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Abstract
Social collaborative platforms such as GitHub and Stack Overflow
have been increasingly used to improve work productivity via col-
laborative efforts. To improve user experiences in these platforms,
it is desirable to have a recommender system that can suggest not
only items (e.g., a GitHub repository) to a user, but also activities
to be performed on the suggested items (e.g., forking a repository).
To this end, we propose a new approach dubbed Keen2Act, which
decomposes the recommendation problem into two stages: the Keen
and Act steps. The Keen step identifies, for a given user, a (sub)set
of items in which he/she is likely to be interested. The Act step
then recommends to the user which activities to perform on the
identified set of items. This decomposition provides a practical ap-
proach to tackling complex activity recommendation tasks while
producing higher recommendation quality. We evaluate our pro-
posed approach using two real-world datasets and obtain promising
results whereby Keen2Act outperforms several baseline models.

CCS Concepts
• Information systems → Learning to rank; Rank aggrega-
tion; • Computing methodologies→ Factorization methods.
Keywords
Activity Recommendation, Factorization Machine, Social Collabo-
rative Platform, Stack Overflow, GitHub
ACM Reference Format:
Roy Ka-Wei Lee, Thong Hoang, Richard J. Oentaryo, and David Lo. 2020.
Keen2Act: Activity Recommendation in Online Social Collaborative Plat-
forms. In Proceedings of the 28th ACM Conference on User Modeling, Adapta-
tion and Personalization (UMAP ’20), July 14–17, 2020, Genoa, Italy. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3340631.3394884

1 Introduction
Users are increasingly adopting social collaborative platforms for
collaborative activities. GitHub and Stack Overflow are two such
popular platforms; GitHub is a collaborative software development
platform that allows code sharing and version control, while Stack
Overflow is a technical question-and-answer community-based
website. As these social collaborative platforms gain popularity,
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many research studies have proposed recommender systems to im-
prove the usability of these platforms. For example, there are works
that recommend Stack Overflow questions for users to answer
[16, 17]. Similarly, in GitHub, researchers have proposed methods
to recommend relevant repositories to a user [5, 7].

Many of the existing works, however, focus largely on recom-
mending either items or a single type of activity to users, ignoring
the fact that the users can perform multiple types of activity on
these platforms. For example, GitHub users may fork orwatch repos-
itories and Stack Overflow users may answer or favorite questions.
Recommending multiple types of activities to a user is a challenging
task. A naïve solution would be to recommend individual activi-
ties separately, treating them as independent tasks. However, there
might be insufficient observations for learning the user activities
at such granularity. Another possible solution is to simply learn
the different types of activities together, but such solution creates
sparsity issue, having to learn for all possible item-activity pairs.

To tackle these challenges, we propose a new recommendation
approach called Keen2Act1, which learns the users’ item-level and
activity-level interests in a step-wise manner to achieve (joint)
item-activity recommendation. In particular, the main contribution
of Keen2Act is that it features a novel two-stage process that de-
composes the activity recommendation problem into predicting a
user’s interests at item level and subsequently predicting at activity
level. To the best of our knowledge, this is also the first work that
achieves multi-typed activity recommendation in social collabora-
tive platforms. Finally, empirical studies on real-world GitHub and
Stack Overflow datasets have shown promising results whereby
the proposed approach outperforms several baseline methods.

2 Related Work
Research studies on prediction and recommendation in social collab-
orative platforms broadly fall into two categories: (i) finding experts
to perform certain platform tasks [1, 2, 6, 10, 13, 15, 19–21] and (ii)
recommending items to users in a platform [3, 5, 7, 16, 17, 22]. Under
category (i), the works on Stack Overflow mainly involve devis-
ing methods to find experts to answer questions [2, 13, 15, 19, 20],
while for GitHub a user is identified as an expert if (s)he reviews
pull-requests and code for repositories [10, 21]. The works under
category (ii) largely focus on recommending items to users, without
specifying activities to be performed on the items. For example,
several works aim to recommend relevant Stack Overflow posts
[3, 17] and Github repositories [7, 22] to users.

Our work deviates from the existing works under category (ii)
in several ways. Firstly, to the best of our knowledge, Keen2Act
constitutes the first work that focuses on recommending not only

1Source code: https://gitlab.com/bottle_shop/scp/keen2act
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Figure 1: Keen2Act Framework

items but also specific activities under each recommended item.
Our approach has also been applied to more than one platform (i.e.,
GitHub and Stack Overflow).

3 Proposed Approach
3.1 Problem Formulation
We define the activity recommendation problem as follows: For
a given user, which items should (s)he choose and what activities
should (s)he perform on those items? The proposed Keen2Act ap-
proach addresses this joint item-activity recommendation problem
by breaking it down into two sub-problems: the Keen and Act tasks.
The former aims to identify the set of items that a user is potentially
interested in, while the latter aims to subsequently determine the
set of activities to perform on the items of interest. An outline of
our proposed Keen2Act model is given in Figure 1.

We first denote a particular user, item, and activity using the
notation 𝑢, 𝑣 and 𝑧, respectively. We also let𝑈 , 𝑉 and 𝑍 denote the
set of all users, all items, and all activities, respectively. For a given
user 𝑢, the Keen component determines whether an item 𝑣 should
be included in the set 𝑉 +

𝑢 of items selected by that user, as follows:

𝑉 +
𝑢 = {𝑣 ∈ 𝑉 : K(𝑢, 𝑣) ≥ 𝛿K (𝑣)} (1)

where K(𝑢, 𝑣) is the Keen ranking score for user-item pair (𝑢, 𝑣),
and 𝛿K (𝑣) is the Keen decision threshold for 𝑣 . Subsequently, the
Act component determines whether an activity 𝑧 should be part of
the set 𝑍+

𝑢,𝑣 of activities performed by user 𝑢 on a selected item 𝑣 :

𝑍+
𝑢,𝑣 =

{
𝑧 ∈ 𝑍 : A(𝑢, 𝑣, 𝑧) ≥ 𝛿A (𝑧) ∧ 𝑣 ∈ 𝑉 +

𝑢

}
(2)

where A(𝑢, 𝑣, 𝑧) is the Act ranking score for the tuple (𝑢, 𝑣, 𝑧), and
𝛿A (𝑧) is the Act decision threshold for 𝑧.

The main intuition behind the Keen followed by Act steps is
that, prior to determining an activity 𝑧 on item 𝑣 , user 𝑢 must be
sufficiently keen in item 𝑣 in the first place. When there is a lack
of keenness (i.e., K(𝑢, 𝑣) < 𝛿K (𝑣)), the user should not perform
any activity at all on item 𝑣 . Conversely, only when the user shows
a sufficient level of keenness (i.e., K(𝑢, 𝑣) ≥ 𝛿K (𝑣)), he/she can
proceed with selecting which activities to be performed on item 𝑣 .
This two-stage decision process helps not only reduce the search
space (by filtering out less relevant items) but also improve the
quality of the final item-activity recommendation.

The ranking scores K(𝑢, 𝑣) and A(𝑢, 𝑣, 𝑧) can each be realized
using any machine learning model. In this work, we choose to
use a multilinear model called Factorization Machine (FM) [11],
which has shown good performance in a variety of recommendation
tasks based on sparse data. It is also worth noting that the decision
thresholds 𝛿K (𝑣) and 𝛿A (𝑧) are parameters that are learnable from
data and are specific to each item 𝑣 and activity 𝑧, respectively.

Finally, a Recommendation Aggregation process takes place to
combine𝑉 +

𝑢 and 𝑍+
𝑢,𝑣 in order to arrive at the final list 𝑅+𝑢 of recom-

mended item-activity pairs. More specifically, for a given user-item-
activity triplet (𝑢, 𝑣, 𝑧), the Recommendation Aggregation process
corresponds to a decision function D(𝑢, 𝑣, 𝑧):

D(𝑢, 𝑣, 𝑧) = I
[
𝑣 ∈ 𝑉 +

𝑢 ∧ 𝑧 ∈ 𝑍+
𝑢,𝑣

]
(3)

where I[.] is an indicator function and ∧ is an AND logical operator.
We further elaborate the formulation of learning mechanisms

behind the Keen and Act components in Sections 3.2 and 3.3, re-
spectively. We then describe the Recommendation Aggregation
process in greater detail in Section 3.4. Finally, we recap the overall
Keen2Act learning procedure in Section 3.5.

3.2 Keen Component
Keen ranking. We consider the problem of identifying the parame-
ters 𝜃K of the Keen modelK(𝑢, 𝑣) as a learning-to-rank task, and it
is thus sensible to use a loss function optimized for ranking. Among
the myriad of ranking loss functions, theWeighted Approximately
Ranked Pairwise (WARP) loss [18] in particular has been shown as a
good criterion for recommendation tasks. An appealing trait is that
WARP works for data that have only implicit feedback, making it
well-suited to our problem. The key idea ofWARP is that, for a given
positive (observed) example, the remaining negative (unobserved)
examples are randomly sampled until we find a pair of positive and
negative examples for which the current model incorrectly ranks
the negative example higher than the positive one. We can then
perform a model update only based on these violating examples.

Adopting WARP to the context of our Keen model, we can write
the loss function with respect to the Keen model parameters 𝜃K as:

LWARP (𝜃K ) =
∑
𝑢∈𝑈

∑
𝑣∈𝑉 +

𝑢

Φ (𝑟𝑎𝑛𝑘𝑣 (K(𝑢, 𝑣))) (4)

where Φ(.) transforms the rank of a positive item 𝑣 ∈ 𝑉 +
𝑢 into

a weight. Here the 𝑟𝑎𝑛𝑘𝑣 function can be defined as a margin-
penalized rank of the following form:

𝑟𝑎𝑛𝑘𝑣 (K(𝑢, 𝑣)) =
∑
𝑣′∉𝑉 +

𝑢

I
(
K(𝑢, 𝑣) ≥ 1 + K(𝑢, 𝑣 ′)

)
(5)

Choosing a transformation function such as Φ(𝑛) =
∑𝑛
𝑖=1

1
𝑖

would allow the model to optimize for a better Precision@𝑘 . How-
ever, directly minimizing such a loss function via gradient-based
algorithms would be computationally intractable, as equation (5)
sums over all items, resulting in a slow per-gradient update. We
can circumvent this issue by replacing 𝑟𝑎𝑛𝑘𝑣 with the following
sampled approximation [18]: we sample 𝑁 items 𝑣 ′ until we find a
violation, i.e,K(𝑢, 𝑣) < 1+K(𝑢, 𝑣 ′), and subsequently estimate the
rank, i.e., 𝑟𝑎𝑛𝑘𝑣 (K(𝑢, 𝑣)), by |𝑉 \𝑉 +

𝑢 |−1
𝑁

. In addition to theWARP loss,
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we need an appropriate regularization term to control our model
complexity. In this work, we employ L2 regularization, which is
differentiable and suitable for gradient-based methods as well. This
leads to an overall, regularized ranking loss function Lrank:

Lrank (𝜃K ) = LWARP (𝜃K ) + 𝜆K
2

| |𝜃K | |2 (6)

where 𝜆K > 0 is a user-specified 𝑙2-regularization parameter. The
term ∥𝜃K ∥2 is used to mitigate data overfitting by penalizing large
parameter values, thus reducing the model complexity.

Keen thresholding. Once the Keen ranking step is done, we
need to determine the appropriate decision thresholds 𝛿K in order
to decide whether to include item 𝑣 into 𝑉 +

𝑢 . Ideally, we wish to
identify a threshold such that the set of selected items matches the
set of ground-truth, observed items as close as possible. However,
it is difficult to learn the thresholds using such a set matching
objective. We therefore relax this via the cross-entropy loss function,
and for the Keen model this would be:

Lthres (𝛿K ) =
∑
𝑢∈𝑈

∑
𝑣∈𝑉

𝐶𝐸
(
K(𝑢, 𝑣) − 𝛿K (𝑣), 𝐼 (𝑣 ∈ 𝑉 +

𝑢 )
)

(7)

where𝐶𝐸 (𝑥,𝑦) = − [𝑦 ln(𝜎 (𝑥)) + (1 − 𝑦) ln(1 − 𝜎 (𝑥))] is the cross
entropy function, 𝜎 (𝑥) = 1

1+exp(−𝑥) is the sigmoid function, and
𝐼 (𝑣 ∈ 𝑉 +

𝑢 ) is an indicator function reflecting the ground truth for
whether item 𝑣 belongs to the set of items selected by user 𝑢.

3.3 Act Component
Act ranking. The ranking loss formulation for the Act model is
similar to that of the Keen model except that the former deals with
ranking of activities at the level of user-item pair. In particular, the
WARP loss function associated with the Act model is given by:

LWARP (𝜃A ) =
∑
𝑢∈𝑈

∑
𝑣∈𝑉 +

𝑢

∑
𝑧∈𝑍+

𝑢,𝑣

Φ (𝑟𝑎𝑛𝑘𝑧 (A(𝑢, 𝑣, 𝑧))) (8)

where the rank function is likewise estimated by a sampled approx-
imation 𝑟𝑎𝑛𝑘𝑧 (A(𝑢, 𝑣, 𝑧)) ≈ |𝑍\𝑍+

𝑢,𝑣 |−1
𝑁

. Accordingly, adding the L2
penalty to control the model complexity, the overall regularized
WARP loss for the Act model A is given by:

Lrank (𝜃A ) = LWARP (𝜃A ) + 𝜆A
2

| |𝜃A | |2 (9)

where 𝜆A > 0 is the L2-regularization parameter.
Act thresholding. Similar to the thresholding in the Keenmodel,

we can estimate the decision threshold of the Act model using the
following cross-entropy loss:

Lthres (𝛿A ) =
∑
𝑢∈𝑈

∑
𝑣∈𝑉 +

𝑢

∑
𝑧∈𝑍

𝐶𝐸
(
A(𝑢, 𝑣, 𝑧) − 𝛿A (𝑧), 𝐼 (𝑧 ∈ 𝑍+

𝑢,𝑣)
)

(10)

where 𝐼 (𝑧 ∈ 𝑍+
𝑢,𝑣) is an indicator function reflecting the ground

truth for whether activity 𝑧 belongs to the set of activities carried
out by user 𝑢 on a selected item 𝑣 (i.e., 𝑣 ∈ 𝑉 +

𝑢 ).

3.4 Recommendation Aggregation
The final step in theKeen2Actmodel is to generate a sorted list𝑅+𝑢 of
recommended item-activity pairs for a given user 𝑢, by aggregating
the selected item set𝑉 +

𝑢 and chosen activity set𝑍+
𝑢,𝑣 as computed by

the Keen and Act models respectively. To achieve this, we generate

Algorithm 1 Keen2Act Learning Procedure
Inputs:

Keen interactions IK and Act interactions IA
Maximum number of epochs𝑇 and maximum negative samples 𝑁

Outputs:
Model parameters 𝜃K and 𝜃A
Decision thresholds 𝛿K and 𝛿A

1: repeat ⊲ Phase 1: Rank learning
2: for each (𝑢, 𝑣) ∈ IK do ⊲ Keen ranking loop
3: repeat
4: Randomly sample a negative item 𝑣′ by from𝑉 \𝑉 +

𝑢

5: if K(𝑢, 𝑣) < 1 + K (𝑢, 𝑣′) then ⊲ Keen rank violation found
6: Perform Adam update on 𝜃K to minimise (6)
7: break
8: end if
9: until maximum sampling 𝑁
10: end for
11: for each (𝑢, 𝑣, 𝑧) ∈ IA do ⊲ Act ranking loop
12: repeat
13: Randomly sample a negative activity 𝑧′ by from 𝑍 \ 𝑍+

𝑢,𝑣

14: if A(𝑢, 𝑣, 𝑧) < 1 + A(𝑢, 𝑣, 𝑧′) then ⊲ Act rank violation found
15: Perform Adam update on 𝜃A to minimise (9)
16: break
17: end if
18: until maximum sampling 𝑁
19: end for
20: until maximum epochs𝑇
21: repeat ⊲ Phase 2: Threshold learning
22: for each user 𝑢 ∈ 𝑈 do
23: for all items 𝑣 ∈ 𝑉 do ⊲ Keen thresholding loop
24: Perform Adam update on 𝛿K to minimise (7)
25: end for
26: for all positive items 𝑣 ∈ 𝑉 +

𝑢 do ⊲ Act thresholding loop
27: for all activities 𝑧 ∈ 𝑍 do
28: Perform Adam update on 𝛿A to minimise (10)
29: end for
30: end for
31: end for
32: until maximum epochs𝑇

𝑅+𝑢 by enumerating the selected items 𝑣 ∈ 𝑉 +
𝑢 starting from the

one with the highest K(𝑢, 𝑣), and then for each selected item, we
enumerate the selected activities 𝑧 ∈ 𝑍+

𝑢,𝑣 starting from the highest
A(𝑢, 𝑣, 𝑧). This results in a recommendation list whereby the item
ranking takes precedence over the activity ranking.

3.5 Learning Procedure
To minimize the ranking losses Lrank (𝜃K ) and Lrank (𝜃A ) as well
as threshold losses Lthres (𝛿K ) and Lthres (𝛿A ), we devise an in-
cremental learning procedure based on a variant of stochastic gra-
dient descent called Adaptive Moment Estimation (Adam) [8]. Al-
gorithm 1 summarizes the procedure, which takes in the Keen
interactions IK = {(𝑢, 𝑣) : 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑉 +

𝑢 } and Act interactions
IA = {(𝑢, 𝑣, 𝑧) : 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑉 +

𝑢 ∧ 𝑧 ∈ 𝑍+
𝑢,𝑣} as inputs, and outputs

the model parameters 𝜃K and 𝜃A as well as thresholds 𝛿K and 𝛿A .
The overall algorithm consists of two phases: rank learning and

threshold learning. In the first phase, we carry out Adam to update
the model parameters 𝜃K and 𝜃A by finding a pair of positive and
negative examples that violate the desired (Keen or Act) ranking.
In the second phase, we also perform Adam update on 𝛿K and 𝛿A
by enumerating at the item and activity levels respectively.

4 Experiment
Datasets.We experiment on two public datasets: GitHub [4] and
Stack Overflow2. For both datasets, we retrieve active users (i.e.,
2https://archive.org/details/stackexchange
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Table 1: Dataset summary
GitHub Stack Overflow

#Users 33,453 #Users 23,612
#Repositories 461,931 #Questions 1,020,809
#Fork Activities 445,084 #Answer Activities 860,302
#Watch Activities 1,730,181 #Favorite Activities 544,617

users who have performed at least 10 activities) and their activities
performed betweenOctober 2013 toMarch 2015. For GitHub dataset,
we obtain the fork and watch activities performed by 33,453 users
on over 400k repositories. For Stack Overflow dataset, we retrieve
the answer and favorite activities performed by 23,612 users on over
1 million questions. Table 1 summarizes the two datasets.

Features. From the datasets, we construct two sets of features:
• User features: We adapt the co-participation similarity scores
introduced in [9] to measure the level of co-participation
between a given user and other users in the platform. For
example, we compute the number of times two users co-
fork and co-watch a GitHub repository. As such, each user is
represented with a count vector with 𝑑𝑈 dimensions, where
𝑑𝑈 is equal to the number of users in the platform.

• Item features: For each item (i.e., Stack Overflow question
and GitHub repository), we compute its TF-IDF vector based
on its description tags. Hence, each item is represented with
a TD-IDF vector with 𝑑𝑇 dimensions, where 𝑑𝑇 is equal to
the total number of tags used to describe the items.

Baselines. As a few related works perform activity recommen-
dations, we adapt and apply some of the commonly used item
recommendation methods to our scenario. Specifically, we compare
our model to two variants of Factorization Machine (FM):

• FM_BPR [11]. This method uses Bayesian Personalized Rank-
ing (BPR) loss [12] to maximize the rank difference between
a positive example and a randomly chosen negative example.

• FM_WARP [18]. This method uses WARP loss to maximize
the rank of positive examples by repeatedly sampling nega-
tive examples until a rank violation is found.

The user by item-activity interaction matrix, user, and item features
are used as input for both baseline methods. All the parameters of
baseline methods are empirically set to the optimal values. Besides
the baselines, we also test several variants of our model:

• Keen Model. Using only the Keen model, we retrieve a set
of items that the user is interested in and recommend the
user to perform all activities on the retrieved items.

• Act Model. Using only the Act model, we consider all possi-
ble activities for all possible user-item pair and recommend
activities which meet the Act threshold.

• Keen2Act. Our full model with both Keen and Act modules.
Training and testing splits. In all our experiments, we ran-

domly select 80% activities of each user to form the training set and
use the remaining activities as testing set. As such, all users are
observed in the training set. However, some items might be new
in the test set (corresponding to a cold start problem). Note that
the user and item features are computed based on the observations
in the training set. We repeat this process 5 times, resulting in 5
training-testing splits based on which we evaluate our model.

Evaluation metric. We use the Mean Average Precision at top
𝑘 (MAP@𝑘) as a primary metric in our experiments, which is pop-
ularly used to evaluate recommendation models [14]. We vary 𝑘

Table 2: Experiment results of various methods
Dataset Model MAP@5 MAP@10 MAP@20 MAP@50 MAP
GitHub FM_BPR 0.120 0.128 0.127 0.113 0.036

FM_WARP 0.300 0.299 0.276 0.233 0.077
Keen Model 0.298 0.297 0.269 0.224 0.074
Act Model 0.250 0.243 0.232 0.219 0.058
Keen2Act 0.348 0.347 0.325 0.284 0.099

Stack FM_BPR 0.103 0.109 0.108 0.100 0.033
Overflow FM_WARP 0.180 0.183 0.177 0.160 0.050

Keen Model 0.238 0.234 0.230 0.209 0.054
Act Model 0.191 0.191 0.188 0.186 0.053
Keen2Act 0.259 0.249 0.227 0.210 0.064

from 5 to ∞ in order to examine the sensitivity of our model. Note
that setting 𝑘 = ∞ is equivalent to computing MAP.

4.1 Results and Discussion
Table 2 shows theMAP@𝑘 results averaged over the 5 runs of our ac-
tivity recommendation experiments. We observe that Keen2Act con-
sistently outperforms all the other methods. Specifically, Keen2Act
outperforms FM_BPR and FM_WARP by 175% and 29% respectively
in Stack Overflow, and 94% and 28% respectively in GitHub. As we
increase 𝑘 , we also notice deterioration in MAP@𝑘 results. This
can be attributed to the Precision@𝑘 metric favoring a model that
outputs a ranked list with the relevant (i.e., observed) item-activity
pairs leading the list. That is, as 𝑘 increases, it is likely that more
and more irrelevant item-activity pairs would appear in between
the relevant item-activity pairs, pushing the Precision@𝑘 lower.

Additionally, we can see that the improvement of Keen2Act
over the baselines is greater in Stack Overflow than in GitHub.
A possible reason is due to the sparsity of user activities. More
specifically, GitHub users are observed to perform more activities
concentrated on a small set of items (i.e., denser user by item-
activity interaction matrix), whereas Stack Overflow users tend
to perform fewer activities spread across a large set of items. The
denser interaction matrix for GitHub allows the baseline methods
to have sufficient observations to achieve competitive results.

Comparing the different variants of our proposed model, we can
see that Keen2Act outperforms the Keen model, suggesting that
it is inadequate to learn only the item-level interests of the users
when recommending activities. Keen2Act also outperforms the Act
model, which demonstrates the importance of the Keen step in
learning the item-level interests before activity-level interests. It is
also interesting to see that the Keen model performs fairly well in
comparison to the other methods. We can attribute this to reduced
sparsity in the problem space it is operating at, i.e., the Keen model
only makes item-level recommendation while the other methods
recommend at the activity level. Finally, it is worth noting that the
MAP@𝑘 scores of various models are generally low, showcasing
the complexity of the activity recommendation problem.

5 Conclusion
In this paper, we put forward a new Keen2Act modeling approach
to recommending items and multiple type of activity to a user in a
step-wise manner. The efficacy of the approach has been demon-
strated in experiments using real-world GitHub and Stack Overflow
datasets. In the future, we would like to extend Keen2Act using
deep representation learning and conduct more comprehensive
experiments to benchmark it against more state-of-the-art methods.
We also plan to apply Keen2Act to other social platforms as well as
consider a larger number of activity types.
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