
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2020

DCT: An scalable multi-objective module clustering tool DCT: An scalable multi-objective module clustering tool

Ana Paula M. TARCHETTI
University of Brasilia

Luis Henrique Vieira AMARAL
University of Brasilia

Marcos C. OLIVEIRA
Brazilian Ministry of Economy

Rodrigo BONIFACIO
University of Brasilia

Gustavo PINTO
Federal University of Parana, Brazil

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
TARCHETTI, Ana Paula M.; AMARAL, Luis Henrique Vieira; OLIVEIRA, Marcos C.; BONIFACIO, Rodrigo;
PINTO, Gustavo; and LO, David. DCT: An scalable multi-objective module clustering tool. (2020). 2020 20th
IEEE International Workshop on Source Code Analysis and Manipulation (SCAM): September 27 - October
3, Adelaide, Virtual: Proceedings. 171-176.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5644

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5644&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5644&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Ana Paula M. TARCHETTI, Luis Henrique Vieira AMARAL, Marcos C. OLIVEIRA, Rodrigo BONIFACIO,
Gustavo PINTO, and David LO

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/5644

https://ink.library.smu.edu.sg/sis_research/5644

DCT: An Scalable Multi-Objective Module
Clustering Tool

Ana Paula M. Tarchetti∗, Luı́s Amaral∗, Marcos C. Oliveira†, Rodrigo Bonifácio∗, Gustavo Pinto‡ and David Lo§
∗University of Brası́lia. Emails: aptarchetti@gmail.com, luis.amaralh@gmail.com, rbonifacio@unb.br

†Brazilian Ministry of Economy. Email: mail@mcesar.dev
‡Federal University of Pará. Email: gpinto@ufpa.br

§Singapore Management University. Email: davidlo@smu.edu.sg

Abstract—Maintaining complex software systems is a time-
consuming and challenging task. Practitioners must have a
general understanding of the system’s decomposition and how
the system’s developers have implemented the software features
(probably cutting across different modules). Re-engineering prac-
tices are imperative to tackle these challenges. Previous research
has shown the benefits of using software module clustering (SMC)
to aid developers during re-engineering tasks (e.g., revealing
the architecture of the systems, identifying how the concerns
are spread among the modules of the systems, recommending
refactorings, and so on). Nonetheless, although the literature on
software module clustering has substantially evolved in the last
20 years, there are just a few tools publicly available. Still, these
available tools do not scale to large scenarios, in particular, when
optimizing multi-objectives. In this paper we present the Draco
Clustering Tool (DCT), a new software module clustering tool.
DCT design decisions make multi-objective software clusteriza-
tion feasible, even for software systems comprising up to 1,000
modules. We report an empirical study that compares DCT with
other available multi-objective tool (HD-NSGA-II), and both
DCT and HD-NSGA-II with mono-objective tools (BUNCH and
HD-LNS). We evidence that DCT solves the scalability issue
when clustering medium size projects in a multi-objective mode.
In a more extreme case, DCT was able to cluster Druid (an
analytics data store) 221 times faster than HD-NSGA-II.

Index Terms—Software Module Clustering, Multi-Objective
Optimization, Genetic Algorithms

I. INTRODUCTION

With increasing complexity of modern software, there is
an increased demand for automated tools to support the
maintainability and scalability of those systems (Dahiya et
al. [1]). Fundamental contributions to this subject include, for
instance, the introduction of the automated Software Module
Clustering (SMC) tool by Mitchell and Mancoridis [2]. This
appliance began with the purpose to offer techniques to reveal
the structure of a software system by grouping its modules
into clusters. They based their algorithm on the principle of
“low coupling and high cohesion”. The input of the algorithm
is a set of modules and dependencies between them. Typically,
these modules correspond to files (or classes, in object-oriented
programming languages), and the dependencies correspond to
function/method calls or variables/fields access. While this
kind of modules and dependencies are common, other rep-

resentations are useful too, such as methods/fields as modules
and co-change dependencies [3].

Revealing the software structure by using SMC tools can
help to overcome complications related to misleading or
insufficient documentation. The problem with documentations
is accurately comprehended in Lethbridge et al. [4], this
study is consisted of interviews with software engineers, and
the general answers about documentation was the following:
documentation is frequently out of date, often poorly written,
challenging in terms of finding useful content and has a
considerable untrustworthy fraction. In this context, it becomes
very meaningful the chase for computational mechanisms such
as SMC so that the documentation gap could be filled, hence,
making it possible to support the six main aspects of software
development pointed out by Garlan [5]: understanding, reuse,
construction, evolution, analysis, and management.

Besides software structure recovering, SMC techniques can
also be used to: (a) recommend or reveal alternative decompo-
sitions [3], (b) recommend refactorings in order to conform to
some alternative decomposition [6], and (c) detect anomalies
in the software design [3], [6].

Past researches have proposed many alternative SMC ap-
proaches [7]–[13], however, they failed to provide publicly
available tools that use multi-objective genetic algorithms in
their designs. One of the primary benefits of multi-objective
algorithms is that they output a set of best solutions in contrast
with mono-objective where there is only one “best” solution.
The problem with pursuing only one solution is that we have
to chose between conflicting objectives. For example, it is hard
to chose between a solution with better cohesion or other with
better coupling; i.e. for a SMC tool to find the best solution
among several candidate solutions they have to decide about
questions like “which is better: coupling or cohesion?” [14],
[15].

In order to overcome this problem, in this paper we present
the Draco Clustering Tool (DCT), a public tool that performs
automated SMC using multi-objective genetic algorithms.

II. BACKGROUND AND RELATED WORK

The re-engineering process in large scale software projects
requires appropriate and scalable techniques. With the focus

Published in 2020 20th IEEE International Workshop on Source Code Analysis and Manipulation (SCAM): September 27 - October 3, Adelaide,
Virtual: Proceedings. DOI: 10.1109/SCAM51674.2020.00024

on software module clustering (SMC) techniques, the work of
Anquetil and Lethbridge [16], for instance, compares different
strategies for using SMC as a software remodularization rec-
ommender. More recently, Maqbool and Babri [17] investigate
the use of hierarchical clustering algorithms for architecture
recovering.

Given this context, it is noticeable that the majority of
SMC approaches use mono-objective algorithms. Praditwong
et al. [14] proposed to represent the SMC problem as a
multi-objective search problem. They formulated the problem
representing separately several different objectives (including
cohesion and coupling). The rationale of this proposal is that
it is not always possible to capture the relative importance of
some desirable properties (for example, it is hard to decide if
cohesion is more important than coupling or vice-versa).

Candela et al. [15], investigated which properties developers
consider relevant for a high-quality software remodularization.
To be able to compare different properties, they had to use
a multi-objective genetic algorithm to compute the software
module clusters. Accordingly, they presented to the developers
several recommendations of remodularization, and investigated
which property (e.g. cohesion or coupling) the developers
regard most. This kind of study was only possible by using a
multi-objective SMC tool.

Other works are also worth mention here, because they
provide different SMC implementations. First, M. Barros dis-
cusses the effects of using the MQ metric as an extra objective
on a multi-objective SMC tools [18]. Second, Monçores et
al. present a large study addressing a heuristic based on
the mono-objective Large Neighborhood Search algorithm,
applied to SMC problems [19]. Both works publish tools that
we explored in this paper. Finally, in a recent work, work [6]
we leveraged a multi-objective software module clustering tool
to produce a set of alternative decompositions of a software.
Our needs to use a multi-objective approach to find these
alternative decompositions, and the lack of scalable multi-
objective SMC tools, motivated us to implement DCT.

III. DRACO CLUSTERING TOOL

Draco Clustering Tool (DCT) is a command line inter-
face (CLI) tool, that reads a Module Dependency Graph
(MDG) [20] from the standard input and writes a clustered
graph represented as a DOT1 file in the standard output. It was
implemented in Go2 programming language, and is publicly
available.3 A typical invocation of the tool looks like this:

$ clustering < software.mdg > software.dot

The main use case of the tool is to run experiments involving
multi-objective SMC computation. Accordingly, the following
principles guided the design of DCT:
• An easy to use interface. While a Graphical User

Interface potentially could be more intuitive, it makes
experiments automation more difficult;

1https://graphviz.org/doc/info/lang.html
2https://golang.org
3https://github.com/project-draco/tools/tree/master/clustering

• Minimal memory usage. DCT users might want to run
the tool in parallel, so its memory consumption must be
minimal;

• Runtime efficiency. Similarly, the time spent running a
experiment must be minimal;

• Extensible. To experiment with multiple scenarios, it
must be possible to replace portions of the clustering
algorithm or to tune its parameters values;

• Standard formats. To make comparisons of DCT with
other tools easier, DCT must adopt well-known file
formats, both for input (MDG) and output (DOT);

In order to address these principles, we chose Go as
programming language. Go programs are compiled ahead of
time to native machine code, therefore compiled programs can
execute efficiently. Furthermore, this property makes the use
of CLI tools more convenient, since they would not require a
virtual machine to run. In addition, we address the extensibility
principle using Go interfaces. For instance, we have a Go
interface to abstract the random number generator (see more
details bellow).

In DCT we used the definition of the SMC problem as a
multi-objective optimization problem, using the same set of
objects recommended by Praditwong et al. [14]. The input
is a MDG represented by a graph G = (V,E) from a set
of modules V and a set of dependencies E ⊆ V × V ; and
the output is a set of solutions. A solution is a partition
of a MDG that corresponds to a set of clusters. Although
the original design of DCT uses a multi-objective genetic
algorithm (GA) [21] to compute optimal partitions, it is also
possible to extend DCT to use mono-objective algorithms.

To use a genetic algorithm, it is necessary to precisely define
the concept of individuals and fitness functions for the problem
domain. A typical GA executes as follows:

1) It first generates an initial population (i.e., a set of
individuals) randomly;

2) It repeatedly produces a new population, by (a) select-
ing individuals from the previous population using the
fitness values and (b) combining them using the genetic
operators crossover and mutation;

3) It proceeds until a stop condition is met.
In DCT, each GA component (e.g., the fitness function or

the crossover operator) is defined as Go interfaces, which
enables the replacement for other implementations. The default
implementations of these interfaces are specified next.

The default DCT implementation relies on the multi-
objective genetic algorithm NSGA-II [22], responsible to
implement the selection operator of the GA.

When using multi-objective GAs, each individual has a
vector of fitness values [21]. To compare two individuals, we
use the concept of Pareto Dominance: a vector v dominates
another vector u if no value vi is smaller than the value ui,
and at least one vj is greater than uj [21] (this applies to opti-
mizations where the goal is to maximize the objective values,
if the goal is the opposite, we must invert the comparisons).

As such, we represent the individuals as a mapping from
a module to the cluster it belongs to (typically a module

(a)

m1 m2

m3

m4 f1

Cluster 0 Cluster 1

(b)

0 1 2 3 4
0 1 0 0 1

Fig. 1. Individual representation.

represents a file or class). Technically, an individual is an array
where each position corresponds to a module, and each value
corresponds to a cluster. Two different modules belong to the
same cluster when they refer to the same value. Figure 1-(a)
illustrates this representation, showing four modules (m1, m2,
m3, m4, f1). All modules belong to the cluster C0, except for
m2 that belongs to the cluster C1 (together with module f1).

Differently from previous works [19], [20], [23], DCT saves
computer’s main memory since the array is codified as a binary
string (i.e., as a sequence of bits), as we can see in Figure 1-
(b). The maximum number of clusters is set to |V |2 , and each
element of the array occupies

⌈
log2

|V |−1
2

⌉
bits of the binary

string—where V is the set of vertices of the MDG. Previous
works represent the individual as an array of “integers” [19],
[20], [23], which could place a toll on today processors that
take 64 bits. For example, if we have a MDG with 10,000
vertices, one element of the array will occupy 13 bits, while
the state of the art would occupy 64 bits.

The genetic operators transform the population through suc-
cessive generations, maintaining the diversity and adaptation
properties from previous generations. In this work, we use the
one-point crossover operator, which takes two binary strings
(parents) and a random index as input, and produces two new
binary strings (offspring) by swapping the parents’ bits after
that index. For example, if we have the parent binary strings
p1 = 101010 and p2 = 001111, and an index i = 1, the
offspring will be c1 = 101111 and c2 = 001010. We also used
a mutation operator that can flip any bit of the individual’s
binary string at a specified probability. That is, given a
mutation probability p and a binary string s = b1b2 . . . bn,
we produce a random number 0 ≤ ri < 1 for each bit bi,
flipping bi in the cases where ri < p. For example, if we have
a binary string s = 10011, a mutation probability p = 0.1,
and a sequence of random numbers r = (0.9, 0.3, 0, 0.6, 0.5),

the algorithm will produce a mutant binary string s′ = 10111.
In DCT we used the Xorshift algorithm in order to generate
random numbers; which is a known fast algorithm [24]. To the
best of our knowledge, no other SMC tool uses this algorithm.

As mentioned before, we setup the GA to optimize five
objectives [14]:
• maximize Modularization Quality (MQ);
• maximize intra-edge dependencies;
• minimize inter-edge dependencies;
• maximize number of clusters;
• minimize the difference between the maximum and min-

imum number of source-code entities in a cluster.
MQ was defined by Mitchell and Mancoridis [20] as fol-

lows:

MQ =
k∑
i=1

CFi

CFi =

µi

µi+
1
2

k∑
j=1
j 6=i

(εi,j+εj,i)

µi > 0

0 µi = 0.

In this equation, k is the number of clusters, µi is the
number of edges within the ith cluster, and εi,j is the number
of edges between the ith and the jth clusters.

With relation to the parameters, we chose their values sim-
ilarly to Candela et al [15]. As such, given a software module
graph G = (V,E), and n = |V |, we defined the parameters
population size (PS), maximum number of generations (MG),
crossover probability (CP), and mutation probability (MP) as
follows:

• PS =

2n if n ≤ 300
n if 300 < n ≤ 3000
n/2 if 3000 < n ≤ 10000
n/4 if n > 10000

• MG =

50n if n ≤ 300
20n if 300 < n ≤ 3000
5n if 3000 < n ≤ 10000
n if n > 10000

• CP =

 0.8 if n ≤ 100
0.8 + 0.2(n− 100)/899 if 100 < n < 1000
1 if n ≥ 1000

• MP = 16
100
√
n

In summary, DCT is a full-fledged multi-objective SMC
tool written in the Go programming language, which (a) uses
NSGA-II as default implementation, (b) employs a simple CLI
to ease the execution of experiments, and (c) explores two
optimization techniques: binary strings to represent individuals
and the Xorshift random number generator algorithm.

IV. STUDY SETTINGS

This empirical assessment aims to evaluate the performance
of DCT for clustering software systems of different sizes
and complexities. We conducted two experiments. The first
compares the performance of DCT against one software
clustering tool that runs in a multi-objective mode (Heuristic

Design NSGA-II [23]). The second compares the performance
of DCT and HD-NSGA-II against two software clustering
tools that use a mono-objective strategy (Bunch [20] and
Heuristic Design LNS [19]). Although many research studies
on software clustering are available in the literature, most of
these publications do not provide tools we can use.

We investigate the following questions in our study:
(a) How does the complexity of the systems affect DCT

performance?
(b) How does the DCT performance compare to the perfor-

mance of multi-objective tools (HD-NSGA-II)?
(c) How does the performance of multi-objective tools (DCT

and HD-NSGA-II) compare to the performance of mono-
objective tools (Bunch and HD LNS)?

The multi-objective algorithm of DCT must explore a solu-
tion space of exponential complexity. As such, answering the
first research question allows us to understand if DCT could
be used to cluster software systems in real settings. Answering
the second research question, allows us to understand the
performance of DCT in comparison with another NSGA-II
implementation. Finally, regarding the last research question,
it is still unclear to what extent the use of multi-objective
algorithms compromise the performance of publicly available
SMC tools. Answering the last research question allows us to
better estimate the effect of using a multi-objective algorithm
to cluster software systems.

We leveraged three metrics to answer these research ques-
tions: TS is the elapsed time in seconds to cluster each studied
system; MMC is the Maximum Memory Consumption (in
KB) necessary to cluster each studied system; and MQ is
a metric for estimating the Modularization Quality of the
clusters [2], [25].

We ran Bunch and HD LNS tools with their default settings.
On the other hand, HD-NSGA-II was not concluding the
process even on small systems. To reduce the number of eval-
uations, we set the parameters population size and maximum
number of generations to 2n and 4n, respectively, where n
is the number of vertices on the MDG. The default values of
these parameters are 10p and 200p, where p is the package
count. The definition of package used in HD-NSGA-II cor-
responds to a package in the Java programming language.
Furthermore, we had to write a tool to convert MDGs to the
proprietary file format used by HD-NSGA-II. Finally, we
ported the HD-NSGA-II and HD-LNS implementations to
Java libraries and implemented a command line tool to execute
both of them.4. We hope that this decision could help other
researchers to experiment with these tools.

We used the time Linux tool to compute the first two
metrics. To calculate the MQ metric we considered the out-
comes of the clustering tools (Bunch, Heuristic Design, and
DCT). We used a dataset of 17 MDGs in our study. These
MDGs come from a convenient sample population of open
source systems we used in a previous research work [6]. These
systems are from different domains and range from small to

4https://github.com/project-draco/cms runner

medium size systems (in terms of lines of code). Moreover,
we set 48h as the maximum execution time. Table I presents
some characteristics of these systems.

We executed our experiments using an Intel(R) Xeon(R) E-
2124 CPU @ 3.30GHz with 32 GB of RAM, running a Linux
Ubuntu distribution (18.04.4 LTS).

TABLE I
PROJECTS USED IN THE EMPIRICAL ASSESSMENTS

System Modules Deps. KLOC Commits
React Native Framework 190 1006 48 7842
Storm distributed realtime system 388 3249 213 7451
Bigbluebutton web conf. system 497 3661 82 13420
Minecraft Forge 501 3403 72 5498
CAS - Enterprise Single Sign On 513 1718 87 6268
Atmosphere Event Driven Framework 658 3523 41 5748
Druid analytics data store 668 2648 297 7452
Liquibase database source control 716 3981 77 5360
Kill Bill Billing & Payment Platform 767 5422 139 5361
Actor Messaging Platform 768 7452 157 8772
The ownCloud Android App 833 3389 36 5329
Hibernate Object-Relational Mapping 836 2935 628 7302
jOOQ SQL generator 851 4118 133 5022
LanguageTool Style/Grammar Checker 871 1931 75 19121
Bazel build system 965 3813 375 7258
H2O-3 - Machine Learning Platform 1586 27725 143 19336
Jitsi communicator 2557 6742 326 12420

V. RESULTS

In this section we highlight the main findings of our
empirical study and provide answers to the research questions
we introduced in Section IV.

A. How does the complexity of the systems affect the DCT
performance?

To answer this research question, we first considered the
complexity of the MDGs (in terms of number of modules) as a
model of the log of the elapsed time (TS) to compute the clus-
ters. That is, we expressed this model as log(TS) ≈Modules.
Considering the adjusted R2, this model indicates that we can
explain 88.87% of the TS variance as an exponential function
on the number of modules. This exponential model better
explains this variance, in comparison to a quadratic model
(R2 = 0.73) and a linear model (R2 = 0.38).

In practice, DCT finds a cluster solution to a small system
with 190 modules and 48 KLOC in 00:01:57 (REACT
NATIVE FRAMEWORK), to a medium size system with 767
modules and 139 KLOC in 00:23:49 (KILL BILL BILLING
& PAYMENT PLATFORM), and to a large system with 2557
modules and 326 KLOC in 08:30:07 (JITSI COMMUNICA-
TOR). That is, although we confirmed the exponential cost
necessary for DCT to compute the clusters (as a function on
the number of modules), we argue that it can still be used in
practice, particularly for small and medium size systems. For
larger systems, DCT might find a solution in an interval from
hours to a few days (for extra large systems). So, regarding
our first question, we found that:

Our empirical assessment suggests that we can predict
the time necessary for DCT compute a cluster using an

exponential formula on the system’s number of modules.

In the longest scenario in our experiment, DCT found
a cluster in 08:30:07 for a system with more than 2500
modules. We argue that this is still a reasonable time
for running a SMC reengineering task on a large system
using a multi-objective approach.

B. How does the DCT performance compare to the perfor-
mance of multi-objective tools (HD-NSGA-II)?

Our goal to answer this question is to understand how DCT
compares to another multi-objective SMC tool. Nonetheless,
HD-NSGA-II only concluded the execution for seven (out
of the 17 projects we consider in our study) within our
maximum time threshold (48 hours). Considering only these
seven projects, we realized a substantial benefit on the DCT
speed-up, ranging from 2.13x to 221x (see Table II).

TABLE II
COMPARISON OF THE ELAPSED TIME TO GENERATE THE CLUSTERS

(CONSIDERING THE MULTI-OBJECTIVE TOOLS DCT AND HD-NSGA-II).

System DCT (TS) HD-NSGA-II (TS) Speed-up
React Native 117 249 2.13x
Storm 228 12448 54.60x
Big Blue Button 442 36264 82.05x
Minecraft Forge 579 54691 94.46x
CAS Single Sign On 335 39963 119.29x
Atmosphere 970 90954 93.77x
Druid 741 164428 221.90x

Regarding the other metrics (MMC and MQ), DCT im-
proved memory consumption up to 2x (minimum gain of
1.8x — see Table III) and slightly decreased the MQ metrics
in six out of the seven cases (see Table IV). Specifically,
DCT presents a significant reduction on the time necessary
to compute the clusters, in comparison to the HD-NSGA-II
tool; however, we observed a slight reduction on the quality
of the clusters. In the worst case, (Atmosphere project), DCT
found a cluster with MQ = 69.64; while HD-NSGA-II found
a cluster with MQ = 95.70. Altogether, we answer our second
research question as follows:

Our assessment reveals that DCT scales better than
HD-NSGA-II, finishing the clusterization process of
the Druid tool in 741 seconds (while HD-NSGA-II
needed 164 428 seconds). Considering larger projects,
HD-NSGA-II did not finish the analysis within our
maximum time threshold.

We observed that HD-NSGA-II clusters are slightly
better than the clusters produced by DCT

C. How does the performance of multi-objective tools (DCT
and HD-NSGA-II) compares to the performance of mono-
objective tools (BUNCH and HD-LNS)?

The boxplots in Figure 2 show the performance of the
tools (DCT, HD-NSGA-II, BUNCH, and HD-LNS), consid-

TABLE III
COMPARISON OF THE MEMORY USAGE GENERATING THE CLUSTERS

(CONSIDERING THE MULTI-OBJECTIVE TOOLS DCT AND HD-NSGA-II).

System DCT (MB) HD-NSGA-II (MB) Improv.
React Native 91 188 2.07
Storm 218 463 2.12
Bigbluebutton 282 511 1.81
Minecraft Forge 320 595 1.86
CAS - Enterprise Single Sign On 300 528 1.76
Atmosphere 416 741 1.78
Druid 396 713 1.80

TABLE IV
COMPARISON OF THE CLUSTERS’ MQ (CONSIDERING THE

MULTI-OBJECTIVE TOOLS DCT AND HD-NSGA-II).

System DCT (MQ) HD-NSGA-II (MQ) Improv.
React-native 39.27 33.57 1.17
Storm 60.40 66.60 0.91
Big Blue Button 71.15 79.31 0.90
Minecraft Forge 87.94 92.76 0.95
CAS - Enterprise Single Sign On 92.77 99.07 0.94
Atmosphere 69.64 95.70 0.73
Druid 122.65 128.00 0.96
Average 0.94

ering execution time (TS), memory consumption (MMC), and
modularization quality (MQ). One could observe that multi-
objective SMC implementations requires much more time to
compute the clusters. In the worst scenario, DCT requires
00:40:48 while BUNCH required 00:00:04, and HD-
LNS requires 00:02:57 on the same comparison.

Regarding memory consumption, the BUNCH tool achieved
the best performance, with an average memory consumption of
∼126MB; while HD-LNS achieved an average consumption
of ∼546MB. Considering the impact on the MQ metric,
Figure 2 shows a (median) decreasing of 44% on the modular-
ization quality of the clusters from multi-objective SMC tools.
Differently, the mono-objective tools preserve the average
quality of the clusters Altogether, we answer our second
research question as follows.

The use of multi-objective SMC implementations brings
a negative impact on both performance and modulariza-
tion quality, in comparison with the multi-objective tools
we used in our research. That is, on average, we found
a central tendency of (a) increasing in 400x the time
necessary to compute the cluster and (b) decreasing in
44% the modularization quality.

Comparing to HD-LNS, BUNCH brings significant im-
provements in two metrics (on average): time necessary
to compute the clusters (up to 20x) and maximum
memory consumption (up to 2x).

VI. FINAL REMARKS

In this paper we presented a new Software Module Clus-
tering tool that address scalability issues. This property is
particularly important for running experiments that uses SMC
tools as part of its process. In this use case, normally is

(a) (b) (c)

DCT HD−NII Bunch HD−LNS

0
20

00
0

40
00

0
60

00
0

80
00

0

T
im

e
(s

)

DCT HD−NII Bunch HD−LNS

20
0

40
0

60
0

80
0

10
00

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

DCT HD−NII Bunch HD−LNS

50
10

0
15

0
20

0
25

0
30

0

M
od

ul
ar

iz
at

io
n

Q
ua

lit
y

Fig. 2. Performance comparison of SMC tools. (a) Compares TS, (b) compares MMC, and (c) compares MQ. We removed the outliers in the boxplots.

required to repeatedly run several instances of the experiment.
Accordingly, the tools’ runtime efficiency is critical. We re-
ported an comparison with other multi-objective SMC tool
where we shown that our tool speeds up the elapsed time
from 2 to 220 times, while using 2 times less memory and
with a slightly decrease in MQ (6%). In the future, we will
explore additional genetic algorithms, such as, NSGA-III, and
pursue further optimizations.

REFERENCES

[1] S. S. Dahiya, J. K. Chhabra, and S. Kumar, “Use of genetic algorithm
for software maintainability metrics’ conditioning,” in 15th International
Conference on Advanced Computing and Communications (ADCOM
2007), 2007, pp. 87–92.

[2] B. S. Mitchell and S. Mancoridis, “On the automatic modularization of
software systems using the bunch tool,” IEEE Transactions on Software
Engineering, vol. 32, no. 3, pp. 193–208, March 2006.

[3] M. C. de Oliveira, R. Bonifácio, G. N. Ramos, and M. Ribeiro,
“Unveiling and reasoning about co-change dependencies,” in
Proceedings of the 15th International Conference on Modularity,
MODULARITY 2016, Málaga, Spain, March 14 - 18, 2016, L. Fuentes,
D. S. Batory, and K. Czarnecki, Eds. ACM, 2016, pp. 25–36. [Online].
Available: https://doi.org/10.1145/2889443.2889450

[4] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: the state of the practice,” IEEE Software, vol. 20,
no. 6, pp. 35–39, 2003.

[5] D. Garlan, “Software architecture: a roadmap,” in Proceedings of the
Conference on the Future of Software Engineering, 2000, pp. 91–101.

[6] M. C. de Oliveira, D. Freitas, R. Bonifácio, G. Pinto, and
D. Lo, “Finding needles in a haystack: Leveraging co-change
dependencies to recommend refactorings,” Journal of Systems and
Software, vol. 158, p. 110420, 2019. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0164121219301943

[7] K. Praditwong, M. Harman, and X. Yao, “Software module clustering
as a multi-objective search problem,” IEEE Transactions on Software
Engineering, vol. 37, no. 2, pp. 264–282, 2011.

[8] J. Huang, J. Liu, and X. Yao, “A multi-agent evolutionary algorithm for
software module clustering problems,” Soft Computing, vol. 21, no. 12,
pp. 3415–3428, 2017.

[9] J. K. Chhabra et al., “Many-objective artificial bee colony algorithm
for large-scale software module clustering problem,” Soft Computing,
vol. 22, no. 19, pp. 6341–6361, 2018.

[10] A. Prajapati and J. K. Chhabra, “Madhs: Many-objective discrete
harmony search to improve existing package design,” Computational
Intelligence, vol. 35, no. 1, pp. 98–123, 2019.

[11] J. Sun and B. Ling, “Software module clustering algorithm using
probability selection,” Wuhan University Journal of Natural Sciences,
vol. 23, no. 2, pp. 93–102, 2018.

[12] M. Bishnoi and P. Singh, “Modularizing software systems using pso
optimized hierarchical clustering,” in 2016 International Conference on
Computational Techniques in Information and Communication Tech-
nologies (ICCTICT), 2016, pp. 659–664.

[13] V. Singh, “Software module clustering using metaheuristic search tech-
niques: A survey,” in 2016 3rd International Conference on Computing
for Sustainable Global Development (INDIACom), 2016, pp. 2764–2767.

[14] K. Praditwong, M. Harman, and X. Yao, “Software module clustering
as a multi-objective search problem,” IEEE Trans. Softw. Eng., vol. 37,
no. 2, pp. 264–282, Mar. 2011.

[15] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using cohesion and
coupling for software remodularization: Is it enough?” ACM Trans.
Softw. Eng. Methodol., vol. 25, no. 3, pp. 24:1–24:28, Jun. 2016.
[Online]. Available: http://doi.acm.org/10.1145/2928268

[16] N. Anquetil, C. Fourrier, and T. C. Lethbridge, “Experiments with
clustering as a software remodularization method,” in Proceedings of
the Sixth Working Conference on Reverse Engineering, ser. WCRE ’99.
Washington, DC, USA: IEEE Computer Society, 1999, pp. 235–.

[17] O. Maqbool and H. Babri, “Hierarchical clustering for software archi-
tecture recovery,” IEEE Trans. Softw. Eng., vol. 33, no. 11, pp. 759–780,
Nov. 2007.

[18] M. de Oliveira Barros, “Evaluating modularization quality as an extra
objective in multiobjective software module clustering,” in International
Symposium on Search Based Software Engineering. Springer, 2011, pp.
267–267.

[19] M. C. Monçores, A. C. Alvim, and M. O. Barros, “Large neighborhood
search applied to the software module clustering problem,” Computers
& Operations Research, vol. 91, pp. 92–111, 2018.

[20] B. S. Mitchell and S. Mancoridis, “On the automatic modularization
of software systems using the bunch tool,” IEEE Trans. Softw. Eng.,
vol. 32, no. 3, pp. 193–208, Mar. 2006.

[21] D. E. Goldberg, “E. 1989. genetic algorithms in search, optimization,
and machine learning,” Reading: Addison-Wesley, 1990.

[22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evo-
lutionary Computation, vol. 6, no. 2, pp. 182–197, Apr 2002.

[23] M. d. O. Barros, “An analysis of the effects of composite objectives in
multiobjective software module clustering,” in Proceedings of the 14th
annual conference on Genetic and evolutionary computation, 2012, pp.
1205–1212.

[24] G. Marsaglia, “Xorshift rngs,” Journal of Statistical Software,
Articles, vol. 8, no. 14, pp. 1–6, 2003. [Online]. Available:
https://www.jstatsoft.org/v008/i14

[25] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, “Bunch:
A clustering tool for the recovery and maintenance of software system
structures,” in 1999 International Conference on Software Maintenance,
ICSM 1999, Oxford, England, UK, August 30 - September 3,
1999. IEEE Computer Society, 1999, p. 50. [Online]. Available:
https://doi.org/10.1109/ICSM.1999.792498

	DCT: An scalable multi-objective module clustering tool
	Citation
	Author

	tmp.1620721737.pdf.URn3v

