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Abstract—When developers use different keywords such as
TODO and FIXME in source code comments to describe self-
admitted technical debt (SATD), we refer it as Keyword-Labeled
SATD (KL-SATD). We study KL-SATD from 33 software reposi-
tories with 13,588 KL-SATD comments. We find that the median
percentage of KL-SATD comments among all comments is only
1,52%. We find that KL-SATD comment contents include words
expressing code changes and uncertainty, such as remove, fix,
maybe and probably. This makes them different compared to
other comments. KL-SATD comment contents are similar to
manually labeled SATD comments of prior work. Our machine
learning classifier using logistic Lasso regression has good per-
formance in detecting KL-SATD comments (AUC-ROC 0.88).
Finally, we demonstrate that using machine learning we can
identify comments that are currently missing but which should
have a SATD keyword in them. Automating SATD identification
of comments that lack SATD keywords can save time and effort
by replacing manual identification of comments. Using KL-SATD
offers a potential to bootstrap a complete SATD detector.

Index Terms—Natural language processing; self-admitted tech-
nical debt; data mining

I. INTRODUCTION

Technical debt is a term used to depict non-optimal choices
made in the software development process. Several types
of technical debt has been identified such as code debt,
design and architectural debt, environmental debt, knowledge
distribution and documentation debt, and testing debt [1]. Self-
admitted technical debt (SATD) refers to a specific type of
code debt, where the developer acknowledges admitting code
debt into the system [2]. This admittance can be done in
several ways, such as writing a comment into the code or
explaining it in a commit message.

One specific way of marking SATD on a code level is to
leave a comment with a specific keyword such as TODO.
In this paper we focus on four different keywords, which
are TODO, FIXME, HACK and XXX. These have all been
referred in previous literature as indicators of self-admitted
technical debt when present in code comments [3]-[5]. We
call SATD messages labeled with one of these keywords as
Keyword-Labeled SATD (KL-SATD). We note that not all
SATD comments have these or any keywords.

In this paper we performed an empirical study on 33 repos-
itories containing more than 500,000 comments to answer the
following research questions about SATD comments:
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RQ1: What is the prevalence of KL-SATD comments?
To answer this question, we detect comments for source
code and analyze how many of them contain a SATD
keyword.

RQ2: Do the contents of KL-SATD comments differ from
other comments? For this question, we perform a word
distribution analysis for all comments, and examine if
the comments marked with KL-SATD differ from other
comments by their vocabulary.

RQ3: Can we automatically find comments that have
omitted SATD keyword? Here we use KL-SATD data
to train a machine learning classifier but use it to de-
tect SATD comments that have omitted the keyword.
This can be beneficial as developers do not necessarily
use keywords consistently in their code comments. This
SATD detector can be seen as automated labeler that
can be trained cheaply from existing SATD comments.
Automating this step in SATD tooling is important,
as it eliminates the manual labor, which is both time
consuming and prone to errors.

The paper is structured as follows. Section II describes
the methodology, starting from the used dataset, continu-
ing with the processing of the comments, and ending with
particularities pertaining the research questions . Section III
shows the results, starting from KL-SATD prevalence, then
looking into contents of KL-SATD comments, and ending
with automatically finding comments that have omitted SATD
keyword. Section IV talks about limitations pertaining to our
work, and finally Section V presents the conclusions of the
study.

II. METHODOLOGY

The overview of the methodology is shown in Figure 1.

a) Data.: We utilize the Technical Debt Dataset created
by Lenarduzzi et al. [6]. It includes 33 Java projects, which
are all over three years old, have more than 500 commits, and
include over 100 classes. The dataset has a total of over 140
thousand commits in it. We extract both multi- and single-line
comments by identifying Java-style patterns with Regex. In
total we extracted 862,342 comments.

b) Preprocessing.: The parsed code comments contain
lots of noise, and we reduce it processing the comments using



N Examine KL-SATD N
Comments
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Fig. 1. Overview of the methodology

following steps: First, we remove comments that are code
using NLoN tool [7]. Second, similar to earlier works [1], [8],
we deleted all comments that contained license or copyright
information, and Javadoc comments containing tags. It has
been shown earlier that these comments are not likely to
contain SATD [5]. Third, we remove comments that appear
in renamed files by excluding all the comments that were
deemed as renamed ones according to the Git log in the
Technical Debt Dataset. Fouth, all messages were tokenized;
next, we transformed all the words to lower case, removed
non-alphanumeric characters, and deleted possible email and
website addresses. Then we filtered out words that were less
than three characters long. Fifth, we filtered out stop words.
Sixth, even with stop word removal, some noise was still left to
the dataset such as misspelled words, meaningless words, and
even some very rare terms like “abstractauthenticationtoken”.
We solved this by choosing that a word has to appear at least
in 5 repositories before it is included in the final vocabulary.
This removes even further specific words relating only to
couple of projects, and gets rid of many of the misspelled
words. Important benefit is that it makes the vocabulary and
our results more generalizable. Preprocessing reduces the total
number of comments to 507,254.

¢) RQI: asks about prevalence of KL-SATD comments.
To answer this, we calculated on how many commits new com-
ments appeared, and how many of these comments contained
SATD keyword. This enables us both to compare projects
with each other, and form a general conception of KL-SATD
prevalence.

d) RQ2: looks into how the contents of KL-SATD
comments differ from other comments. For this paper, we
examined the differences visually by creating comparison
word clouds based on word frequencies between KL-SATD
comments and other comments. This allows us to see whether
they differ in their contents.

e) RQ3: uses a machine learning classifier to detect
SATD comments. We selected logistic regression with lasso
penalty from Glmnet package' as our machine learning ap-
proach. It has been shown to have fast performance, and to
work with large and sparse matrices [9] which are typical in
NLP tasks. It has been applied successfully to different NLP
tasks [10]. Logistic regression performs automatically feature
selection, and prevents overfitting with penalty term lambda.
We perform stratified 10-fold cross-validation and report the

Uhttps://cran.r-project.org/web/packages/glmnet/index.html
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TABLE I
SUMMARY OF ALL COMMENTS AND KL-SATD
COMMENTS PER REPOSITORY

All KL-SATD  KL-SATD

Comments Comments  Percentage

Min. 565 2 0.29

Ist Qu. 2,849 25 0.90

Median 4,567 68 1.52

Mean 15,371 411.8 2.29

3rd Qu. 10,931 324 3.05

Max. 112,780 2,943 8.78
Total 507,254 13,588

results using lambda, which gives the maximum mean for
area under the receiver operating characteristics curve (AUC-
ROC). We chose AUC-ROC as it performs well with unbal-
anced datasets [11]. To further alleviate class imbalance, we
assign weights to the training data so that KL-SATD com-
ments weigh as much as the non-KL-SATD comments. This
equal weighting has improved performance when predicting
defects from imbalanced datasets [12]. We performed term
frequency—inverse document frequency (tf-idf) transformation
for the comments before entering them to the classifier. This
common procedure ensures that common terms are given less
value than rarer terms.

III. RESULTS
A. RQI. What is the prevalence of KL-SATD comments?

Total number of comments from all projects after prepro-
cessing was 507,254, from which 13,588 were KL-SATD com-
ments. Descriptive statistics are in Table I. The mean of KL-
SATD comments per repository was 2.29%, while median was
1.52%. The largest percentage of KL-SATD comments were
found on commons-bcel project, on which 8.78% (n=954)
from all 10,867 comments present on that project were KL-
SATD comments. The least amount in terms of percentage
was found on commons-fileupload, which had 2 KL-SATD
comments out of 690 comments in total (0.29%).

We further explored why a repository starts getting a higher
KL-SATD comment percentage using a Spearman’s rank cor-
relation test. We find a low positive correlation between KL-
SATD percentage and the following project variables: number
of commits (r=0.18), number of developers (r=0.38), and lines
of code (r=0.21). We looked the project duration, and found a
low negative correlation (r=-0.25) between development time
in months and KL-SATD percentage. As a conclusion, projects
with larger size, more developers and which have shorter



development history are weakly correlated with a higher KL-
SATD comment ratio. However, as the correlations were quite
weak, we can’t define a strong reason why this happens.

Our study shows that KL-SATD comment percentages
between projects vary greatly, and the median amount for
projects being 1.52%. Previous study [13] analyzed manually
comments of five different projects and found SATD per-
centage between 2.10 - 3.95% per project (median 3.41%).
Our study’s lower percentage means that simply catching KL-
SATD comments with keywords is not enough to catch all
the SATD related comments. Manually checking and labeling
of the comments that have omitted a SATD keyword is time
consuming, which shows the need to detect these comments
automatically.

B. RQ2: Do the contents of KL-SATD comments differ from
other comments?

For analyzing the differences between KL-SATD comments
and other comments, we looked at the distribution of words.
We created a comparison wordcloud based on the frequencies
of words appearing in either KL-SATD comments or non-KL-
SATD comments using R-package wordcloud?. Figure 2 shows
how different words are used in KL-SATD comments (after
keyword removal) when compared to other comments.

Words in KL-SATD comments relate to modifying, verify-
ing or adding code functionalities: “remove”, “add”, “need”,
“fix” and “check”. KL-SATD comments also include words
that show uncertainty such as “maybe”, “probably” and “con-
sider”. Meanwhile, words in comments that are not KL-SATD
are more neutral in their tone, and include terms such as
“value”, “default”, “code” and “element”. Therefore, they
seem more like descriptions of code functionality, perhaps
related to documenting code.

Looking at the manually labeled SATD comments from
previous work [2], we can see that they share similar vocabu-
lary as our KL-SATD comments. Both contain words such
as “use”, “need”, “remove”, “implement”’, and “consider”.
Even with differences, we can conclude that generic SATD
comments and our KL-SATD comments share similarities.

C. RQ3. Can we automatically find comments that have
omitted a SATD keyword?

Here we first trained a machine learning classifier using
logistic regression to identify comments with KL-SATD. GIm-
net logistic regression with stratified 10-fold cross validation
gave us an AUC of 0.88 for predicting KL-SATD comments,
meaning that our classifier was able to reliably discover
which comments had KL-SATD in them with out seeing the
keywords.

Examining the classifier’s predictor words (Table II) with
the most positive and negative coefficients, we see a somewhat
different picture than in the word clouds of Section III-B.
This is because we performed tf-idf transformation for the
classifier, and did not rely on basic appearance counts. The

Zhttps://cran.r-project.org/web/packages/wordcloud/
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Fig. 2. Comparison wordcloud of SATD and non-SATD comments

TABLE II
10 PREDICTOR WORDS WITH THE MOST POSITIVE AND NEGATIVE
COEFFICIENTS PREDICTING KL-SATDFREQUENCIES

Positive Negative
1. | visit certain
2. | consider determined
3. | detailed concrete
4. | perhaps unlike
5. | refactor raised
6. | say edit
7. | think returns
8. | would hidden
9. | implement | casts
10. | fact sequence

most positive predictor words include words that are not
very visible in the word clouds but ones that you would
expect, e.g. refactor, perhaps, consider, and maybe. The most
negative predictors include words like “determined”, “certain”,
“returns” and “sequence”. The full list of predictors can be
downloaded from Figshare®.

Having shown that the classifier is able to detect reliably
KL-SATD comments, we then examine the comments that
according to the classifier should have KL-SATD in them, but
had omitted it. We chose a conservative cutoff point for the
predictions, and considered only predictions that were both: a)
Not labeled with KL-SATD, and b) Predicted with over 70%
confidence, that they should contain KL-SATD. This gave us
14,690 unique comments that are potentially missing an SATD
keyword. To examine the results, we took a random sample of
100 comments, which are availabe from Figshare*. Two of the
authors went over the comments independently, and labeled
them with following scale: 0 - Does not contain SATD; 1 -
Might contain SATD; 2 - Contains SATD; Empty - Can’t tell

3DOL: 10.6084/m9.figshare.11907216
4DOI: 10.6084/m9.figshare.12039945



TABLE III
LABELING RESULTS OF 100 RANDOMLY SELECTED COMMENTS
Label Labeler 1 Labeler 2
0 (Does not contain SATD) 41 60
1 (Might contain SATD) 23 12
2 (Contains SATD) 20 18
Empty (Can’t tell if SATD or not) | 16 10

if SATD or not. The labeling results are presented in Table III.

After labeling, we had 20 different comments with empty
label with one or two of the authors. This left us with 80
comments. There were in total 10 comments, which both
authors had labeled as 2. These can be considered to be
very accurate predictions. In total, there were 23 different
comments, which were labeled either as 1 or 2 by both authors,
and 24 cases where one reviewer gave label of 0, and then
other either 1 or 2. These are more uncertain cases, where the
context of the comment (e.g. the code around the comment)
might help to make more accurate estimation. And finally there
were 33 cases, where both authors said that the comment does
not include SATD.

In many cases, it was hard to determine whether SATD
was present in a particular comment. For example, it is hard
to differentiate whether a comment is a description of what
the code currently does or what it should do.

Overall, both labelers agreed that on 1/3 of the comments
there were no SATD present. This means, that up to 2/3
(= 10,000 comments) of our classifier sample may contain
technical debt. However, in many cases more information of
the project and source code would be needed to determine the
true share of technical debt.

IV. LIMITATIONS

Choice of machine learning algorithm can be seen as a
limitation. However, it has been shown that at least in the
context of detecting code smells the choice of the algorithm
does not give meaningful difference in performance [14].

The choice to repositories used in can be seen also as a
limitation. We used 33 repositories gathered in a previous
study [6], which is a much larger than used in prior works
of automated SATD detection, e.g. 10 in [15] and 7 in [1].

V. CONCLUSION AND FUTURE WORK

In this paper, we studied the prevalence of KL-SATD
comments, their contents and automatically finding comments
that should include a SATD keyword. All the data and the
R-code used to perform the study are available online . The
results show that developers use SATD keywords sparingly
(median 1.52% of comments). We showed that KL-SATD
comment contents are different from comments without it,
and typically express code changes and uncertainty. KL-SATD
comment words are similar to the SATD lexicon shown in prior
works. We built a KL-SATD detector that achieved relatively
high AUC-ROC of 0.88. Our KL-SATD detector can also find

Shttps://github.com/M3SOulu/KLSATD_SEAA_2020
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comments where developers have omitted a SATD keyword
even though it clearly would need one. Thus, the amount of
KL-SATD comments does not accurately reflect the number
of comments that should have SATD keyword in them. This
points to a problem with the state-of-the-practice detectors
such as SonarQube, which rely on keyword detection as one
part of their technical debt detectors.

We manually labeled only 100 randomly chosen samples,
and this does not necessarily reflect the true performance of
the classifier. We fully acknowledge this problem in our short
paper. To fix shortcomings of our model, we plan to test our
classifier with an industry partner (Softagram), and we will
also retrain our model with Active Learning methods, which
will further enhance its performance.
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