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Abstract—Deep Learning techniques have been prevalent in
various domains, and more and more open source projects
in GitHub rely on deep learning libraries to implement their
algorithms. To that end, they should always keep pace with the
latest versions of deep learning libraries to make the best use
of deep learning libraries. Aptly managing the versions of deep
learning libraries can help projects avoid crashes or security
issues caused by deep learning libraries. Unfortunately, very few
studies have been done on the dependency networks of deep
learning libraries. In this paper, we take the first step to perform
an exploratory study on the dependency networks of deep learn-
ing libraries, namely, Tensorflow, PyTorch, and Theano. We study
the project purposes, application domains, dependency degrees,
update behaviors and reasons as well as version distributions of
deep learning projects that depend on Tensorflow, PyTorch, and
Theano. Our study unveils some commonalities in various aspects
(e.g., purposes, application domains, dependency degrees) of deep
learning libraries and reveals some discrepancies as for the
update behaviors, update reasons, and the version distributions.
Our findings highlight some directions for researchers and also
provide suggestions for deep learning developers and users.

I. INTRODUCTION

An emerging branch of machine learning algorithms known

as deep learning (DL) algorithms has attracted considerable at-

tentions in both academia and industry recently [17]. Due to its

high accuracy and advanced performance when handling var-

ious tasks, it has obtained enormous success in many cutting-

edge domains, e.g., image processing [6], [10], [20], disease

diagnosis [31], [32], natural language processing (NLP) [34],

auto-driving [8], [22], speech and audio processing [21], and

strategy gaming [30].

Deep learning algorithms convert the input to output by

using multiple layers of transformation functions, where each

layer successively learns information flows from front neural

layers to the rear ones [23]. To implement deep learning

algorithms, DL libraries (e.g., Tensorflow and PyTorch) are

provided to help realize the demands of intelligent software,

which in turn, allows practitioners and researchers use deep

learning technologies better.

Due to the popularity of deep learning, there are many

empirical studies in software engineering domains that look

into deep learning code, e.g., detecting and locating code

mistakes in DL applications [41], understanding the bugs

*Shuiguang Deng is the corresponding author.

types, root causes, impacts, and common antipatterns in buggy

software [23], characterizing the internal behaviors of RNNs

via quantitative analysis of RNN-based DL systems [14],

and characterizing deep learning development and deployment

across different frameworks and platforms [17]. Among them,

very few studies have quantitatively analyzed the dependency

management of deep learning ecosystems, not to mention the

commonalities and discrepancies of deep learning projects that

depend on different deep learning libraries.

Deep learning libraries are constantly evolving to add new

features and fix bugs. To take full advantage of deep learning

libraries, users should always keep up to date with the latest

versions of deep learning libraries. Therefore, an exploratory

study to understand the evolution of dependency management

of deep learning libraries can shed light on the development

and improvement of deep learning libraries, and provide

practical suggestions to developers, users, and researchers.

To achieve this goal, in this paper, we analyze the project

purposes, application domains, dependency degrees, update

behaviors, and update reasons as well as the version distribu-

tions of deep learning projects that depend on different deep

learning libraries, namely Tensorflow, PyTorch, and Theano.

All three deep learning libraries are typical and widely studied.

[19], [23], [41].

Consequently, some of the key findings include: 1)

Tensorflow-dependent and PyTorch-dependent projects that

provide replication packages of research papers (purpose =

“paper experiments”) have more contributors and stars; 2) the

image and video processing, NLP, model theory (i.e., related to

the basic deep learning model, such as model implementation,

model improvement, etc.), and efficiency library (i.e., pro-

vide effective environments, libraries, packages, frameworks

to accelerate the development process) applications are the

most common application domains; 3) projects account for a

higher proportion of direct dependencies (e.g., depend on deep

learning library directly) than transitive dependencies (e.g.,

rely on other deep learning projects to implement algorithms)

on deep learning libraries; 4) only a small percentage of

projects have upgraded deep learning libraries out of various

reasons, e.g., to address severity vulnerability, to be compatible

with existed frameworks or libraries, etc.

In summary, we have the following main contributions:
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• To the best of our knowledge, we are the first to perform

an empirical study of the dependency management of

open source projects that depend on Tensorflow, PyTorch,

and Theano.

• We provide avenues for deep learning developers, users,

and researchers to have a comprehensive understanding

of the purposes, applications, dependency degrees as well

as dependency versions of open source projects that rely

on Tensorflow, PyTorch, and Theano.

• Our analysis highlight some practical implications for

deep learning developers, users, and software engineer-

ing researchers, e.g., developers and researchers should

make more efforts to provide more effective automatic

tools to help manage the library versions, and can also

provide empirical evidence of upgrade success to foster

the upgrade behaviors.

Paper Organization. The remainder of this paper is organized

as follows. We introduce the research methodology in Section

2, and present the findings of research questions in Section 3.

Section 4 discusses implications and threats to validity of our

study and Section 5 reviews related work. Finally, Section 6

concludes this paper and gives directions to future work.

II. METHODOLOGY

To study the dependency networks of deep learning li-

braries, we collected the open source projects that depend on

Tensorflow, PyTorch, and Theano in GitHub. The collected

data will be analyzed in the rest of the paper.

A. Research Questions

Our study aims at providing answers for the following four

research questions:

• RQ1. What are the purposes and applications of deep
learning projects that depend on Tensorflow, PyTorch, and
Theano?
In this RQ, we want to investigate the reasons why users

use deep learning libraries and which domain issues they

aim to solve, so that we can provide insights into the

distributions and impacts of purposes and applications.

• RQ2. To what extent do deep learning projects depend
on Tensorflow, PyTorch, and Theano?
Some deep learning projects are apt to rely on deep

learning libraries to achieve their functionality directly,

but there are also some deep learning projects that depend

on other deep learning projects to avoid reimplementing

the same functionality. This kind of inter-project depen-

dence may increase the risk of maintainability issues and

failures. For instance, if a deep learning project do not

manage the deep learning library and the current version

of the deep learning library has a security vulnerability,

then, other deep learning projects that depend on this

project will also be affected. Therefore, we aim to answer

this RQ to reveal the dependence degrees of deep learning

projects and compare if there exists a difference of deep

learning projects that depend on Tensorflow, PyTorch, and

Theano.

TABLE I
THE STATISTICS OF THE DATASET FOR OPEN SOURCE PROJECTS IN

GITHUB THAT DEPEND ON TENSORFLOW, PYTORCH, AND THEANO.
Library All projects Remained

projects
Studied
projects

Tensorflow-
dependent

46,930 14,328 708

PyTorch-dependent 15,812 6,831 339

Theano-dependent 5,620 2,063 103

• RQ3. How are the update behaviors of deep learn-
ing projects that depend on Tensorflow, PyTorch, and
Theano?
This research question concerns library migration of deep

learning projects. We aim to understand and compare the

update behaviors and update reasons for deep learning

projects that depend on Tensorflow, PyTorch, and Theano.

Therefore, we can help deep learning library users man-

age their projects better and provide insights for deep

learning developers to improve deep learning libraries.

• RQ4. How often do deep learning projects use the latest
versions of Tensorflow, PyTorch, and Theano?
This research question aims to study the distribution

of dependency versions of deep learning libraries. By

finding out the usage status of deep learning libraries,

it can help improve deep learning projects better.

B. Data Collection

We extracted open source projects in GitHub that belong to

the “used by” list of Tensorflow, PyTorch, and Theano via the

dependency graph provided by GitHub API. As a result, we

obtained 46,930, 15,812, and 5,620 projects that depend on

Tensorflow, PyTorch, and Theano, respectively. All the data

were collected up to December 2019.

We then removed projects that were forked, non-starred,

and deleted [29] to further refine the projects in our dataset.

We did not limit our projects to the most popular ones,

so that we can have a comprehensive understanding of the

dependency management status. Ultimately, for Tensorflow-

dependent projects, 32,602 projects were dropped and 14,328

projects remained. For PyTorch-dependent projects, 8,981

projects were discarded and 6,831 projects remained. And for

Theano-dependent projects, we excluded 3,557 projects and

2,063 projects remained.

Next, to deeply understand the characteristics of the col-

lected projects, we conducted a sampling process by selecting

5% of the remained projects and stratified selection process

according to the popularity. Notably, by manually checking, it

is sufficient to select 5% of the remained projects to perform

our study. As a result, we obtained 708, 339, and 103 projects

for Tensorflow-dependent, PyTorch-dependent, and Theano-

dependent projects, respectively. The extracted sample projects

will be studied in the rest of the paper. The statistics of the

projects can be seen in Table I.

We used the GitHub API to extract more information about

the deep learning projects: full name, description, readme

content, main programming language, number of stars, number

of contributors, etc.
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C. Classification and Labeling

To determine the purposes and applications of open source

projects that depend on Tensorflow, PyTorch, and Theano, we

look into the project name, description, label, readme content,

and information of owner’s homepage to manually categorize

these extracted sample projects by the card sorting approach

[23], [36], [37].

Classification. To classify the purposes of sample projects, we

referred to the purposes of projects defined in Kalliamvakou

et al.’s study [24] (e.g., software development, experimental,

academic, etc.) and adapted on top of that to fit our dataset

better.

We first used the 708 sample projects that depend on

Tensorflow to manually determine its purpose categories. We

divided the 708 sample projects into different collections

according to their purposes. Next, the first and fourth authors

discussed each collection to determine a suitable name for each

collection. Consequently, we determined 5 purposes, which is

shown in Table II. Specially, we use the “Other” category to

represent the projects that cannot determine their purposes or

projects that cannot fit any other categories.

Different projects always have various applications. We also

used the 708 sample projects that depend on Tensorflow to

identify their applications. We have adapted the applications

for deep learning from [13], [27] (e.g., speech and audio,

natural language processing, image, video, and multimodality,

etc.) and added on top of that to characterize our dataset

better. Two experts from natural language processing and

computer vision domains supported our work and came up

with the application categories jointly with the first and fourth

authors. The projects were also put into application categories

following a card sorting approach [23], [36], [37]. As a result,

13 application categories were derived, which is shown in

Table III. Particularly, we also use the “Other” category to

represent the projects that cannot determine their applications

or projects that cannot fit any other categories.

Labeling. Since we have obtained the classification criteria,

we used those criteria to label all other sample projects that

depend on PyTorch and Theano. The first and fourth authors

independently label the projects. After that, we use Fleiss

Kappa [15] to understand the agreement between the two

labelers. As a result, the Kappa values between two label-

ers of purpose categories on Tensorflow-dependent, PyTorch-

dependent, and Theano-dependent projects are 0.73, 0.76, and

0.78, respectively, which all represent a substantial agreement.

Meanwhile, the Kappa values between two labelers of

application categories on Tensorflow-dependent, PyTorch-

dependent, and Theano-dependent projects are 0.93, 0.89,

0.99, respectively, where all reach an almost perfect agree-

ment. We then discussed the results with ambiguous categories

and reached the final decision.

D. Dependency Analysis

To determine to what extent deep learning projects depend

on deep learning libraries, we check the import statements

Fig. 1. Tensorflow updating in requirement.txt.

in deep learning programs to identify whether those projects

directly depend on deep learning libraries or not. If there exists

at least one import statement of deep learning libraries in deep

learning programs, we then defined it as a direct dependence.

Otherwise, we defined it as a transitive dependence. That is,

the transitive dependence indicates that deep learning projects

totally transitively depend on other deep learning projects to

implement their functions.

E. Version Analysis

To record the historical dependency changes of deep learn-

ing projects towards deep learning libraries, we applied the

following steps. We first cloned the studied projects from

GitHub. Then, we obtained all the commits to a project’s

requirement.txt file (a requirement.txt file is a package man-

agement file that used to manage the versions of dependency

libraries) and manually analyzed the version differences to-

wards deep learning libraries (as exemplified in Fig. 1). Next,

we extracted the version pairs towards deep learning libraries

of different projects, as well as many other information,

including the file path, commit sha, and timestamp. Finally,

we manually determined the type of version changes (i.e.,

upgrade, downgrade, no change) according to the version pairs

and timestamp. Notably, a project may have more than one

requirement.txt files at different file paths, and sometimes a

project may even have no requirement.txt file. For projects

without requirement.txt file, we classify them to the type of

no version changes.

Moreover, we also analyzed how often deep learning

projects used the latest versions of deep learning libraries. To

figure it out, we gathered the newest version statements defined

in projects’ requirement.txt files and manually extracted the

newest version statements of deep learning libraries. It is worth

noting that there may exist more than one requirement.txt

files in a project, and different requirement.txt files may have

different version statements. In our study, we gathered all the

version statements under all requirement.txt files of those deep

learning projects. Therefore, the sum of the version types may

be more than the number of the deep learning projects.

For example, specifying project priya-

dwivedi/Deep-Learning, its version statement in

requirement.txt file with path priya-dwivedi/Deep-

Learning/mask rcnn damage detection/requirements.txt

is tensorflow >= 1.3.0, while its version statements
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TABLE II
CLASSIFICATION CATEGORIES OF PURPOSES.

Category of Purpose Description Examples
Competition Projects that store code for the purpose of competitions,

such as Bitcamp2019, Kaggle competitions, etc.
Project name: krantirk/kaggle-competition-solutions; Description:

kaggle-competition-solutions; Url:
https://github.com/krantirk/kaggle-competition-solutions

Knowledge Learning
and Teaching

Projects that are used to learn, practice, or teach deep
learning knowledge, containing code samples, demos,

tutorials, etc.

Project name: microsoft/ai-edu; Description: AI education materials for
Chinese students, teachers and IT professionals; Url:

https://github.com/microsoft/ai-edu

Paper Experiments Projects that are related to the research papers, such as
experiment replication and algorithms reproduction of

research papers.

Project name: tonybeltramelli/pix2code ; Description: pix2code: Generating
Code from a Graphical User Interface Screenshot; Url:

https://github.com/tonybeltramelli/pix2code

Software Development Projects that are systems or tools of different applications,
it usually includes projects of frameworks, libraries,

plugins, tools, etc.

Project name: opencv/cvat; Description: Powerful and efficient Computer
Vision Annotation Tool (CVAT); Url: https://github.com/opencv/cvat

Other Projects that cannot determine their purposes or projects
that cannot fit any other categories.

Project name: SelinaIrra/Diploma; Description: null; Url:
https://github.com/SelinaIrra/Diploma

TABLE III
CLASSIFICATION CATEGORIES OF APPLICATIONS.

Category of
Applications

Description Examples

Code Analysis Projects related to code processing, such as cross-language
API mappings, software defect reports analyzing, etc.

Project name: bdqnghi/SAR API mapping; Description: FSE 2019, Learning
Cross-Language API Mappings with Little Knowledge; Url:

https://github.com/bdqnghi/SAR API mapping

Control Projects related to the control system, such as continuous
control, auto driving, robotics, etc.

Project name: aweeraman/reinforcement-learning-continuous-control; Description:
Continuous Control with deep reinforcement learning where the agent must reach a

moving ball with a double jointed arm; Url:
https://github.com/aweeraman/reinforcement-learning-continuous-control

Efficiency Library Projects that provide effective environment, libraries,
packages, frameworks to accelerate the development of

deep learning systems.

Project name: zurutech/ashpy; Description: TensorFlow 2.0 library for distributed
training, evaluation, model selection, and fast prototyping; Url:

https://github.com/zurutech/ashpy

Entertainment Projects that develop games or just for fun. Project name: michael-pacheco/deep-learning-bullet-hell-environment; Description:
A reinforcement learning environment and agent for a Touhou/bullet hell inspired

game: Sacred Curry Shooter; Url:
https://github.com/michael-pacheco/deep-learning-bullet-hell-environment

Graph Projects related to graph processing, such as graph
representation learning, etc.

Project name: twjiang/graphSAGE-pytorch; Description: A PyTorch implementation
of GraphSAGE. This package contains a PyTorch implementation of GraphSAGE;

Url: https://github.com/twjiang/graphSAGE-pytorch

Image and Video Projects related to image processing or video processing,
such as image classification, image generation, image

denoising, video processing, etc.

Project name: mkocabas/EpipolarPose; Description: Self-Supervised Learning of 3D
Human Pose using Multi-view Geometry (CVPR2019); Url:

https://github.com/mkocabas/EpipolarPose

Model Theory Projects related to the basic model, such as model
implementation, model improvement, etc.

Project name: L0SG/relational-rnn-pytorch; Description: An implementation of
DeepMind’s Relational Recurrent Neural Networks in PyTorch; Url:

https://github.com/L0SG/relational-rnn-pytorch

Multimodality Projects that process more than two kinds of data
modalities, such as text to image, image to code, etc.

Project name: tonybeltramelli/pix2code; Description: pix2code: Generating Code
from a Graphical User Interface Screenshot; Url:

https://github.com/tonybeltramelli/pix2code

NLP Projects related to text processing, such as text
classification, text generation, sentiment analysis, chatbot,

etc.

Project name: apcode/tensorflow fasttext; Description: Simple embedding based
text classifier inspired by fastText, implemented in tensorflow; Url:

https://github.com/apcode/tensorflow fasttext

Security Projects related to security problems, such as SQL
injection detection, DDOS detection, etc.

Project name: Aetf/tensorflow-tbcnn; Description: Tree-based Convolutional Neural
Network for SQL Injection Detect; Url: https://github.com/Aetf/tensorflow-tbcnn

Time Series Projects that used to process time-series data, such as real
estate price prediction, stock prediction, etc.

Project name: Rishub21/ml Finance; Description: Various machine learning tools to
predict and analyze stock movements; Url: https://github.com/Rishub21/ml Finance

Speech and Audio Projects related to speech and audio processing, such as
speech classification, speech recognition, music

classification, etc.

Project name: IBM/MAX-Audio-Classifier; Description: Identify sounds in short
audio clips; Url: https://github.com/IBM/MAX-Audio-Classifier

Other Projects that cannot be determined the applications,
projects that have no applications, or projects that cannot

fit any other categories, such as a crawler, etc.

Project name: ivannz/mlss2019-bayesian-deep-learning; Description: MLSS2019
Tutorial on Bayesian Deep Learning; Url:

https://github.com/ivannz/mlss2019-bayesian-deep-learning

in requirement files with paths priya-dwivedi/Deep-

Learning/sentiment classification RNN/requirements.txt and
priya-dwivedi/Deep-Learning/word2vec skipgram/requirements.txt

are all tensorflow == 1.0.0. We thus recorded

tensorflow == 1.0.0 twice and tensorflow >= 1.3.0
once. There also exist some projects without requirement files

or did not state versions in their requirement files; we defined

the versions of these kinds of projects as “No-statement”. In

this way, we generate the distribution of versions for studied

deep learning projects.

III. RESULTS

In this section, we present the results of our analysis on the

sample projects to answer the four research questions.

A. Overall Impressions

Fig. 2 illustrates the box plots with the distribution of

the number of stars, the number of contributors, and project

size of the studied projects. Results show that PyTorch-

dependent projects are more popular than Theano-dependent

and Tensorflow-dependent projects (4 vs. 3 vs. 2, median

measures), but have fewer contributors than Theano-dependent

and Tensorflow-dependent projects (1 vs. 2 vs. 1, median

measures), and also have smaller project size than Theano-

dependent and Tensorflow-dependent projects (4,052 vs. 8,112

vs. 8,248, median measures), which is aligned with previous

studies that PyTorch-dependent projects are more lightweight

and easier to implement and use [4].
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To investigate whether the distributions of different group-

s are statistically significant, we performed the Wilcoxon

Signed-Rank test [39] at the confidence level of 95% and

computed Cliff’s delta [11] to show the effect size of the

difference. Indeed, the distributions of different groups on stars

and contributors are statistically different, and the effect sizes

are non-negligible, while the distributions of different groups

on project size have no statistical difference.

B. RQ1: What are the purposes and applications of open
source projects that depend on Tensorflow, PyTorch, and
Theano?

In this section, we present and compare the distribu-

tions of 5 purpose categories and 13 application categories

on Tensorflow-dependent, PyTorch-dependent, and Theano-

dependent projects, respectively.

1) Purpose Category Distribution: Fig. 3 demonstrates the

distributions of purpose categories on Tensorflow-dependent,

PyTorch-dependent, and Theano-dependent projects. It shows

that the software development purpose is accompanied with

the highest number of occurrences for Tensorflow-dependent

projects, and the knowledge learning and teaching purpose

has the second-highest number of occurrences. For PyTorch-

dependent projects, paper experiments purpose accounts for

the overwhelming majority. As for Theano-dependent projects,

software development and paper experiments purposes take up

more than half of the total.

We can find that the commonality is that the vast ma-
jority of the purposes of projects distribute at software
development, paper experiments, and knowledge learning
and teaching, which accounts for at least 86% of the
total. The discrepancy is that Tensorflow-dependent projects

concentrate more on software development, while PyTorch-

dependent projects concentrate more on paper experiments,

which is in line with the previous study that Tensorflow

does well in industrial production capabilities, while PyTorch

deeply plows the research community [4]. To examine whether

the distribution of purposes of open source projects that

depend on different deep learning libraries are statistically

different, we applied Kolmogorov-Smirnov test [28], [38]. The

null hypothesis is that open source projects that depend on

different deep learning libraries have the same distribution

of each purpose category. Results show that there exists no

significant difference in the distribution.

2) Application Category Distribution: Fig. 4 illustrates

the distributions of application categories on Tensorflow-

dependent, PyTorch-dependent, and Theano-dependent

projects. Fig. 4(a) shows that the most common application

of Tensorflow-dependent projects is image and video, which

takes up 28% of the total, and the NLP application ranked at

the second with 14% of the total. One potential explanation

for this finding may be due to that the image and video

and NLP applications comprise various sub-applications

and each sub-application has attracted many users involved,

e.g., the image and video application encompasses face

recognition (e.g., accessai/access-face-vision), semantic
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Fig. 3. Distributions of purpose categories of Tensorflow/PyTorch/Theano-
dependent projects.

segmentation (e.g., Acciorocketships/FCN), human pose

estimation (e.g., MrEliptik/HandPose), and healthcare (e.g.,

saigerutherford/fetal-code), while the NLP application

contains chatbot (e.g., Chriszhangmw/ChatBots), sentiment

analysis (e.g., lixin4ever/BERT-E2E-ABSA), and name entity

recognition (e.g., uhh-lt/microNER).

Simultaneously, Fig. 4(b) for PyTorch-dependent projects

and Fig. 4(c) for Theano-dependent projects also reveal that

the most common two applications are image and video and

NLP. For Tensorflow-dependent projects, we can also observe

that the least common applications are code analysis and

graph, which only takes up 2% of the total, while the least

common applications for PyTorch-dependent projects are code

analysis, graph, and multimodality, which only accounts for

3% of the total. As for the Theano-dependent projects, code

analysis, graph, and entertainment applications are the least

common applications, which account for 3% of the total. A

reasonable explanation for these findings may be attributed to

that the code analysis and graph applications have limited sub-

applications and fewer users are engaged in the two domains.

As a result, our analysis reveals that the image and video,
NLP, model theory, and efficiency library applications
are the four most common applications for Tensorflow-
dependent, PyTorch-dependent, and Theano-dependent
projects, which accounts for 55%, 71%, and 51% of the total,

respectively. Meanwhile, the code analysis and graph appli-
cations are the two least common applications for those
projects. It is also worth noting that Tensorflow-dependent

projects have the widest distribution at all the applications,

while PyTorch-dependent projects have no distribution at

security and time series applications, and Theano-dependent

projects have no distribution at multimodality and security

applications. It may imply that Tensorflow does better at

multimodality, security, and time series applications.

We then performed Kolmogorov-Smirnov test [28], [38]

to check whether the distribution of applications of open

source projects that depend on different deep learning libraries

is statistically different. The null hypothesis is that open

source projects that depend on different deep learning libraries

have the same distribution of application categories. As a

result, we observe that there exists a significant difference

in the distribution between Tensorflow-dependent projects and

Theano-dependent projects. Apart from this, there exists no
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(a) Stars (b) Contributors (c) Size
Fig. 2. Distributions of (a) stars, (b) contributors, and (c) size of studied projects that depend on different deep learning libraries.

(a) Tensorflow

(b) PyTorch

(c) Theano

Fig. 4. Distributions of application categories of Tensorflow/PyTorch/Theano-
dependent projects.

other significant difference in the distribution.

C. RQ2: To what extent do deep learning projects depend on
Tensorflow, PyTorch, and Theano?

Deep learning projects can directly or transitively depend

on deep learning libraries to implement their algorithms. To

understand the extent to which they depend on deep learning

libraries, we discuss the dependency degrees of deep learning
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Fig. 5. Distribution of direct and transitive dependencies of
Tensorflow/PyTorch/Theano-dependent projects.

projects on Tensorflow, PyTorch, and Theano, respectively.

In this section, we introduce the distribution of the number

of direct and transitive dependencies, and analyze how other

factors influence the distributions.

Fig. 5 shows the distribution of the number of direct and

transitive dependencies on Tensorflow, PyTorch, and Theano.

We can find that all deep learning projects have a higher
proportion of direct dependencies than transitive de-
pendencies, Tensorflow-dependent projects show 103% more

direct dependencies comparing to transitive dependencies,

PyTorch-dependent projects show 827% more direct depen-

dencies comparing to transitive dependencies, while Theano-

dependent projects only show 15% more direct dependencies

comparing to transitive dependencies.

Then, we present the percentage of deep learning projects

with various application domains across different dependency

degrees, as exemplified in Fig. 6. We notice that Tensorflow-

dependent projects with security, model theory, and graph

applications are the top three groups that directly rely on

Tensorflow, while projects with code analysis, time series,

and image and video applications are the top three groups

that transitively rely on Tensorflow. Meanwhile, PyTorch-

dependent projects with multimodality, graph, and model the-

ory applications are the top three groups that directly rely on

PyTorch, while projects with entertainment, code analysis, and

control applications are the top three groups that transitively

rely on PyTorch. As for Theano, projects with model theory,

code analysis, and graph applications are the top three groups

that directly rely on Theano, while projects with entertainment,

time series, and NLP applications are the top three groups that

transitively rely on Theano.
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(a) Tensorflow

(b) PyTorch

(c) Theano

Fig. 6. Distributions of Tensorflow/PyTorch/Theano-dependent projects of
dependency degrees across different application categories.

We also performed the Kolmogorov-Smirnov test [28], [38]

to examine whether the distribution of dependence degree

on various applications is statistically significant. The null

hypothesis is that deep learning projects with different ap-

plications have the same distribution of direct or transitive

dependence on deep learning libraries. Consequently, we ob-

serve that there exists a significant difference in the distri-

bution between Tensorflow-dependent projects and Theano-

dependent projects as for direct dependence and transitive

dependence, and there also exists a significant difference in

the distribution between Tensorflow-dependent projects and

Pytorch-dependent projects as for the transitive dependence.

Apart from this, there is no other significant differences.

D. RQ3: How are the update behaviors of deep learning
projects that depend on Tensorflow, PyTorch, and Theano?

Developers may update deep learning libraries for various

reasons. In this RQ, we aim to understand how different

deep learning projects manage their dependencies on deep

TABLE IV
THE STATISTICS OF THE UPDATE BEHAVIORS FOR DEEP LEARNING

PROJECTS THAT DEPEND ON TENSORFLOW, PYTORCH, AND THEANO.
Upgrade Downgrade No

Change
Update

Time Lag
Release

Time Lag
Tensorflow 79 9 645 143 104

PyTorch 41 5 313 117 81

Theano 1 1 101 0 379
* The update time lag means the lag between dependency updates, while the release

time lag means the lag between library release time and dependency update time.

learning libraries, and why and how difficult they update the

dependencies.

1) Type of Version Changes: There exist three types of
version changes – upgrade, downgrade, and no change.

Tensorflow, PyTorch, and Theano have been upgraded for 79

(11%), 41 (11%), and 1 (1%) times, respectively. Meanwhile,

there also exist some downgrade behaviors, Tensorflow, Py-

Torch, and Theano have been downgraded for 9 (1%), 5 (1%),

and 1 (1%) times, respectively. We can find that there only

a small percentage of projects have upgraded deep learning

libraries.

Note that the sum of the three types of version changes

is larger than the number of projects, which is due to that

some projects may upgrade deep learning libraries for more

than one time. For example, the Tensorflow-dependent project

spotify/spotify-tensorflow has upgraded Tensorflow versions

for 9 times from Tensorflow 1.2.0 to Tensorflow 1.15.x during

15, September 2017 to 30, October 2019.

To investigate why these projects upgraded or downgraded

deep learning libraries, we manually analyzed the commits of

these projects to find the update reasons. Results show that

Tensorflow-dependent projects upgrade Tensorflow out of the

following reasons: 1) addressing critical severity vulnerability,

2) merging an automatic pull request derived by an automatic

dependency update tool – Dependabot to update the outdated

or insecure libraries, 3) upgrading to ensure their Tensorflow

dependency version less than 2.0, for that Tensorflow 2.0

has some pretty big API changes and they do not want to

use it, 4) upgrading the Tensorflow version to include more

features, e.g., the project alessiamarcolini/MyQ upgraded the

Tensorflow version from 1.12.0 to 1.13.1 to incorporate with

GPU support, etc, 5) upgrading the Tensorflow version to make

it compatible with existing frameworks or libraries, e.g., the

project IBM/MAX-Audio-Classifier upgraded the Tensorflow

version from 1.12.2 to 1.13.1 to ensure Tensorflow work on

ARM. PyTorch-dependent projects upgrade PyTorch version to

make it compatible with existed frameworks or libraries, e.g.,

the project lidq92/CNNIQA upgraded the PyTorch version

from 0.4.0 to 0.4.1 to satisfy the minimum need of ignite

library.

Besides, Tensorflow-dependent projects downgrade Tensor-

flow to stop using Tensorflow 2.0, PyTorch-dependent projects

downgrade PyTorch to address the issues that reported the cur-

rent version could not work, while Theano-dependent projects

downgrade Theano due to that they believe that more recent

versions of Theano may cause conflicts.

2) Time Lag: We find that, on average, the update time lag
of Tensorflow-dependent projects is longer than PyTorch-
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dependent and Theano-dependent projects. They had about

22% longer lag between dependency updates comparing to

PyTorch-dependent projects. The longest update time lag

of Tensorflow-dependent projects is 853 days, which be-

longs to the project chxj1992/captcha cracker, this project

upgraded the Tensorflow version from Tensorflow 1.1.0 to

Tensorflow 1.12.2. The longest update time lag of PyTorch-

dependent projects is 480 days, which belongs to the project

ixaxaar/pytorch-dnc, this project upgraded the PyTorch version

from PyTorch 0.2.0 to PyTorch 1.0.1. They all have a big

update as for the deep learning library version. To examine

whether the distribution of update time lag is significantly

different, we performed the Wilcoxon Signed-Rank test at a

p-value of 0.05 [39] and computed Cliff’s delta [11]. Results

show that there exists no significant difference.

Besides, we also find that on average, the release time lag
of Tensorflow-dependent projects is longer than PyTorch-
dependent projects, they had about 28% longer time lag com-

paring to PyTorch-dependent projects. Interestingly, the re-
lease time lag of Theano-dependent projects is longer than
Tensorflow-dependent and PyTorch-dependent projects,

which had about 264% and 368% longer lag than them.

To examine whether the distribution of release time lag is

significantly different, we performed the Wilcoxon Signed-

Rank test at a p-value of 0.05 [39] and computed Cliff’s

delta [11] again. Results show that the release time lag

of Tensorflow-dependent projects is statistically significantly

longer than PyTorch-dependent projects, and the effect size is

medium. Besides, the release time lag of Theano-dependent

projects is statistically significantly longer than Tensorflow-

dependent projects, and the effect size is large.

E. RQ4: How often do deep learning projects use the latest
versions of Tensorflow, PyTorch, and Theano?

Different deep learning projects are apt to use different

versions of deep learning libraries. To comprehend how often

deep learning projects use the latest versions of deep learning

libraries, we present the distributions of dependency versions

of Tensorflow, PyTorch, and Theano.

1) Version Distribution: Our results are displayed in Fig.

7. We can notice that Theano-dependent projects had the
highest percentage of the latest versions. That is, 20%

of the Theano-dependent projects used Theano 1.0, vs. 3%

for Tensorflow 2.0, and 0.3% for PyTorch 1.4. A reasonable

explanation may be attributed to that the official release dates

of the latest versions of Tensorflow 2.0 and PyTorch 1.4 are too

close that the latest versions have not been widely adopted. As

Tensorflow 2.0 was released in September 2019 [5], the latest

version of PyTorch 1.4 was released in January 2020 [2], while

the latest version Theano 1.0 was released in November 2017.

Besides, we also observe that most Tensorflow-dependent

projects use the versions of Tensorflow 1.0, Tensorflow 1.12,

and Tensorflow 1.13, and most PyTorch-dependent projects

use the versions of PyTorch 0.4 and PyTorch 1.0. As for

Theano-dependent projects, most of them use the latest ver-

sions of Theano 0.8, Theano 0.9, and Theano 1.0. An intrigu-

ing phenomenon is that Tensorflow-dependent and PyTorch-
dependent projects are apt to use a recent but not the latest
versions. It may be due to that Tensorflow and PyTorch have

way more versions and are releasing new versions frequently,

more versions lead to more choices and the newest versions

are apt to exist big API changes or compatibility issues, thus

users are prone to select a recent but not the latest version to

avoid various unexpected problems.

Moreover, another reason may be attributed to that many

users have used TensorFlow and PyTorch for a long time.

Despite TensorFlow and PyTorch released the latest version,

they are unwilling to spend extra time and energy to upgrade,

for that the upgrading process always involves various perspec-

tives and many extra efforts (e.g., the syntactic and stylistic

changes). Similar views were expressed by Kula et al. [25],

i.e., they claimed that “developers do not prioritize updates for

that they cited it as an added effort to be performed in their

spare time.”

Simultaneously, It is also worth noting that at least one-fifth

of the projects have no statement (including no requirement

files or no version statements in requirement files). 34%, 35%,

and 21% of the Tensorflow-dependent, PyTorch-dependent,

and Theano-dependent projects have no statement, respective-

ly. Results indicate that there are too many deep learning

projects that have no version management of deep learning

libraries, which is detrimental to themselves and those projects

that depend on them, and are prone to yield crashes or security

issues.

IV. DISCUSSION

In this section, we discuss and provide some practical im-

plications for deep learning library developers, deep learning

library users, and software engineering researchers, and also

discuss the threats to validity.

A. Implications

Implications for developers of deep learning libraries.
Our results reveal that some deep learning users upgrade

Tensorflow to ensure their dependency version less than 2.0,

they avoid using Tensorflow 2.0 for that Tensorflow 2.0 has

some pretty significant API changes. Although Tensorflow

communities have provided an automatic upgrade script (t-

f upgrade v2) to help migrate TensorFlow from 1.x to Tensor-

Flow 2.0, there are still very few users adopt it. A reasonable

explanation may be due to that the script cannot perform the

syntactic and stylistic changes [1], so that it is still time-

consuming for users to perform a big update. Deep learning

library developers should develop a more complete automatic

tool or script to improve the efficiency of version migration.

Besides, they should not only explain why an update should

be made to a deep learning project, but also take into account

confidence measures that users can use to estimate the risk

of performing a big update. For instance, they can calculate

how many upgrades to TensorFlow 2.0 are performed and how

many downgrades from TensorFlow 2.0 are tracked to give a

confidence score for upgrade success.
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Fig. 7. Distributions of dependency versions of Tensorflow/PyTorch/Theano-dependent projects.

Implications for users of deep learning libraries. Our

findings also reveal that some users upgrade deep learning

libraries to address critical severity vulnerabilities or to make

it compatible with existed frameworks or libraries. However,

there exists a relatively large ratio of transitive dependencies

on deep learning libraries of deep learning projects. For this

kind of projects, users cannot directly manage the dependen-

cies of deep learning libraries, which may result in security

vulnerabilities or code crashes due to the issues existed in

deep learning libraries of dependent projects. Therefore, deep

learning users may need to utilize tools such as Software

Composition Analysis (SCA) [9] products (e.g., Foo et al.’s

SCA design [16], Veracode [3], etc.) to deal with transitive

dependencies of vulnerable versions of deep learning libraries.

SCA can automatically identify the vulnerable versions of the

dependencies used in a project, so that users can transitively

depend on deep learning libraries and keep away with security

issues.

Implications for software engineering researchers. We find

that there exist various purposes of deep learning projects,

therefore, researchers should also consider the purposes

to fit their research needs when they select deep learn-

ing projects to analyze. Meanwhile, the code analysis and

graph applications are the least two common applications

for Tensorflow-dependent, PyTorch-dependent, and Theano-

dependent projects, which indicates that there still too few

works that have been open sourced in these two domains.

Researchers in these two domains should pay more efforts to

propagate and promote their works to attract more attention,

e.g., open source their works in GitHub and introduce their

works thoroughly in the readme files. By opening source

their works in GitHub, they can attract more contributors and

researchers and provide avenues for them to contribute, which

can bring a more extensive development of these two domains.

Besides, As most of the Tensorflow-dependent and PyTorch-

dependent projects are apt to use a recent but not the latest

versions, and sometimes, even if the projects have been

upgraded to the latest version, they will still downgrade it

back. Developers and researchers should make more efforts

to provide more details about the update process, such as

providing empirical evidence of success, e.g., other users with

similar versions have updated to the latest versions and only

spent fifteen minutes. Meanwhile, developers and researchers

can also provide thorough tutorials to help users effectively

understand the update changes of their libraries.

Moreover, our results also reveal that there exist many

projects that do not have version statements, some of them

even do not have requirement file. Users and researchers

should pay more attention to the version management and

form a good habit, including creating requirement files and

managing the library versions. Besides, developers and re-

searchers can also provide automatic tools to help users

generate requirement files and record versions automatically.

B. Threats to Validity

Internal Threats. We gathered open source projects that de-

pend on Tensorflow, PyTorch, and Theano via the dependency

graph provided by GitHub API. Since we are the first to use

the dependency graph to extract the data, there is no guarantee

that this API can generate correct results. To mitigate this

threat, we verified the correctness of the extracted data by

manually checking the sample projects, and results claimed

the correctness of our dataset.

Another threat can be attributed to the trustworthiness of our

sample projects. To ameliorate this threat, we first removed

projects that were forked, non-starred, and deleted. After that,

we performed a sampling process on the filtered projects

and stratified selection process according to the popularity.

In this way, we guaranteed the quality of the dataset and the

consistency of the data structure to the maximum extent.

Ultimately, the third internal threat related to the classi-

fication categories. To mitigate this threat, we adapted the

purpose categories based on Kalliamvakou et al.’s study [24]

and adapted the application categories on top of Liu et al.

and Deng et al.’s studies. In this process, two experts from

natural language processing and computer vision domains also

involved our study and determined categories jointly with all

the authors following a card sorting approach.

External Threats. The results in our paper may not generalize

to all deep learning libraries. Although we studied a large

sample of open source projects that depend on Tensorflow,

PyTorch, and Theano, results of this paper may not extend to

all deep learning libraries. However, due to that the three deep

learning libraries are all typical and popular, we believe that

our findings can also bring some revelations to developers,

users, and researchers that use other deep learning libraries.

Besides, another external threat involves that the findings in

this paper may not adapt to proprietary DL systems, since

we only obtained the open source projects in GitHub, but not

gathered the proprietary projects, where proprietary projects

may have different dependency management patterns with

open source projects.
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V. RELATED WORK

In this section, we review the related works in two aspects:

studies on deep learning (DL) systems and studies on depen-

dency networks. To the best of our knowledge, we initiate

the first step towards the dependency management of deep

learning systems.

A. Studies of Deep Learning Systems

The deep learning ecosystem has grown in leaps and bounds

in the past few years, which has led to a tremendous amount

of research effort. Du et al. [14] made a quantitative analysis

of RNN-based DL systems. They proposed a general-purpose

quantitative analysis framework DeepStellar to characterize

the internal behaviors of RNN-based DL systems. Guo et

al. [17] conducted a systematic study on four deep learning

frameworks (Tensorflow, PyTorch, CNTK, and MXNET) and

two platforms (mobile and web) to characterize the impacts

of current DL frameworks and platforms on DL software

development and deployment processes. Han et al. [19] applied

Latent Dirichlet Allocation (LDA) to derive and compare

the discussion topics concerning three popular deep learning

frameworks (Tensorflow, PyTorch, and Theano) on two plat-

forms (GitHub and Stack Overflow).

Moreover, the study of the performance of deep learning

frameworks also has been subject to numerous investigations.

Ha et al. [18] proposed an approach called DeepPerf to predict

performance values of highly configurable software systems.

They performed it by using a deep feedforward neural network

(FNN) combined with a sparsity regularization technique.

Liu et al. [26] presented design considerations, metrics, and

challenges towards developing an effective benchmark for DL

software frameworks, and conducted a comparative study on

three popular DL frameworks, namely, TensorFlow, Caffe, and

Torch. Shams et al. [35] attempted to analyze the performance

of different deep learning frameworks (Caffe, TensorFlow,

and Apache SINGA) in different hardware environments. To

investigate it, they compared the time per training iteration and

the number of images trained within a millisecond. Bahram-

pour et al. [7] performed a comparative study of four deep

learning frameworks, namely Caffe, Neon, Theano, and Torch

on three aspects, which are extensibility, hardware utilization,

and speed.

In addition to the above studies on deep learning frame-

works, there also exist many studies focus on bug detection

and localization of deep learning frameworks. For instance,

Zhang et al. [41] studied deep learning applications built on top

of TensorFlow and collected their program bugs to determine

the root causes and symptoms of these bugs. Islam et al.

[23] studied 2,716 high-quality posts from Stack Overflow

and 500 bug fixing commits from Github to understand the

bugs types, root causes, impacts, bug-prone stages as well as

the common antipatterns in buggy software. Besides, Pham

et al. [33] proposed a new approach - CRADLE to find and

localize bugs in DL software libraries and performed it by

cross-checking multiple backends.

B. Studies of Dependency Networks

There also existed many research works towards dependen-

cy and maintainability issues across different programming

language ecosystems. For example, Wittern et al. [40] studied

the evolution of the npm JavaScript library ecosystem and

analyzed their characteristics such as dependencies, popularity,

version distribution, etc. While Decan et al. [12] captured the

growth, changeability, reusability, and fragility of dependency

networks on seven packaging ecosystems: Cargo for Rust,

CPAN for Perl, CRAN for R, npm for JavaScript, NuGet

for the .NET platform, Packagist for PHP, and RubyGems for

Ruby. Kula et al. [25] conducted an empirical study on library

migration to investigate the extent to which developers update

their library dependencies.

Although there have been subject to many efforts on depen-

dency networks across various programming language ecosys-

tems, there have not yet existed studies to study dependency

networks of deep learning systems. Our study can shed light

on the dependency management for deep learning ecosystems

and provide new research directions such as how deep learning

systems migrate to new versions of libraries.

VI. CONCLUSION

In this paper, we take the first step to perform a comparative

study to explore the dependency networks of deep learning li-

braries, i.e., Tensorflow, PyTorch, and Theano. In our study, we

investigated 708 Tensorflow-dependent projects, 339 PyTorch-

dependent projects, and 103 Theano-dependent projects to

identify the purposes and applications (RQ1), dependency

extents (RQ2), and update behaviors (RQ3) as well as depen-

dency versions (RQ4) of deep learning projects. Our analysis

reveals that there exist some commonalities as for the purpose

distributions, application distributions, and dependency extents

of Tensorflow-dependent, PyTorch-dependent, and Theano-

dependent projects. There also have some discrepancies as for

the update behaviors, update reasons, update time lag, and

dependency version distributions of Tensorflow-dependent,

PyTorch-dependent, and Theano-dependent projects.

In the future, we plan to encompass more deep learning

libraries and incorporate proprietary projects to expand the

generalization of our results. Moreover, we also encourage

further studies to analyze more additional questions and extend

our work, e.g., to analyze the relationship between direc-

t/transitive dependencies and upgrade/downgrade behaviors.
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