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Abstract—When developers use different keywords such as
TODO and FIXME in source code comments to describe self-
admitted technical debt (SATD), we refer it as Keyword-Labeled
SATD (KL-SATD). We study KL-SATD from 33 software reposi-
tories with 13,588 KL-SATD comments. We find that the median
percentage of KL-SATD comments among all comments is only
1,52%. We find that KL-SATD comment contents include words
expressing code changes and uncertainty, such as remove, fix,
maybe and probably. This makes them different compared to
other comments. KL-SATD comment contents are similar to
manually labeled SATD comments of prior work. Our machine
learning classifier using logistic Lasso regression has good per-
formance in detecting KL-SATD comments (AUC-ROC 0.88).
Finally, we demonstrate that using machine learning we can
identify comments that are currently missing but which should
have a SATD keyword in them. Automating SATD identification
of comments that lack SATD keywords can save time and effort
by replacing manual identification of comments. Using KL-SATD
offers a potential to bootstrap a complete SATD detector.

Index Terms—Natural language processing; self-admitted tech-
nical debt; data mining

I. INTRODUCTION

Technical debt is a term used to depict non-optimal choices

made in the software development process. Several types

of technical debt has been identified such as code debt,

design and architectural debt, environmental debt, knowledge

distribution and documentation debt, and testing debt [1]. Self-

admitted technical debt (SATD) refers to a specific type of

code debt, where the developer acknowledges admitting code

debt into the system [2]. This admittance can be done in

several ways, such as writing a comment into the code or

explaining it in a commit message.

One specific way of marking SATD on a code level is to

leave a comment with a specific keyword such as TODO.

In this paper we focus on four different keywords, which

are TODO, FIXME, HACK and XXX. These have all been

referred in previous literature as indicators of self-admitted

technical debt when present in code comments [3]–[5]. We

call SATD messages labeled with one of these keywords as

Keyword-Labeled SATD (KL-SATD). We note that not all

SATD comments have these or any keywords.

In this paper we performed an empirical study on 33 repos-

itories containing more than 500,000 comments to answer the

following research questions about SATD comments:

• RQ1: What is the prevalence of KL-SATD comments?

To answer this question, we detect comments for source

code and analyze how many of them contain a SATD

keyword.

• RQ2: Do the contents of KL-SATD comments differ from

other comments? For this question, we perform a word

distribution analysis for all comments, and examine if

the comments marked with KL-SATD differ from other

comments by their vocabulary.

• RQ3: Can we automatically find comments that have

omitted SATD keyword? Here we use KL-SATD data

to train a machine learning classifier but use it to de-

tect SATD comments that have omitted the keyword.

This can be beneficial as developers do not necessarily

use keywords consistently in their code comments. This

SATD detector can be seen as automated labeler that

can be trained cheaply from existing SATD comments.

Automating this step in SATD tooling is important,

as it eliminates the manual labor, which is both time

consuming and prone to errors.

The paper is structured as follows. Section II describes

the methodology, starting from the used dataset, continu-

ing with the processing of the comments, and ending with

particularities pertaining the research questions . Section III

shows the results, starting from KL-SATD prevalence, then

looking into contents of KL-SATD comments, and ending

with automatically finding comments that have omitted SATD

keyword. Section IV talks about limitations pertaining to our

work, and finally Section V presents the conclusions of the

study.

II. METHODOLOGY

The overview of the methodology is shown in Figure 1.

a) Data.: We utilize the Technical Debt Dataset created

by Lenarduzzi et al. [6]. It includes 33 Java projects, which

are all over three years old, have more than 500 commits, and

include over 100 classes. The dataset has a total of over 140

thousand commits in it. We extract both multi- and single-line

comments by identifying Java-style patterns with Regex. In

total we extracted 862,342 comments.

b) Preprocessing.: The parsed code comments contain

lots of noise, and we reduce it processing the comments using
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Fig. 1. Overview of the methodology

following steps: First, we remove comments that are code

using NLoN tool [7]. Second, similar to earlier works [1], [8],

we deleted all comments that contained license or copyright

information, and Javadoc comments containing tags. It has

been shown earlier that these comments are not likely to

contain SATD [5]. Third, we remove comments that appear

in renamed files by excluding all the comments that were

deemed as renamed ones according to the Git log in the

Technical Debt Dataset. Fouth, all messages were tokenized;

next, we transformed all the words to lower case, removed

non-alphanumeric characters, and deleted possible email and

website addresses. Then we filtered out words that were less

than three characters long. Fifth, we filtered out stop words.

Sixth, even with stop word removal, some noise was still left to

the dataset such as misspelled words, meaningless words, and

even some very rare terms like “abstractauthenticationtoken”.

We solved this by choosing that a word has to appear at least

in 5 repositories before it is included in the final vocabulary.

This removes even further specific words relating only to

couple of projects, and gets rid of many of the misspelled

words. Important benefit is that it makes the vocabulary and

our results more generalizable. Preprocessing reduces the total

number of comments to 507,254.

c) RQ1: asks about prevalence of KL-SATD comments.

To answer this, we calculated on how many commits new com-

ments appeared, and how many of these comments contained

SATD keyword. This enables us both to compare projects

with each other, and form a general conception of KL-SATD

prevalence.

d) RQ2: looks into how the contents of KL-SATD

comments differ from other comments. For this paper, we

examined the differences visually by creating comparison

word clouds based on word frequencies between KL-SATD

comments and other comments. This allows us to see whether

they differ in their contents.

e) RQ3: uses a machine learning classifier to detect

SATD comments. We selected logistic regression with lasso

penalty from Glmnet package1 as our machine learning ap-

proach. It has been shown to have fast performance, and to

work with large and sparse matrices [9] which are typical in

NLP tasks. It has been applied successfully to different NLP

tasks [10]. Logistic regression performs automatically feature

selection, and prevents overfitting with penalty term lambda.

We perform stratified 10-fold cross-validation and report the

1https://cran.r-project.org/web/packages/glmnet/index.html

TABLE I
SUMMARY OF ALL COMMENTS AND KL-SATD

COMMENTS PER REPOSITORY

All KL-SATD KL-SATD
Comments Comments Percentage

Min. 565 2 0.29
1st Qu. 2,849 25 0.90
Median 4,567 68 1.52

Mean 15,371 411.8 2.29
3rd Qu. 10,931 324 3.05

Max. 112,780 2,943 8.78

Total 507,254 13,588

results using lambda, which gives the maximum mean for

area under the receiver operating characteristics curve (AUC-

ROC). We chose AUC-ROC as it performs well with unbal-

anced datasets [11]. To further alleviate class imbalance, we

assign weights to the training data so that KL-SATD com-

ments weigh as much as the non-KL-SATD comments. This

equal weighting has improved performance when predicting

defects from imbalanced datasets [12]. We performed term

frequency–inverse document frequency (tf-idf) transformation

for the comments before entering them to the classifier. This

common procedure ensures that common terms are given less

value than rarer terms.

III. RESULTS

A. RQ1. What is the prevalence of KL-SATD comments?

Total number of comments from all projects after prepro-

cessing was 507,254, from which 13,588 were KL-SATD com-

ments. Descriptive statistics are in Table I. The mean of KL-

SATD comments per repository was 2.29%, while median was

1.52%. The largest percentage of KL-SATD comments were

found on commons-bcel project, on which 8.78% (n=954)

from all 10,867 comments present on that project were KL-

SATD comments. The least amount in terms of percentage

was found on commons-fileupload, which had 2 KL-SATD

comments out of 690 comments in total (0.29%).

We further explored why a repository starts getting a higher

KL-SATD comment percentage using a Spearman’s rank cor-

relation test. We find a low positive correlation between KL-

SATD percentage and the following project variables: number

of commits (r=0.18), number of developers (r=0.38), and lines

of code (r=0.21). We looked the project duration, and found a

low negative correlation (r=-0.25) between development time

in months and KL-SATD percentage. As a conclusion, projects

with larger size, more developers and which have shorter
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development history are weakly correlated with a higher KL-

SATD comment ratio. However, as the correlations were quite

weak, we can’t define a strong reason why this happens.

Our study shows that KL-SATD comment percentages

between projects vary greatly, and the median amount for

projects being 1.52%. Previous study [13] analyzed manually

comments of five different projects and found SATD per-

centage between 2.10 - 3.95% per project (median 3.41%).

Our study’s lower percentage means that simply catching KL-

SATD comments with keywords is not enough to catch all

the SATD related comments. Manually checking and labeling

of the comments that have omitted a SATD keyword is time

consuming, which shows the need to detect these comments

automatically.

B. RQ2: Do the contents of KL-SATD comments differ from

other comments?

For analyzing the differences between KL-SATD comments

and other comments, we looked at the distribution of words.

We created a comparison wordcloud based on the frequencies

of words appearing in either KL-SATD comments or non-KL-

SATD comments using R-package wordcloud2. Figure 2 shows

how different words are used in KL-SATD comments (after

keyword removal) when compared to other comments.

Words in KL-SATD comments relate to modifying, verify-

ing or adding code functionalities: “remove”, “add”, “need”,

“fix” and “check”. KL-SATD comments also include words

that show uncertainty such as “maybe”, “probably” and “con-

sider”. Meanwhile, words in comments that are not KL-SATD

are more neutral in their tone, and include terms such as

“value”, “default”, “code” and “element”. Therefore, they

seem more like descriptions of code functionality, perhaps

related to documenting code.

Looking at the manually labeled SATD comments from

previous work [2], we can see that they share similar vocabu-

lary as our KL-SATD comments. Both contain words such

as “use”, “need”, “remove”, “implement”, and “consider”.

Even with differences, we can conclude that generic SATD

comments and our KL-SATD comments share similarities.

C. RQ3. Can we automatically find comments that have

omitted a SATD keyword?

Here we first trained a machine learning classifier using

logistic regression to identify comments with KL-SATD. Glm-

net logistic regression with stratified 10-fold cross validation

gave us an AUC of 0.88 for predicting KL-SATD comments,

meaning that our classifier was able to reliably discover

which comments had KL-SATD in them with out seeing the

keywords.

Examining the classifier’s predictor words (Table II) with

the most positive and negative coefficients, we see a somewhat

different picture than in the word clouds of Section III-B.

This is because we performed tf-idf transformation for the

classifier, and did not rely on basic appearance counts. The

2https://cran.r-project.org/web/packages/wordcloud/
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Fig. 2. Comparison wordcloud of SATD and non-SATD comments

TABLE II
10 PREDICTOR WORDS WITH THE MOST POSITIVE AND NEGATIVE

COEFFICIENTS PREDICTING KL-SATDFREQUENCIES

Positive Negative

1. visit certain
2. consider determined
3. detailed concrete
4. perhaps unlike
5. refactor raised
6. say edit
7. think returns
8. would hidden
9. implement casts

10. fact sequence

most positive predictor words include words that are not

very visible in the word clouds but ones that you would

expect, e.g. refactor, perhaps, consider, and maybe. The most

negative predictors include words like “determined”, “certain”,

“returns” and “sequence”. The full list of predictors can be

downloaded from Figshare3.

Having shown that the classifier is able to detect reliably

KL-SATD comments, we then examine the comments that

according to the classifier should have KL-SATD in them, but

had omitted it. We chose a conservative cutoff point for the

predictions, and considered only predictions that were both: a)

Not labeled with KL-SATD, and b) Predicted with over 70%

confidence, that they should contain KL-SATD. This gave us

14,690 unique comments that are potentially missing an SATD

keyword. To examine the results, we took a random sample of

100 comments, which are availabe from Figshare4. Two of the

authors went over the comments independently, and labeled

them with following scale: 0 - Does not contain SATD; 1 -

Might contain SATD; 2 - Contains SATD; Empty - Can’t tell

3DOI: 10.6084/m9.figshare.11907216
4DOI: 10.6084/m9.figshare.12039945
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TABLE III
LABELING RESULTS OF 100 RANDOMLY SELECTED COMMENTS

Label Labeler 1 Labeler 2

0 (Does not contain SATD) 41 60
1 (Might contain SATD) 23 12
2 (Contains SATD) 20 18
Empty (Can’t tell if SATD or not) 16 10

if SATD or not. The labeling results are presented in Table III.

After labeling, we had 20 different comments with empty

label with one or two of the authors. This left us with 80

comments. There were in total 10 comments, which both

authors had labeled as 2. These can be considered to be

very accurate predictions. In total, there were 23 different

comments, which were labeled either as 1 or 2 by both authors,

and 24 cases where one reviewer gave label of 0, and then

other either 1 or 2. These are more uncertain cases, where the

context of the comment (e.g. the code around the comment)

might help to make more accurate estimation. And finally there

were 33 cases, where both authors said that the comment does

not include SATD.

In many cases, it was hard to determine whether SATD

was present in a particular comment. For example, it is hard

to differentiate whether a comment is a description of what

the code currently does or what it should do.

Overall, both labelers agreed that on 1/3 of the comments

there were no SATD present. This means, that up to 2/3

(≈ 10, 000 comments) of our classifier sample may contain

technical debt. However, in many cases more information of

the project and source code would be needed to determine the

true share of technical debt.

IV. LIMITATIONS

Choice of machine learning algorithm can be seen as a

limitation. However, it has been shown that at least in the

context of detecting code smells the choice of the algorithm

does not give meaningful difference in performance [14].

The choice to repositories used in can be seen also as a

limitation. We used 33 repositories gathered in a previous

study [6], which is a much larger than used in prior works

of automated SATD detection, e.g. 10 in [15] and 7 in [1].

V. CONCLUSION AND FUTURE WORK

In this paper, we studied the prevalence of KL-SATD

comments, their contents and automatically finding comments

that should include a SATD keyword. All the data and the

R-code used to perform the study are available online 5. The

results show that developers use SATD keywords sparingly

(median 1.52% of comments). We showed that KL-SATD

comment contents are different from comments without it,

and typically express code changes and uncertainty. KL-SATD

comment words are similar to the SATD lexicon shown in prior

works. We built a KL-SATD detector that achieved relatively

high AUC-ROC of 0.88. Our KL-SATD detector can also find

5https://github.com/M3SOulu/KLSATD SEAA 2020

comments where developers have omitted a SATD keyword

even though it clearly would need one. Thus, the amount of

KL-SATD comments does not accurately reflect the number

of comments that should have SATD keyword in them. This

points to a problem with the state-of-the-practice detectors

such as SonarQube, which rely on keyword detection as one

part of their technical debt detectors.

We manually labeled only 100 randomly chosen samples,

and this does not necessarily reflect the true performance of

the classifier. We fully acknowledge this problem in our short

paper. To fix shortcomings of our model, we plan to test our

classifier with an industry partner (Softagram), and we will

also retrain our model with Active Learning methods, which

will further enhance its performance.
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