	Acknowledgments
	References

